Outras informações

Reforça-se neste momento que o Programa teve o seu início em junho de 2016 e, portanto, não possui ainda nenhum discente formado.

Ademais, na última atualização do documento de área, foi incluída a restrição de que não haja mais do que 30% dos docentes em outros programas. Tal questão foi abordada, na última reunião do fórum de coordenadores e trouxe problemas para os programas que apenas apresentam o nível de mestrado, uma vez que diversos docentes participam em outros programas de sua instituição para que também possam orientar alunos de doutorado. Tal expertise é inclusive indicada como relevante para submissão de APCNs para doutorado.

Especificamente no caso do PPCIC, esses docentes que participam em mais de um programa têm formação na área de Computação e atuam em outros programas que não pertencem a essa área. Na realidade esses outros programas pertencem as áreas de Engenharias III, Engenharias IV e Administração, o que caracteriza uma exportação de docentes atuando de modo complementar e não uma importação de talentos.

Acrescenta-se que estes docentes que atuam em mais de um programa já vinham desenvolvendo trabalhos em conjunto com os demais docentes do PPCIC, havendo uma forte aderência de suas participações dentro das linhas do Programa. Isso pode ser atestado através das publicações e participações em projetos em conjunto.

Publicações Mais Relevantes

Destacamos que dada a recém criação do Programa, apenas as publicações de 2016 puderam ser cadastradas na plataforma Sucupira. A lista abaixo apresenta as 48 publicações mais relevantes. A lista considerou o JCR para periódicos e o Qualis para artigos de conferências, principalmente as produções no índice restrito (41, sendo 11 no extrato A1, 15 no extrato A2, 15 no extrato B1), mas não se limitando a eles. Também foram indicados artigos nacionais importantes, papers que foram classificados como best papers ou menção honrosa. Procurou-se também manter um balanço na produção docente e inclusão de produção discente.

  1. Guedes, G.; Ogasawara, E.; Bezerra, E.; Xexéo, G. B.. Discovering top-k Non-Redundant Clusterings in Attributed Graphs. Neurocomputing (Amsterdam). v. 2016, p. 1-10, issn: 09252312, 2016.
  2. Haddad, D.B.; Martins, W.A.; da Costa, M.V.M.; Biscainho, L.W.P.; Nunes, L.O.; Lee, B.. Robust Acoustic Self-Localization of Mobile Devices. IEEE Transactions on Mobile Computing, v. 15, p. 982-995, 2016
  3. Macêdo Filho, H.B.; Machado, R.C.S.; de Figueiredo, C.M.H.. Hierarchical complexity of 2-clique-colouring weakly chordal graphs and perfect graphs having cliques of size at least 3. Theoretical Computer Science. v. 618, p. 122-134, issn: 03043975, 2016.
  4. Olinto, K.S.; Haddad, D.B.; Petraglia, M.R.. Transient analysis of l0-LMS and l0-NLMS algorithms. Signal Processing (Print). v. 127, p. 217-226, issn: 01651684, 2016.
  5. Guedes, G.; Bezerra, E.; Ogasawara, E.; Xexéo, G. Exploring multiple clusterings in attributed graphs. Em: ACM Symposium on Applied Computing, 2015.
  6. Silva, A.B.C.; Serique, S.P.; Preuss, L.S.; Ogasawara, A.; Quadros J.R.T.; Bezerra, E.; Souza, U.; Ogasawara, E.. Amê: An Environment to Learn and Analyze Adversarial Search Algorithms Using Stochastic Card Games. Em: ACM Symposium on Applied Computing, p. 208-221, 2015.
  7. da Fonseca, Guilherme D.; de Figueiredo, C.M.H.; de Sá, V.G.P.; Machado, R.C.S.. Efficient sub-5 approximations for minimum dominating sets in unit disk graphs. Theoretical Computer Science. v. 540-541, p. 70-81, issn: 03043975, 2014.
  8. Boccardo, D.; Ribeiro, L.; Canaan, R.; Carmo, L.; Pirmez, L.; Machado, R.; Prado, C.; Nascimento, T.. Energy footprint framework: A pathway toward smart grid sustainability. IEEE Communications Magazine (Print). v. 51, p. 50-56, issn: 01636804, 2013.
  9. da Silva, P.H.; Machado, R.; Dantas, S.; Braga, M.Dv.. DCJ-indel and DCJ-substitution distances with distinct operation costs. Algorithms for Molecular Biology. v. 8, p. 21, issn: 17487188, 2013.
  10. Ruas, V.; Brandão, D.; Kischinhevsky, M.. Hermite finite elements for diffusion phenomena. Journal of Computational Physics (Print). v. 235, p. 542-564, issn: 00219991, 2013.
  11. de Assis, L.S.; Franca, P.M.; Usberti, F.. A redistricting problem applied to meter reading in power distribution networks. Computers & Operations Research. v. 41, p. 65-75, issn: 03050548, 2013.
  12. Amaro, B.; de Lima, L.; Oliveira, C.; Lavor, C.; Abreu, N.. A note on the sum of the largest signless Laplacian eigenvalues. Electronic Notes in Discrete Mathematics. v. 54, p. 175-180, issn: 15710653, 2016.
  13. de Lima, L.; Nikiforov, V.; Oliveira, C. The clique number and the smallest. Discrete Mathematics. v. 339, p. 1744-1752, issn: 0012365X, 2016.
  14. Filho, H.B.M.; Machado, R.C.S.; de Figueiredo, C.M.H.. Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs. Algorithmica. v. 1, p. 1-29, issn: 01784617, 2016.
  15. Hannah, P.H.; Machado, R.; Dantas, S.; Braga, M.. Genomic distance with high indel costs. IEEE/ACM Transactions on Computational Biology and Bioinformatics (Print). v. 1, p. 1-1, issn: 15455963, 2016.
  16. Machado, E.; Serqueira, M.; Ogasawara, E.; Ogando, R.; Maia, M.A.G.; da Costa, L.N.; Campisano, R.; Guedes, G.; Bezerra, E.. Exploring machine learning methods for the Star/Galaxy Separation Problem. Em: 2016 International Joint Conference on Neural Networks (IJCNN), p. 123-130, 2016.
  17. Petraglia, M.R.; Haddad, D. B.; Marques, E.L. . Affine Projection Subband Adaptive Filter with Low Computational Complexity. IEEE Transactions on Circuits and Systems. II, Express Briefs, v. 1, p. 1-1, 2016.
  18. Carvalho, G.R. N.; Brandao, D.N.; Haddad, D.B.; do Forte, V.L.; Ceddia, M.B.. A RBF Neural Network applied to predict soil Field Capacity and Permanent Wilting Point at Brazilian coast. Em: 2015 International Joint Conference on Neural Networks (IJCNN), p. 1, 2015.
  19. Macêdo Filho, H.B.; Dantas, S.; Machado, R.C.S.; Figueiredo, C.M.H.. Biclique-colouring verification complexity and biclique-colouring power graphs. Discrete Applied Mathematics. v. 192, p. 65-76, issn: 0166218X, 2015.
  20. Petraglia, M.R.; Haddad, D.B.; Lawrence, E. M.. Normalized Subband Adaptive Filtering Algorithm with Reduced Computational Complexity. IEEE Transactions on Circuits and Systems. II, Express Briefs, p. 1-1, 2015.
  21. da Fonseca, G.D.; de Sá, V.G.P.; Machado, R.C.S.; de Figueiredo, C.M.H.. On the recognition of unit disk graphs and the Distance Geometry Problem with Ranges. Discrete Applied Mathematics. v. 1, p. 1, issn: 0166218X, 2014.
  22. Mattoso, M.; Dias, J.; Ocaña, K.A.C.S.; Ogasawara, E.; Costa, F.; Horta, F.; Silva, V.; de Oliveira, D.. Dynamic steering of HPC scientific workflows: A survey. Future Generation Computer Systems. v. 46, p. 100-113, issn: 0167739X, 2014.
  23. Machado, R.C.S.; Figueiredo, C. M. H.; Trotignon, N.. Edge-colouring and total-colouring chordless graphs. Discrete Mathematics. v. 313, p. 1547-1552, issn: 0012365X, 2013.
  24. Ocana, K.; Oliveira, D.; Dias, J.; Ogasawara, E.; Mattoso, M.L.Q.. Designing a parallel cloud based comparative genomics workflow to improve phylogenetic analyses. Future Generation Computer Systems. v. 30, p. 005, issn: 0167739X, 2013.
  25. Ogasawara, E.; Dias, J.; Silva, V.; Chirigati, F.; de Oliveira, D.; Porto, F.; Valduriez, P.; Mattoso, M.. Chiron: a parallel engine for algebraic scientific workflows. Concurrency and Computation. v. 25, p. 2327-2341, issn: 15320626, 2013.
  26. Oliveira, D.; Ocana, K.; Ogasawara, E.; Dias, J.; Gonçalves, J.; Baião, F.; Mattoso, M.L.Q.. Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows. Future Generation Computer Systems. v. 29, p. 1816-1825, issn: 0167739X, 2013.
  27. Amorim, G. F.; Dos Santos, J. A. F.; Muchaluat-Saade, Debora C.. XTemplate 4.0: Providing Adaptive Layouts and Nested Templates for Hypermedia Documents. Em: International Conference on Multimedia Modeling, p. 642-653, 2016.
  28. Goldschmidt, R.R.; Fernandes, I.; Norris, M.; Passos, C.; Ferlin, C.; Cavalcanti, M.C.; Soares, J. A.. MEMORE: an Environment for Data Collection and Analysis on the Use of Computers in Education. INFORMATICS IN EDUCATION. v. 15, p. 63-84, issn: 23358971, 2016.
  29. Haddad, D.B.; Petraglia, M.R.; Petraglia, A.. A Unified Approach for Sparsity-Aware and Maximum Correntropy Adaptive Filters. Em: 2016 24th European Signal Processing Conference (EUSIPCO), p. 170-174, 2016.
  30. Salles, R.; Mattos, P.; Iorgulescu, A.D.; Bezerra, E.; Lima, L.; Ogasawara, E.. Evaluating Temporal Aggregation for Predicting the Sea Surface Temperature of the Atlantic Ocean. Ecological Informatics (Print). v. 36, p. 94-105, issn: 15749541, 2016.
  31. dos Santos, J. A. F.; Braga, C.; Muchaluat-Saade, D.C.; Roisin, C.; Layaïda, N.. Spatio-temporal Validation of Multimedia Documents. Em: ACM Symposium on Document Engineering, p. 133-142, 2015.
  32. dos Santos, J.; Braga, C.; Muchaluat-Saade, D.C.. A Rewriting Logic Semantics for NCL. Science of Computer Programming (Print). v. 107-108, p. 64-92, issn: 01676423, 2015.
  33. Machado, R.C.S.; Boccardo, D.; de Sá V.G.P.; Szwarcfiter, J.. Fair fingerprinting protocol for attesting software misuses. Em: International Conference on Availability, 2015.
  34. Pavan, C.; de Lima, L.S.; Paiva, M.H.M.; Segatto, M.. How Reliable Are the Real-World Optical Transport Networks?. Journal of Optical Communications and Networking (Print). v. 7, p. 578-585, issn: 19430620, 2015.
  35. Cabral, F.L.; Osthoff, C.; Kischinhevsky, M.; Brandao, D.. Hybrid MPI/ OpenMP/OpenACC Implementations for the Solution of Convection-Diffusion Equations with the HOPMOC Method. Em: 2014 14th International Conference on Computational Science and Its Applications (ICCSA), p. 196, 2014.
  36. de Assis, L.S.; Gonzalez, J.F.V.; Usberti, F.L.; Lyra, C.; Cavellucci, C.; Von Zuben, F.J.. Switch Allocation Problems in Power Distribution Systems. IEEE Transactions on Power Systems. v. PP, p. 1-8, issn: 08858950, 2014.
  37. Macedo Filho, H.; Machado, R.C.S.; Figueiredo, C. M. H.. Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Cliques of Size at Least 3. Em: Latin American Theoretical INformatics Symposium, v. 8392, p. 13-23, 2014.
  38. Sabino, T.L.R.; Brandão, D.; Zamith, M.; Gonzales, E.C.; Montenegro, A.; Kischinhevsky, M.; Bulcao, A.. Implementation Aspects of the 3D Wave Propagation in Semi-Infinite Domains Using the Finite Difference Method on a GPU based Cluster. Em: International Conference on Computational Science and its Applications, v. 8584, p. 426-439, 2014.
  39. Silva, M.A.A.; Belloze, K. T.; Silva-Jr, F.P.; Cavalcanti, M.C.R.. Agile Semantic Annotation of Scientific Texts at the Biomedical Scenario. Em: IEEE International Conference on EScience (eScience), v. 1, 2014.
  40. Bento, L.; Boccardo, D.; Machado, R.C.S.; de Sá, V.G.P.; Szwarcfiter, J.. Towards a provably resilient scheme for graph-based watermarking. Em: 39th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2013), 2013.
  41. Silva, E.O.; dos Santos, J.A.F.; Muchaluat-Saade, D.C.. NCL4WEB: Translating NCL Applications to HTML5 Web Pages. Em: ACM Symposium on Document Engineering, p. 253-262, 2013.
  42. Honorato, E.; Schocair, C.; Quadros, J. R. T.; Castaneda, R.; Soares, J.; Ogasawara, E.. Explorando uma Aplicação m-learning para Ensino de Vetores na Física do Ensino Médio. Em: : Simpósio Brasileiro de Informática na Educação, v. AL, 2015.
  43. Gomes, W.; Castro, P.; Cardoso, E.; Malheiro, M.; Ribeiro, R. C.; Guedes, G. P.; Mauro, R. C.; Ogasawara, E.. Provendo um Serviço Web para Interação e Coleta de Dados de Aplicativos Educacionais. Em: Simpósio Brasileiro de Informática na Educação, 2015.
  44. Alves, G.; Warley, P.; Quadros, J.R.T.; Lignani, L.; Ogasawara, E.. ControlHarvest: Ensino de Ecologia por Meio de Gamificação do Controle Biológico. Em: 25 Simpósio Brasileiro de Informática na Educação, 2014.
  45. Ogasawara, E.; Oliveira, D. C. M.; Silva, E. B.; Paschoal Junior, F.; Soares, J. A.; Amorim, M. C. S.; Mauro, R. C.; Quadros, J. R. T.. A Forecasting Method for Fertilizers Consumption in Brazil. International Journal of Agricultural and Environmental Information Systems. v. 4, p. 23-36, issn: 19473192, 2013.
  46. Campisano, R.; Porto, F.; Pacitti, E.; Massaglia, F.; Ogasawara, E.. Spatial Sequential Pattern Mining for Seismic Data. Em: SBBD, 2016.
  47. Silva, E.C.O.; dos Santos, Joel A. F.; Muchaluat-Saade, Débora C.. JNS: An Alternative Authoring Language for Specifying NCL Multimedia Documents. Em: IEEE International Conference on Multimedia and Expo Workshops, p. 1-6, 2013.
  48. Belloze, K. T.; Menna-Barreto, R. F. S.; Perales, J.; Silva-Jr, F. P.. Proteomic and Bioinformatic Analysis of Trypanosoma cruzi Chemotherapy and Potential Drug Targets: New Pieces for an Old Puzzle. Current Drug Targets (Print). v. 15, p. 255, issn: 13894501, 2014.

Referências

Charu Aggarwal and ChengXiang Zhai, editors. Mining Text Data. Springer, 2012 edition, February 2012.

Vijay Srinivas Agneeswaran. Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark, and More Hadoop Alternatives. Pearson FT Press, Upper Saddle River, 1 edition, May 2014.

Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear Programming and Network Flows. Wiley, Hoboken, N.J, 4 edition, December 2009.

Francine Berman. Got Data?: A Guide to Data Preservation in the Information Age. Commun. ACM, 51(12):50–56, December 2008.

Christopher Bishop. Pattern Recognition and Machine Learning. Springer, New York, October 2007.

Christine L. Borgman. Big Data, Little Data, No Data: Scholarship in the Networked World. The MIT Press, Cambridge, Massachusetts, January 2015.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, Cambridge, Mass, 3rd edition, July 2009.

Peter Dalgaard. Introductory Statistics with R. Springer, New York, 2nd edition, August 2008.

Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill Education, Boston, 1 edition, September 2006.

C. J. Date. An Introduction to Database Systems. Pearson, Boston, Mass., 8 edition, August 2003.

Thomas H. Davenport and D. J. Patil. Data scientist: the sexiest job of the 21st century. Harvard Business Review, 90(10):70–76, 128, October 2012.

Jay L. Devore and Kenneth N. Berk. Modern Mathematical Statistics with Applications. Springer, New York ; London, 2nd ed. 2012 edition, December 2011.

Vasant Dhar. Data science and prediction. Communications of the ACM, 56(12):64–73, 2013.
DSC. Data Science Central, 2015.

Victor Eijkhout. Introduction to High Performance Scientific Computing. lulu.com, Raleigh, N.C., January 2015.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Pearson/Addison Wesley, Boston, 5th edition, March 2006.

Ronen Feldman and James Sanger. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, 1 edition, December 2006.

Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge ; New York, 1 edition, November 2012.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP- Completeness. W. H. Freeman, New York u.a, first edition edition, January 1979.

Hilary Glasman-Deal. Science Research Writing for Non-Native Speakers of English. Imperial College Press, London ; Hackensack, NJ, 1 edition, December 2009.

Georg Hager and Gerhard Wellein. Introduction to High Performance Computing for Scientists and Engineers. CRC Press, Boca Raton, FL, 1 edition, July 2010.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, Waltham, Mass., 3 edition, July 2011.

Aboul-Ella Hassanien, Ahmad Taher Azar, V aclav Sn asel, Janusz Kacprzyk, and Jemal H. Abawajy, editors. Big Data in Complex Systems: Challenges and Opportunities. Springer, New York, 2015 edition, January 2015.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2nd ed. 2009. corr. 7th printing 2013 edition, April 2011.

Simon O. Haykin. Neural Networks and Learning Machines. Prentice Hall, New York, 3 edition, November 2008.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, Waltham, MA, September 2011.

Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond , Washington, 1 edition, October 2009.

Adam Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–44, August 2009.

HV Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jignesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges. Communications of the ACM, 57(7):86– 94, 2014.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer, 1st ed. 2013. corr. 4th printing 2014 edition, August 2013.

Matthew L. Jockers. Text Analysis with R for Students of Literature. Springer, New York, July 2014.

Anne Kao and Steve R. Poteet. Natural Language Processing and Text Mining. Springer London, 1 edition,March 2007.

Jon Kleinberg and E va Tardos. Algorithm Design. Pearson, Boston, 1 edition, March 2005.

Donald E. Knuth. The Art of Computer Programming. Addison-Wesley Professional, Amsterdam, March 2011.

Peter Lake and Robert Drake. Information Systems Management in the Big Data Era. Springer, New York, NY, 2014 edition, January 2015.

Brett Lantz. Machine Learning with R. Packt Publishing, Birmingham, October 2013.

Richard J. Larsen and Morris L. Marx. An Introduction to Mathematical Statistics and Its Applications. Prentice Hall, Upper Saddle River, N.J, 4 edition, December 2005.

David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. Big data. The parable of Google Flu: traps in big data analysis. Science (New York, N.Y.), 343(6176):1203–1205, March 2014.

Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer, softcover reprint of hardcover 2nd ed. 2011 edition, August 2013.

Sandya Mannarswamy. Data Science: Learn the What, Where, and How of Data Science. Apress, 2015 edition, June 2015.

Christopher Manning and Hinrich Schuetze. Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge, Mass, 1 edition, June 1999.
MDS. Master’s in Data Science, 2015.

Gary Miner, John Elder, IV, Andrew Fast, Thomas Hill, Robert Nisbet, and Dursun Delen. Practical Text Mining and Statistical Analysis for Nonstructured Text Data Applications. Academic Press, 1 edition, January 2012.

Hrushikesha Mohanty, Prachet Bhuyan, and Deepak Chenthati, editors. Big Data: A Primer. Springer, New York, NY, 2015 edition, July 2015.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, MA, 1 edition, August 2012.

Nils J. Nilsson. Principles of Artificial Intelligence. Springer, Berlin, soft-cover reprint of the original 1st ed. 1982 edition, April 2013.

Ibrahim H. Osman and James P. Kelly, editors. Meta-Heuristics: Theory and Applications. Springer, Boston, 1996 edition, March 1996.

Mahmoud Parsian. Data Algorithms: Recipes for Scaling Up with Hadoop and Spark. O’Reilly Media, Sebastopol, 1 edition, July 2015.

Pethuru Raj, Anupama Raman, Dhivya Nagaraj, and Siddhartha Duggirala. High-Performance Big-Data Analytics: Computing Systems and Approaches. Springer, S.l., 2015 edition, August 2015.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, Boston, Mass., 3rd edition, August 2002.

Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills. Advanced Analytics with Spark: Patterns for Learning from Data at Scale. O’Reilly Media, Beijing, 1 edition, April 2015.

Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional, Upper Saddle River, NJ, 4th edition, March 2011.

Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database System Concepts. McGraw-Hil Science/Engineering/Math, New York, 6 edition, January 2010.

K. G. Srinivasa and Anil Kumar Muppalla. Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark. Springer, New York, NY, 2015 edition, February 2015.

William Stallings. Computer Organization and Architecture: International Edition. Pearson Education, 9 edition, March 2013.
Robert Stevens, Jun Zhao, and Carole Goble. Using provenance to manage knowledge of in silico experiments. Briefings in Bioinformatics, 8(3):183– 194, May 2007.

Andrew S. Tanenbaum and Todd Austin. Structured Computer Organization. Pearson, Boston, 6 edition, August 2012.

Ronald E Walpole. Probability & statistics for engineers & scientists. Prentice Hall, Boston, 2012.

Raul Wazlawick. Metodologia de Pesquisa para Ciˆencia da Computação. Elsevier, 2 edition, September 2014.

Wayne L. Winston. Operations Research: Applications and Algorithms. Duxbury Press, Belmont, CA, 4 edition, July 2003.

Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington, MA, 3 edition, January 2011.

Laurence A. Wolsey. Integer Programming. Wiley-Interscience, New York, 1 edition, September 1998.

Alex Wright. Big Data Meets Big Science. Commun. ACM, 57(7):13–15, July 2014.

Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, May 2014.

Justin Zobel. Writing for Computer Science. Springer, New York, NY, 3rd ed. 2014 edition, February 2015. M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer, New York, 3rd ed. 2011 edition, March 2011.