harbinger: A Unified Time Series Event Detection Framework

By analyzing time series, it is possible to observe significant changes in the behavior of observations that frequently characterize events. Events present themselves as anomalies, change points, or motifs. In the literature, there are several methods for detecting events. However, searching for a suitable time series method is a complex task, especially considering that the nature of events is often unknown. This work presents Harbinger, a framework for integrating and analyzing event detection methods. Harbinger contains several state-of-the-art methods described in Salles et al. (2020) <doi:10.5753/sbbd.2020.13626>.

Available at CRAN: https://CRAN.R-project.org/package=harbinger

Code repository at Git-Hub: https://github.com/cefet-rj-dal/harbinger

Eduardo Ogasawara

Eduardo Ogasawara has been a professor at the Department of Computer Science at the Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) since 2010. He holds a D.Sc. in Systems and Computer Engineering from COPPE/UFRJ. Between 2000 and 2007, he worked in the Information Technology (IT) sector, gaining extensive experience in workflows and project management. With a strong background in Data Science, he is currently focused on Data Mining and Time Series Analysis. He is a member of IEEE, ACM, and SBC. Throughout his career, he has authored numerous published articles and led projects funded by agencies such as CNPq and FAPERJ. Currently, he heads the Data Analytics Lab (DAL) at CEFET/RJ, where he continues to advance research in Data Science.