Defesa de dissertação (30/12/2024): Lucas Daflon Scoralick

Discente: Lucas Daflon Scoralick

Título: Aprimoramento da Detecção de Conluios com Aprendizado de Máquina: Explicabilidade e Análise dos Resultados

Orientadora: Kele Teixeira Belloze

Banca: Kele Teixeira Belloze (CEFET/RJ), Diego Nunes Brandão (CEFET/RJ), Eduardo Bezerra da Silva (CEFET/RJ), Flavia Cristina Bernardini (UFF)

Dia/hora: 30 de dezembro de 2024, às 10h.

Local: https://teams.microsoft.com/l/meetup-join/19%3afeb680f8d4e047d69e7cdb88a09be338%40thread.tacv2/1734221163372?context=%7b%22Tid%22%3a%228eeca404-a47d-4555-a2d4-0f3619041c9c%22%2c%22Oid%22%3a%22d0ca0ae9-1955-4759-a7ad-0b2fa49dbe55%22%7d

Resumo: Conluios são acordos ou combinações secretas entre duas ou mais partes, geralmente para ganhar vantagem em algo ou prejudicar terceiros. A prática de conluios em licitações públicas perturba o equilíbrio de preços do mercado, impactando negativamente tanto os custos quanto a qualidade dos serviços públicos. Neste estudo, propõe-se uma metodologia para aprimorar os modelos de classificação de conluio, utilizando variáveis estatísticas combinadas com a análise de modelos explicáveis para explicação dos resultados. Os resultados mostraram uma melhora no desempenho de 0,04 à 0,25, utilizando a estratégia de balanceamento Smote, método de validação holdout 80% e 20% (treinamento e teste) e MCC como métrica de desempenho. A utilização dos modelos explicáveis SHAP, importância de atributos e LIME foram úteis para confirmar a contribuição das variáveis estatísticas para os modelos de aprendizagem de máquina. Além disso, a explicação de amostras com LIME demonstra potencial para explicação dos limites de decisão de classificação para atributos numéricos.