Defesa de dissertação (12/07/2019): Gabriel Nascimento dos Santos

Discente: Gabriel Nascimento dos Santos

Título: Tratamento de palavras fora do vocabulário em tarefas de análise de sentimentos com léxicos

Orientador: Gustavo Paiva Guedes e Silva (orientador)

Banca: Gustavo Paiva Guedes e Silva (presidente), Eduardo Bezerra da Silva (CEFET/RJ)  Fellipe Ribeiro Duarte (UFRRJ/RJ), Ronaldo Ribeiro Goldschmidt (IME-RJ)

Dia/Hora: 12 de julho de /2019 / 13h

Sala: Auditório 5

Resumo:

O número de usuários da internet que utilizam número de redes sociais, microblogs e sites de avaliação vem aumentando significantemente nos últimos anos. Com isso, usuários tendem a expor suas opiniões e transmitir o que sentem sobre determinado serviço, produto, e os mais diversos assuntos. Isto tem despertado o interesse de pesquisadores de processamento de linguagem natural, especialmente os de Análise de Sentimentos, que se interessam em explorar técnicas de extrair e entender as opiniões fornecidas pelos usuários que utilizam serviços orientados a opiniões. A Análise de Sentimentos possui três abordagens: a abordagem baseada em aprendizado de máquina, a abordagem baseada em léxicos e a abordagem híbrida. A abordagem baseada em léxicos e a abordagem híbrida sofrem com o problema de palavras fora do vocabulário ao lidar com a natureza dos textos de redes sociais. Lidar com textos provenientes de redes sociais é um grande desafio, pois eles variam de textos bem escritos a sentenças completamente sem sentido. Isso ocorre por diversos motivos, como a limitação do número de caracteres (como no Twitter) e até mesmo por erros ortográficos intencionais. Este trabalho propõe um algoritmo que utiliza word embeddings para tratar palavras fora do vocabulário em tarefas de Análise de Sentimentos com abordagens baseadas em léxico ou abordagens híbridas. A estratégia do algoritmo proposto é baseada na hipótese que palavras que tenham contextos parecidos, possuem significados semelhantes. O algoritmo consiste em eleger as palavras mais similares semanticamente e utilizar as categorias da mais próxima que esteja contida no léxico utilizado. Os experimentos foram conduzidos em três conjuntos de dados em Português do Brasil. Foram utilizados três classificadores e foram observadas melhorias de até 3,3% no F1 score após o uso do algoritmo proposto.

Dissertação