Defesa de dissertação (11/12/2024): Fabio da Silva Gregório

Discente: Fabio da Silva Gregório

Título: LexRank guiado para recuperação avançada em análise jurídica

Orientador: Eduardo Bezerra da Silva

Banca: Eduardo Bezerra da Silva (Cefet/RJ – PPCIC), Altigran Soares da Silva (IComp / UFAM), Kele Teixeira Belloze (PPCIC / CEFET-RJ), Gustavo Paiva Guedes e Silva (PPCIC / CEFET-RJ).

Data: 11 de dezembro de 2024, às 16h

Link da sala do MS Teams: https://teams.microsoft.com/v2/?meetingjoin=true#/l/meetup-join/19:OnS4EZKGpsKeGa50vaGxvZZ604acCFsazTfC-LTdwYE1@thread.tacv2/1730395539949?context=%7b%22Tid%22%3a%228eeca404-a47d-4555-a2d4-0f3619041c9c%22%2c%22Oid%22%3a%22c03d6068-4733-48a6-bbb4-aa78f351d9cf%22%7d&anon=true&deeplinkId=830cfb45-96fe-4604-9c5d-13b1ffa801ee

Resumo: A Constituição Brasileira prevê mecanismos para que cidadãos peticionem ao Judiciário, incluindo o chamado recurso especial. Esse tipo específico de recurso visa uniformizar a interpretação jurídica da legislação brasileira. O tratamento de recursos especiais é uma das tarefas diárias no Judiciário, regularmente apresentando demandas significativas em seus tribunais. Propomos um método, baseado em aprendizado de máquina não supervisionado, para auxiliar o analista jurídico a classificar um recurso especial em um tema de uma lista disponibilizada pelo Superior Tribunal de Justiça (STJ). Como parte desse método, propomos uma modificação do algoritmo LexRank baseado em grafos, que chamamos de Guided LexRank. Esse algoritmo gera o resumo de um recurso especial. O grau de similaridade entre o resumo gerado e diferentes temas é avaliado usando o algoritmo BM25. Como resultado, o método apresenta um ranking de temas mais adequados ao recurso especial analisado. O método proposto não requer rotulagem prévia do texto a ser avaliado e elimina a necessidade de grandes volumes de dados para treinar um modelo, como normalmente ocorre em modelos supervisionados. Avaliamos a eficácia do método aplicando-o a um corpus de recurso especial previamente classificado por especialistas humanos.