Defesa de dissertação (15/12/2025): Vanessa Santos Soares

Discente: Vanessa Santos Soares

Título: Avaliação de modelos de aprendizado de máquina para a correção automática de redações segundo as competências do ENEM

Orientadores: Eduardo Bezerra da Silva (orientador) e Gustavo Paiva Guedes e Silva (coorientador)

Banca: Eduardo Bezerra da Silva (Cefet/RJ), Gustavo Paiva Guedes e Silva (Cefet/RJ), Diego Moreira de Araújo Carvalho (Cefet/RJ) e Geraldo Bonorino Xexéo (UFRJ).

Dia/Hora: 15/12/2025 às 10h

Sala: Auditório V

Resumo: Com o crescimento do ensino remoto e a aplicação de exames de larga escala como o ENEM, a automatização da correção de textos discursivos tornou-se uma necessidade crescente. Este trabalho investiga diferentes estratégias de aprendizado de máquina para avaliação automática de redações em língua portuguesa, tomando como referência as cinco competências avaliativas do ENEM. Para isso, foram analisadas 9.599 redações coletadas do portal Vestibular Brasil Escola, abrangendo 102 temas publicados entre 2009 e 2024. São comparadas duas linhas de abordagem: (i) métodos tradicionais baseados em TF-IDF e features linguísticas extraídas dos textos, e (ii) modelos de linguagem pré-treinados com fine-tuning (XLM-RoBERTa com LoRA). O desempenho dos modelos é avaliado por meio da métrica Quadratic Weighted Kappa (QWK), que mede a concordância com corretores humanos. Espera-se demonstrar que modelos pré-treinados oferecem ganhos expressivos em robustez e confiabilidade, superando abordagens baseadas em engenharia de atributos. O estudo contribui para o avanço da área de Automatic Essay Scoring (AES) em português, oferecendo um benchmark e análise comparativa que podem apoiar futuras pesquisas e aplicações educacionais.