Periódicos

[1] R. Salles, B. Lange, R. Akbarinia, F. Masseglia, E. Ogasawara, and E. Pacitti, “Scalable and accurate online multivariate anomaly detection,” Information Systems, vol. 131, p. 102524, Jun. 2025, doi: 10.1016/j.is.2025.102524.
[2] R. Salles, J. Lima, M. Reis, R. Coutinho, E. Pacitti, F. Masseglia, R. Akbarinia, C. Chen, J. Garibaldi, F. Porto, and E. Ogasawara, “SoftED: Metrics for soft evaluation of time series event detection,” Computers and Industrial Engineering, vol. 198. 2024. doi: 10.1016/j.cie.2024.110728.
[3] F. Marques, L. Lignani, J. Quadros, M. Amorim, W. Viana, E. Ogasawara, and J. dos Santos, “ProBee: A Provenance-based Design for an Educational Game Analytics Model,” Technology, Knowledge and Learning. 2024. doi: 10.1007/s10758-024-09758-x.
[4] D. S. de Salles, C. Gea, C. E. Mello, L. Assis, R. Coutinho, E. Bezerra, and E. Ogasawara, “Multi-Scale Event Detection in Financial Time Series,” Computational Economics. 2024. doi: 10.1007/s10614-024-10582-9.
[5] F. Carvalho, F. P. Junior, E. Ogasawara, L. Ferrari, and G. Guedes, “Evaluation of the Brazilian Portuguese version of linguistic inquiry and word count 2015 (BP-LIWC2015),” Language Resources and Evaluation, vol. 58, no. 1. pp. 203–222, 2024. doi: 10.1007/s10579-023-09647-2.
[6] J. Souza, C. Boccolini, L. Baroni, K. Belloze, E. Bezerra, M. Pedroso, R. F. S. Alves, and E. Ogasawara, “Evaluation of statistical process control charts for infant mortality monitoring in Brazilian cities with different population sizes,” BMC Research Notes, vol. 17, no. 1. 2024. doi: 10.1186/s13104-024-06943-0.
[7] A. Mello, L. Giusti, T. Tavares, F. Alexandrino, G. Guedes, J. Soares, R. Barbastefano, F. Porto, D. Carvalho, and E. Ogasawara, “D-AI2-M: Ethanol Production Forecasting in Brazil Using Data-Centric Artificial Intelligence Methodology,” IEEE Latin America Transactions, vol. 22, no. 11, Art. no. 11, Oct. 2024.
[8] L. Baroni, L. Scoralick, A. Reis, K. Belloze, M. Pedroso, R. Alves, C. Boccolini, P. Boccolini, and E. Ogasawara, “A contextual-compositional approach to discover associations between health determinants and health indicators for neonatal mortality rate monitoring in situations of anomalies,” PLOS ONE, vol. 19, no. 12, p. e0310413, de dez. de 2024, doi: 10.1371/journal.pone.0310413.
[9] F. P. G. de Sá, R. C. de Coutinho, E. Ogasawara, D. Brandão, and R. F. Toso, “Wind turbine fault detection: a semi-supervised learning approach with two different dimensionality reduction techniques,” International Journal of Innovative Computing and Applications, vol. 14, no. 1–2. pp. 67–77, 2023. doi: 10.1504/IJICA.2023.129359.
[10] P. Elias, H. de S. Campos, E. Ogasawara, and L. G. P. Murta, “Towards accurate recommendations of merge conflicts resolution strategies,” Information and Software Technology, vol. 164. 2023. doi: 10.1016/j.infsof.2023.107332.
[11] C. Gea, L. Vereda, and E. Ogasawara, “Detection of Uncertainty Events in the Brazilian Economic and Financial Time Series,” Computational Economics. 2023. doi: 10.1007/s10614-023-10483-3.
[12] A. Vasconcelos, J. Monsores, T. Almeida, L. Quadros, E. Ogasawara, and J. Quadros, “Applying Gestalt approach as a method for teaching computer science practice in the classroom: A case study in primary schools in Brazil,” Education and Information Technologies, vol. 28, no. 2. pp. 2383–2403, 2023. doi: 10.1007/s10639-022-11278-z.
[13] R. Salles, E. Pacitti, E. Bezerra, F. Porto, and E. Ogasawara, “TSPred: A framework for nonstationary time series prediction,” Neurocomputing, vol. 467. pp. 197–202, 2022. doi: 10.1016/j.neucom.2021.09.067.
[14] F. Porto et al., “Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results,” Supercomputing Frontiers and Innovations, vol. 9, no. 1. pp. 49–73, 2022. doi: 10.14529/jsfi220104.
[15] B. dos Santos de Assis, E. Ogasawara, R. Barbastefano, and D. Carvalho, “Frequent pattern mining augmented by social network parameters for measuring graduation and dropout time factors: A case study on a production engineering course,” Socio-Economic Planning Sciences, vol. 81. 2022. doi: 10.1016/j.seps.2021.101200.
[16] L. Giusti, L. Carvalho, A. T. Gomes, R. Coutinho, J. Soares, and E. Ogasawara, “Analyzing flight delay prediction under concept drift,” Evolving Systems, vol. 13, no. 5. pp. 723–736, 2022. doi: 10.1007/s12530-021-09415-z.
[17] C. Teixeira, L. Fragoso, M. Mattoso, D. Carvalho, E. Bezerra, J. Soares, G. Amorim, and E. Ogasawara, “A horizontal partitioning-based method for frequent pattern mining in transport timetable,” Expert Systems, vol. 39, no. 2. 2022. doi: 10.1111/exsy.12881.
[18] R. Castro, Y. M. Souto, E. Ogasawara, F. Porto, and E. Bezerra, “STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for weather forecasting,” Neurocomputing, vol. 426. pp. 285–298, 2021. doi: 10.1016/j.neucom.2020.09.060.
[19] L. Carvalho, A. Sternberg, L. Maia Gonçalves, A. Beatriz Cruz, J. A. Soares, D. Brandão, D. Carvalho, and E. Ogasawara, “On the relevance of data science for flight delay research: a systematic review,” Transport Reviews, vol. 41, no. 4. pp. 499–528, 2021. doi: 10.1080/01441647.2020.1861123.
[20] L. Baroni et al., “Neonatal mortality rates in Brazilian municipalities: from 1996 to 2017,” BMC Research Notes, vol. 14, no. 1. 2021. doi: 10.1186/s13104-020-05441-3.
[21] L. Escobar, R. Salles, J. Lima, C. Gea, L. Baroni, A. Ziviani, P. Pires, F. Delicato, R. Coutinho, L. Assis, and E. Ogasawara, “Evaluating Temporal Bias in Time Series Event Detection Methods,” Journal of Information and Data Management, vol. 12, no. 3, Art. no. 3, Oct. 2021, doi: 10.5753/jidm.2021.1968.
[22] B. Paixão, L. Baroni, M. Pedroso, R. Salles, L. Escobar, C. de Sousa, R. de Freitas Saldanha, J. Soares, R. Coutinho, F. Porto, and E. Ogasawara, “Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI,” New Generation Computing, vol. 39, no. 3–4. pp. 623–645, 2021. doi: 10.1007/s00354-021-00125-3.
[23] J. Cardoso, D. Caetano, R. Abreu, J. Quadros, J. D. Santos, E. Ogasawara, and L. Lignani, “Supporting the Learning of Evolution Theory Using an Educational Simulator,” IEEE Transactions on Learning Technologies, vol. 13, no. 2. pp. 417–424, 2020. doi: 10.1109/TLT.2019.2911613.
[24] H. Borges, M. Dutra, A. Bazaz, R. Coutinho, F. Perosi, F. Porto, F. Masseglia, E. Pacitti, and E. Ogasawara, “Spatial-time motifs discovery,” Intelligent Data Analysis, vol. 24, no. 5. pp. 1121–1140, 2020. doi: 10.3233/IDA-194759.
[25] F. Paschoal Júnior, G. V. S. Ribeiro, L. M. de A. Daquer, R. C. Mauro, E. S. Ogasawara, and N. F. F. Ebecken, “Physical activity level of facebook users; [Nível de atividade física dos usuários do facebook]; [Nivel de actividad física de los usuarios de facebook],” Revista Brasileira de Medicina do Esporte, vol. 26, no. 6. pp. 517–522, 2020. doi: 10.1590/1517-869220202606179014.
[26] R. Guimaraes Rodrigues, K. Tavares Rodrigues, R. Reis Gomes, L. Ferrari, E. Ogasawara, and G. Paiva Guedes, “BRAPT: A New Metric for Translation Evaluation Based on Psycholinguistic Perspectives,” IEEE Latin America Transactions, vol. 18, no. 7. pp. 1264–1271, 2020. doi: 10.1109/TLA.2020.9099768.
[27] L. Baroni, M. Pedroso, C. Barcellos, R. Salles, S. Salles, B. Paixão, A. Chrispino, G. Guedes, and E. Ogasawara, “An integrated dataset of malaria notifications in the Legal Amazon,” BMC Research Notes, vol. 13, no. 1. 2020. doi: 10.1186/s13104-020-05109-y.
[28] L. Baroni, R. Salles, S. Salles, G. Guedes, F. Porto, E. Bezerra, C. Barcellos, M. Pedroso, and E. Ogasawara, “An analysis of malaria in the Brazilian Legal Amazon using divergent association rules,” Journal of Biomedical Informatics, vol. 108. 2020. doi: 10.1016/j.jbi.2020.103512.
[29] R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, and E. Ogasawara, “Nonstationary time series transformation methods: An experimental review,” Knowledge-Based Systems, vol. 164. pp. 274–291, 2019. doi: 10.1016/j.knosys.2018.10.041.
[30] A. Marinho, D. de Oliveira, E. Ogasawara, V. Silva, K. Ocaña, L. Murta, V. Braganholo, and M. Mattoso, “Deriving scientific workflows from algebraic experiment lines: A practical approach,” Future Generation Computer Systems, vol. 68. pp. 111–127, 2017. doi: 10.1016/j.future.2016.08.016.
[31] R. Salles, P. Mattos, A.-M. D. Iorgulescu, E. Bezerra, L. Lima, and E. Ogasawara, “Evaluating temporal aggregation for predicting the sea surface temperature of the Atlantic Ocean,” Ecological Informatics, vol. 36. pp. 94–105, 2016. doi: 10.1016/j.ecoinf.2016.10.004.
[32] G. P. Guedes, E. Ogasawara, E. Bezerra, and G. Xexeo, “Discovering top-k non-redundant clusterings in attributed graphs,” Neurocomputing, vol. 210. pp. 45–54, 2016. doi: 10.1016/j.neucom.2015.10.145.
[33] A. Sternberg, D. Carvalho, L. Murta, J. Soares, and E. Ogasawara, “An analysis of Brazilian flight delays based on frequent patterns,” Transportation Research Part E: Logistics and Transportation Review, vol. 95. pp. 282–298, 2016. doi: 10.1016/j.tre.2016.09.013.
[34] L. Pimentel, K. Belloze, J. Soares, E. Ogasawara, and R. Mauro, “Uma ferramenta para planejamento de estudos para concursos,” Revista Brasileira de Computação Aplicada, vol. 7, no. 3, Art. no. 3, Oct. 2015, doi: 10.5335/rbca.2015.4506.
[35] M. Mattoso, J. Dias, K. A. C. S. Ocaña, E. Ogasawara, F. Costa, F. Horta, V. Silva, and D. De Oliveira, “Dynamic steering of HPC scientific workflows: A survey,” Future Generation Computer Systems, vol. 46. pp. 100–113, 2015. doi: 10.1016/j.future.2014.11.017.
[36] J. R. de T. Quadros, D. Oliveira, A. Queiroz, E. Ogasawara, and C. Schocair, “Towards a UML-based Reference Model for Blended Learning,” International Journal of Recent Contributions from Engineering, Science & IT (iJES), vol. 2, no. 3, Art. no. 3, Aug. 2014, doi: 10.3991/ijes.v2i3.3818.
[37] L. Mosquera, E. Ogasawara, R. Barbastefano, and E. Bezerra, “Proposta de Modelo de Avaliação de Formas de Adoção e Acompanhamento de Ferramentas de Redes Sociais Corporativas,” Sistemas & Gestão, vol. 9, no. 4, Art. no. 4, Dec. 2014, doi: 10.7177/sg.2014.V9.N4.A9.
[38] G. P. G. e Silva, E. Bezerra, E. Ogasawara, and G. Xexeo, “MAM: Método para Agrupamentos Múltiplos em Redes Sociais Online Baseado em Emoções, Personalidades e Textos,” iSys – Brazilian Journal of Information Systems, vol. 7, no. 3, Art. no. 3, Nov. 2014, doi: 10.5753/isys.2014.256.
[39] D. De Oliveira, K. A. C. S. Ocaña, E. Ogasawara, J. Dias, J. Gonçalves, F. Baião, and M. Mattoso, “Performance evaluation of parallel strategies in public clouds: A study with phylogenomic workflows,” Future Generation Computer Systems, vol. 29, no. 7. pp. 1816–1825, 2013. doi: 10.1016/j.future.2012.12.019.
[40] J. Gonçalves, D. de Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and M. Mattoso, “Performance Analysis of Data Filtering in Scientific Workflows,” Journal of Information and Data Management, vol. 4, no. 1, Art. no. 1, Jun. 2013, doi: 10.5753/jidm.2013.1466.
[41] K. A. C. S. Ocaña, D. De Oliveira, J. Dias, E. Ogasawara, and M. Mattoso, “Designing a parallel cloud based comparative genomics workflow to improve phylogenetic analyses,” Future Generation Computer Systems, vol. 29, no. 8. pp. 2205–2219, 2013. doi: 10.1016/j.future.2013.04.005.
[42] J. R. de T. Quadros, R. Castaneda, M. Amorim, G. Herzog, L. Carneiro, K. Menezes, M. Pinheiro, D. de Oliveira, and E. Ogasawara, “Construção de ambiente para desenvolvimento de jogos educacionais baseados em interface de gestos,” Revista Brasileira de Computação Aplicada, vol. 5, no. 2, pp. 110–119, Sep. 19, 2013.
[43] E. Ogasawara, J. Dias, V. Silva, F. Chirigati, D. De Oliveira, F. Porto, P. Valduriez, and M. Mattoso, “Chiron: A parallel engine for algebraic scientific workflows,” Concurrency and Computation: Practice and Experience, vol. 25, no. 16. pp. 2327–2341, 2013. doi: 10.1002/cpe.3032.
[44] E. Ogasawara, D. De Oliveira, F. Paschoal Jr., R. Castaneda, M. Amorim, R. Mauro, J. Soares, J. Quadros, and E. Bezerra, “A forecasting method for fertilizers consumption in Brazil,” International Journal of Agricultural and Environmental Information Systems, vol. 4, no. 2. pp. 23–36, 2013. doi: 10.4018/jaeis.2013040103.
[45] G. Guerra, F. A. Rochinha, R. Elias, D. de Oliveira, E. Ogasawara, J. F. Dias, M. Mattoso, and A. L. G. A. Coutinho, “Uncertainty Quantification in Computational Predictive Models for Fluid Dynamics Using a Workflow Management Engine,” IJUQ, vol. 2, no. 1, 2012, doi: 10.1615/Int.J.UncertaintyQuantification.v2.i1.50.
[46] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. D. Cruz, E. Ogasawara, and M. Mattoso, “ProvManager: A provenance management system for scientific workflows,” Concurrency and Computation: Practice and Experience, vol. 24, no. 13. pp. 1513–1530, 2012. doi: 10.1002/cpe.1870.
[47] D. de Oliveira, E. Ogasawara, J. Dias, F. Baião, and M. Mattoso, “Ontology-based Semi-automatic Workflow Composition,” Journal of Information and Data Management, vol. 3, no. 1, Art. no. 1, Jul. 2012, doi: 10.5753/jidm.2012.1434.
[48] D. De Oliveira, E. Ogasawara, K. Ocaña, F. Baião, and M. Mattoso, “An adaptive parallel execution strategy for cloud-based scientific workflows,” Concurrency and Computation: Practice and Experience, vol. 24, no. 13. pp. 1531–1550, 2012. doi: 10.1002/cpe.1880.
[49] M. C. Garbin, S. F. do Amaral, C. O. S. Mendes, E. Ogasawara, and J. M. de S. Rocha, “Adaptation of the Moodle for Application in Distance Education Course at the State University of Campinas,” Procedia – Social and Behavioral Sciences, vol. 46, pp. 2514–2518, Jan. 2012, doi: 10.1016/j.sbspro.2012.05.513.
[50] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Braganholo, and M. Mattoso, “Similarity-based workflow clustering,” Journal of Computational Interdisciplinary Sciences, vol. 2, no. 1, 2011.
[51] F. Coutinho, E. Ogasawara, D. De Oliveira, V. Braganholo, A. A. B. Lima, A. M. R. Dávila, and M. Mattoso, “Many task computing for orthologous genes identification in protozoan genomes using Hydra,” Concurrency and Computation: Practice and Experience, vol. 23, no. 17. pp. 2326–2337, 2011. doi: 10.1002/cpe.1786.
[52] E. Ogasawara, D. de Oliveira, P. Valduriez, J. Dias, F. Porto, and M. Mattoso, “An algebraic approach for data-centric scientific workflows,” Proceedings of the VLDB Endowment, vol. 4, no. 12. pp. 1328–1339, 2011.
[53] M. Mattoso, C. Werner, G. H. Travassos, V. Braganholo, E. Ogasawara, D. De Oliveira, S. M. S. Da Cruz, W. Martinho, and L. Murta, “Towards supporting the life cycle of large scale scientific experiments,” International Journal of Business Process Integration and Management, vol. 5, no. 1. pp. 79–92, 2010. doi: 10.1504/IJBPIM.2010.033176.

Conferências

[1] A. Brayner, A. P. L. de Carvalho, D. D. A. Ruiz, and E. Ogasawara, “Um Farol para Criação e Avaliação de Cursos de Ciência de Dados: Os Referenciais Curriculares da SBC,” in Simpósio Brasileiro de Educação em Computação (EDUCOMP), SBC, Apr. 2024, pp. 266–272. doi: 10.5753/educomp.2024.237484.
[2] R. Garcia, E. Ogasawara, J. Soares, A. de Souza, R. Sobrino, and E. Bezerra, “Um Experimento de Engenharia de Features para Geração de Modelos Preditivos para Casos de Dengue,” in Brazilian e-Science Workshop (BreSci), SBC, Oct. 2024, pp. 151–158. doi: 10.5753/bresci.2024.243949.
[3] J. Souza, E. Pãixao, F. Fraga, L. Baroni, R. F. S. Alves, K. Belloze, J. Dos Santos, E. Bezerra, F. Porto, and E. Ogasawara, “REMD: A Novel Hybrid Anomaly Detection Method Based on EMD and ARIMA,” Proceedings of the International Joint Conference on Neural Networks. 2024. doi: 10.1109/IJCNN60899.2024.10651192.
[4] L. Calmon, R. Ferro, C. Pereira, C. Souza, L. Giusti, G. Amorim, and E. Ogasawara, “Previsão de Sucesso de Atletas Jovens de Futebol usando Integração de diferentes Base de Dados,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 855–861. doi: 10.5753/sbbd.2024.243187.
[5] A. Mello, D. Carvalho, and E. Ogasawara, “Predição da Produção de Etanol nos Estados Brasileiros,” in Brazilian e-Science Workshop (BreSci), SBC, Oct. 2024, pp. 120–127. doi: 10.5753/bresci.2024.243818.
[6] J. Lima, L. G. Tavares, E. Pacitti, J. E. Ferreira, I. Santos, I. G. Siqueira, D. Carvalho, F. Porto, R. Coutinho, and E. Ogasawara, “Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights,” Proceedings of the International Joint Conference on Neural Networks. pp. 1–8, 2024. doi: 10.1109/IJCNN60899.2024.10650809.
[7] M. Reis, R. Salles, G. Xexéo, R. Coutinho, and E. Ogasawara, “Matching Detections to Events in Time Series,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 785–791. doi: 10.5753/sbbd.2024.243275.
[8] A. Fonseca, R. Goldschimidt, E. Ogasawara, M. Ferro, F. Porto, and E. Bezerra, “Interpolação e Previsão de Precipitação por Redes Neurais Convolucionais para Grafos,” in Brazilian Symposium on Multimedia and the Web (WebMedia), SBC, Oct. 2024, pp. 395–399. doi: 10.5753/webmedia.2024.242049.
[9] M. S. Moura, L. Baroni, E. Ogasawara, and D. S. Mendonça, “HD Pump: A Hybrid Detection Approach for Pump-and-Dump Schemes in Cryptocurrency Exchanges,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 757–763. doi: 10.5753/sbbd.2024.243293.
[10] N. Tito, B. Paixão, L. G. Tavares, E. Ogasawara, and G. F. Amorim, “Diferenciando Perfis de Corredores por Meio de Pontos de Mudança nos Treinos,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 834–840. doi: 10.5753/sbbd.2024.243205.
[11] E. P. Silva, H. Balbi, E. Pacitti, F. Porto, J. Santos, and E. Ogasawara, “Cutoff Frequency Adjustment for FFT-Based Anomaly Detectors,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 708–714. doi: 10.5753/sbbd.2024.243319.
[12] F. Santos, L. Giusti, D. Carvalho, E. Ogasawara, and J. Soares, “Avaliação de Desvios de Conceitos Reais e Virtuais nos Atrasos de Voos em São Paulo nos Períodos Pré, Intra e Pós-Pandemia,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2024, pp. 827–833. doi: 10.5753/sbbd.2024.243111.
[13] F. Alexandrino, C. Pacheco, D. Carvalho, and E. Ogasawara, “Aumento de dados e suavização integrada para predição de séries temporais baseada em aprendizado de máquina,” in Brazilian e-Science Workshop (BreSci), SBC, Oct. 2024, pp. 32–39. doi: 10.5753/bresci.2024.244100.
[14] B. O. Barbosa, L. A. B. Marinho, M. D. Santos, F. Alexandrino, R. Coutinho, U. de Paula, D. Carvalho, and E. Ogasawara, “Análise de Modelos Baseados em WiSARD para Classificação de Trajetórias de Ônibus no Contexto da Mobilidade Urbana,” in Brazilian e-Science Workshop (BreSci), SBC, Oct. 2024, pp. 1–7. doi: 10.5753/bresci.2024.243296.
[15] V. K. de Almeida et al., “A Digital Twin System for Oil And Gas Industry: A Use Case on Mooring Lines Integrity Monitoring,” in Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, in MODELS Companion ’24. New York, NY, USA: Association for Computing Machinery, Outubro 2024, pp. 322–331. doi: 10.1145/3652620.3688244.
[16] H. Borges, A. Castro, R. Coutinho, F. Porto, E. Pacitti, and E. Ogasawara, “STMotif Explorer: A Tool for Spatiotemporal Motif Analysis,” in Anais Estendidos do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2023, pp. 114–119. doi: 10.5753/sbbd_estendido.2023.233371.
[17] A. Castro, H. Borges, C. Souza, J. Rodrigues, F. Porto, E. Pacitti, R. Coutinho, and E. Ogasawara, “GSTSM Package: Finding Frequent Sequences in Constrained Space and Time,” in BDA 2023 : 39ème Conférence sur la Gestion de Données – Principes, Technologies et Applications, BDA, Sep. 2023, pp. 1–2.
[18] B. Capistrano, L. Chen, M. Ribeiro, C. Pacheco, D. Lobosco, J. Quadros, M. I. Barreto, and E. Ogasawara, “Desafios na Predição do Consumo de Pesticidas em Escala Global Usando Aprendizado de Máquina,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Sep. 2023, pp. 33–38. doi: 10.5753/bresci.2023.233831.
[19] M. Pedroso et al., “Data Science Platform Applied to Health in Contribution to the Brazilian Unified Health System,” 2nd International Workshop on Data Ecosystems (DEco), vol. 3462. 2023.
[20] L. Oliveira, L. S. de Assis, E. Ogasawara, and J. Rosa, “Alocação Ótima de Equipamentos na Completação de Poços de Petróleo Submarinos: Uma Abordagem Espaço-Temporal por Programação Matemática,” in Anais do LV Simpósio Brasileiro de Pesquisa Operacional, São José dos Campos, SP: Galoá, 2023, pp. 1–12. doi: 10.59254/sbpo-2023-175159.
[21] L. Izaú, M. Fortes, V. Ribeiro, C. Marques, C. Oliveira, E. Bezerra, F. Porto, R. Salles, and E. Ogasawara, “Towards Robust Cluster-Based Hyperparameter Optimization,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2022, pp. 439–444. doi: 10.5753/sbbd.2022.224330.
[22] M. Ferro, E. Bezerra, E. Ogasawara, N. Moraes, and F. Porto, “Towards a Definition for Extreme Weather Events in Rio de Janeiro City,” in Anais Estendidos do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2022, pp. 181–186. doi: 10.5753/sbbd_estendido.2022.21862.
[23] J. Lima, R. Salles, L. Escobar, C. Géa, P. A. Fernandes, E. Pacitti, F. Porto, R. Coutinho, and E. Ogasawara, “Towards a cloud-based framework for online and integrated event detection,” in Anais Estendidos do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2022, pp. 199–202. doi: 10.5753/sbbd_estendido.2022.21865.
[24] R. B. de Castro, V. C. Monteiro, R. Coutinho, H. Borges, and E. Ogasawara, “Identification of the North Brazil Current through spatial motifs in fixed time slices,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2022, pp. 17–24. doi: 10.5753/bresci.2022.222622.
[25] J. Lima, R. Salles, F. Porto, R. Coutinho, P. Alpis, L. Escobar, E. Pacitti, and E. Ogasawara, “Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method,” in 2022 International Joint Conference on Neural Networks (IJCNN), Jul. 2022, pp. 1–8. doi: 10.1109/IJCNN55064.2022.9892088.
[26] C. Pacheco, M. Guimaraes, E. Bezerra, D. Lobosco, J. Soares, P. H. González, A. Andrade, C. G. De Souza, and E. Ogasawara, “Exploring Data Preprocessing and Machine Learning Methods for Forecasting Worldwide Fertilizers Consumption,” Proceedings of the International Joint Conference on Neural Networks, vol. 2022-July. 2022. doi: 10.1109/IJCNN55064.2022.9892325.
[27] A. J. M. da Fonseca, F. Porto, M. Ferro, E. Ogasawara, and E. Bezerra, “Analysis of precipitation data in Rio de Janeiro city using Extreme Value Theory,” in Anais Estendidos do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2022, pp. 193–198. doi: 10.5753/sbbd_estendido.2022.21864.
[28] R. Zorrilla, E. Ogasawara, P. Valduriez, and F. Porto, “A Data-Driven Model Selection Approach to Spatio-Temporal Prediction,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2022, pp. 1–12. doi: 10.5753/sbbd.2022.224638.
[29] K. Buckles, E. Bezerra, E. Ogasawara, and M. Guimaraes, “Wrapper algorithm for choosing machine learning functions and methods in SSAS,” in J. Comput. Sci. Coll., Oct. 2021, pp. 92–100.
[30] C. Barros, R. Salles, E. Ogasawara, G. Guizzardi, and F. Porto, “Requirements for an ontology of digital twins,” CEUR Workshop Proceedings, vol. 2941. 2021.
[31] E. Ogasawara, R. Salles, L. Escobar, L. Baroni, J. Lima, and F. Porto, “Online event detection for sensor data,” in XLII Ibero-Latin American Congress on Computational Methods in Engineering, Rio de Janeiro, RJ, 2021, pp. 1–7.
[32] T. Moeda, M. Ferro, E. Ogasawara, and F. Porto, “Method for Treating Anomalies in Multivariate Time Series,” in XLII Ibero-Latin American Congress on Computational Methods in Engineering, 2021.
[33] C. Teixeira, L. Giusti, J. Soares, J. dos Santos, G. Amorim, and E. Ogasawara, “Integrated Dataset of Brazilian Flights,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2021, pp. 89–96. doi: 10.5753/bresci.2021.15793.
[34] A. Castro, H. Borges, R. Campisano, E. Pacitti, F. Porto, R. Coutinho, and E. Ogasawara, “Generalização de Mineração de Sequências Restritas no Espaço e no Tempo,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2021, pp. 313–318. doi: 10.5753/sbbd.2021.17891.
[35] M. Mello, V. Belloni, F. Vasconcellos, J. Soares, E. Ogasawara, and L. Giusti, “Funções Executivas e Idade Relativa como Preditores de Sucesso no Futebol,” in Anais da Escola Regional de Informática do Rio de Janeiro (ERI-RJ), SBC, Nov. 2021, pp. 111–118. doi: 10.5753/eri-rj.2021.18782.
[36] R. Pereira, Y. Souto, A. Chaves, R. Zorilla, B. Tsan, F. Rusu, E. Ogasawara, A. Ziviani, and F. Porto, “DJEnsemble: A Cost-Based Selection and Allocation of a Disjoint Ensemble of Spatio-Temporal Models,” ACM International Conference Proceeding Series. pp. 226–231, 2021. doi: 10.1145/3468791.3468806.
[37] R. Campos, H. Benini, J. dos Santos, E. Ogasawara, and F. Marques, “Classificação da Avaliação de Imersão em Aplicações Multissensoriais,” in Anais da Escola Regional de Informática do Rio de Janeiro (ERI-RJ), SBC, Nov. 2021, pp. 127–130. doi: 10.5753/eri-rj.2021.18785.
[38] R. P. Salles, E. Ogasawara, and P. González, “Benchmarking Nonstationary Time Series Prediction,” in Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2021, pp. 177–182. doi: 10.5753/sbbd_estendido.2021.18182.
[39] G. Souto, B. Capistrano, M. Matias, J. Soares, E. Ogasawara, and L. Giusti, “Avaliação dos diferentes tipos de redes LSTM para predição de ações na bolsa de valores,” in Anais da Escola Regional de Informática do Rio de Janeiro (ERI-RJ), SBC, Nov. 2021, pp. 65–71. doi: 10.5753/eri-rj.2021.18776.
[40] C. Gea, J. Lima, E. Bezerra, and E. Ogasawara, “Análise de métodos de tratamento de outliers para predição dos retornos de índices de ações negociados em bolsa,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Oct. 2021, pp. 277–282. doi: 10.5753/sbbd.2021.17885.
[41] M. B. Ferreira, M. Amorim, E. Ogasawara, and R. Barbastefano, “A interdisciplinaridade no desempenho da nota de matemática: um olhar para evolução do processo de ensino por meio de modelos regressivos,” in Anais da Escola Regional de Informática do Rio de Janeiro (ERI-RJ), SBC, Nov. 2021, pp. 41–48. doi: 10.5753/eri-rj.2021.18773.
[42] F. P. G. De Sa, D. N. Brandao, E. Ogasawara, R. D. C. Coutinho, and R. F. Toso, “Wind Turbine Fault Detection: A Semi-Supervised Learning Approach with Automatic Evolutionary Feature Selection,” International Conference on Systems, Signals, and Image Processing, vol. 2020-July. pp. 323–328, 2020. doi: 10.1109/IWSSIP48289.2020.9145244.
[43] A. Andrade, R. Salles, F. Carvalho, E. B. da Silva, J. Soares, C. Souza, P. H. Gonzalez, and E. Ogasawara, “Uso de ciência de dados para predição do consumo de fertilizantes no Brasil,” in Brazilian e-Science Workshop (BreSci), SBC, Jun. 2020, pp. 9–16. doi: 10.5753/bresci.2020.11176.
[44] R. Salles, L. Escobar, L. Baroni, R. Zorrilla, A. Ziviani, V. Kreischer, F. Delicato, P. F. Pires, L. Maia, R. Coutinho, L. Assis, and E. Ogasawara, “Harbinger: Um framework para integração e análise de métodos de detecção de eventos em séries temporais,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Sep. 2020, pp. 73–84. doi: 10.5753/sbbd.2020.13626.
[45] J. Fabian, A. Gomes, and E. Ogasawara, “Estimating the execution time of fully-online multiscale numerical simulations,” in Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD), SBC, Oct. 2020, pp. 191–202. doi: 10.5753/wscad.2020.14069.
[46] A. Ronald, R. Salles, K. Belloze, D. Pastore, and E. Ogasawara, “Modelo Autorregressivo de Integração Adaptativa,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Nov. 2019, pp. 175–180. doi: 10.5753/sbbd.2019.8819.
[47] F. Carvalho, L. F. Dos Santos, H. Borges, E. Ogasawara, and G. P. Guedes, “Discovering patterns in sentimental analysis,” Proceedings of the 25th Brazillian Symposium on Multimedia and the Web, WebMedia 2019. pp. 329–332, 2019. doi: 10.1145/3323503.3361683.
[48] L. R. Baroni, B. Paixão, A. Chrispino, G. Guedes, C. Barcellos, M. Pedroso, and E. Ogasawara, “Análise Exploratória da Malária na Amazônia Brasileira por Meio da Plataforma de Ciência de Dados aplicada à Saúde,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jun. 2019. doi: 10.5753/bresci.2019.10025.
[49] D. Oliveira, C. M. Abreu, E. Ogasawara, E. Bezerra, and L. de Lima, “A Science Gateway to Support Research in Spectral Graph Theory,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), SBC, Nov. 2019, pp. 217–222. doi: 10.5753/sbbd.2019.8826.
[50] D. N. R. da Silva et al., “A conceptual vision toward the management of machine learning models,” CEUR Workshop Proceedings, vol. 2469. pp. 15–27, 2019.
[51] P. Valduriez et al., “Scientific data analysis using data-intensive scalable computing: The SciDISC project,” CEUR Workshop Proceedings, vol. 2170. pp. 1–8, 2018.
[52] J. A. Ferreira, F. Porto, R. Coutinho, and E. Ogasawara, “Rumo à Otimização de Operadores sobre UDF no Spark,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2018. doi: 10.5753/bresci.2018.3280.
[53] J. Ferreira, J. Soares, F. Porto, E. Pacitti, R. Coutinho, and E. Ogasawara, “Rumo à Integração da Álgebra de Workflows ao Processamento de Consultas Relacionais,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2018.
[54] F. Porto, A. Krone-Martins, J. N. Rittmeyer, P. Valduriez, E. Ogasawara, and D. Shasha, “Point pattern search in big data,” ACM International Conference Proceeding Series. 2018. doi: 10.1145/3221269.3221294.
[55] P. Chaves, L. Paschoal, T. Velasco, T. Bento, J. Brandão, C. Schocair, J. Quadros, T. Oliveira, and E. Ogasawara, “Orthographic educational game for Portuguese language countries,” CSEDU 2018 – Proceedings of the 10th International Conference on Computer Supported Education, vol. 2. pp. 432–440, 2018. doi: 10.5220/0006757504320440.
[56] L. Moreira, C. Dantas, L. Oliveira, J. Soares, and E. Ogasawara, “On Evaluating Data Preprocessing Methods for Machine Learning Models for Flight Delays,” Proceedings of the International Joint Conference on Neural Networks, vol. 2018-July. 2018. doi: 10.1109/IJCNN.2018.8489294.
[57] L. Carvalho, L. Assis, L. Lima, E. Bezerra, G. Guedes, A. Ziviani, F. Porto, R. Barbastefano, and E. Ogasawara, “Evaluating the complementarity of communication tools for learning platforms,” CSEDU 2018 – Proceedings of the 10th International Conference on Computer Supported Education, vol. 2. pp. 142–153, 2018. doi: 10.5220/0006798701420153.
[58] R. Campisano, H. Borges, F. Porto, F. Perosi, E. Pacitti, F. Masseglia, and E. Ogasawara, “Discovering tight space-time sequences,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 11031 LNCS. pp. 247–257, 2018. doi: 10.1007/978-3-319-98539-8_19.
[59] A. B. Cruz, J. Ferreira, D. Carvalho, E. Mendes, E. Pacitti, R. Coutinho, F. Porto, and E. Ogasawara, “Detecção de anomalias frequentes no transporte rodoviário urbano,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2018.
[60] C. Monteiro, E. Ogasawara, L. Goncalves, and J. R. De Toledo Quadros, “Control and security system for classroom access based on facial recognition,” Proceedings – 2018 44th Latin American Computing Conference, CLEI 2018. pp. 654–661, 2018. doi: 10.1109/CLEI.2018.00084.
[61] F. Porto, A. Khatibi, J. G. Rittmeyer, E. Ogasawara, P. Valduriez, and D. Shasha, “Constellation Queries over Big Data,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2018.
[62] J. Ferreira, D. Gaspar, B. Monteiro, A. B. Cruz, F. Porto, and E. Ogasawara, “Uma Proposta de Implementação de Álgebra de Workflows em Apache Spark no Apoio a Processos de Análise de Dados,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2017, pp. 45–52. doi: 10.5753/bresci.2017.9921.
[63] A. Khatibi, F. Porto, J. G. Rittmeyer, E. Ogasawara, P. Valduriez, and D. Shasha, “Pre-processing and indexing techniques for constellation queries in big data,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10440 LNCS. pp. 164–172, 2017. doi: 10.1007/978-3-319-64283-3_12.
[64] F. Paschoal, N. F. F. Ebecken, G. V. S. Ribeiro, L. M. De Aragao Daquer, R. C. Mauro, and E. S. Ogasawara, “FitRank – Social app to combat physical inactivity study of the use of fitness social apps on Facebook’s users profiles; [FitRank – Aplicativo Social de Combate ao Sedentarismo Estudo do uso de Aplicativos Sociais de Fitness em perfis de usuários do Facebook],” Iberian Conference on Information Systems and Technologies, CISTI. 2017. doi: 10.23919/CISTI.2017.7975688.
[65] A. B. Cruz, J. Ferreira, B. Monteiro, R. Coutinho, F. Porto, and E. Ogasawara, “Detecção de anomalias no transporte rodoviário urbano,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2017, pp. 240–245.
[66] R. Salles, P. Mattos, E. Bezerra, L. Lima, and E. Ogasawara, “Avaliação de Agregação Temporal na Previsão da Temperatura de Superfície do Mar do Oceano Atlântico,” in Anais do Concurso de Trabalhos de Iniciação Científica da SBC (CTIC-SBC), SBC, Jul. 2017.
[67] R. Salles, L. Assis, G. Guedes, E. Bezerra, F. Porto, and E. Ogasawara, “A framework for benchmarking machine learning methods using linear models for univariate time series prediction,” Proceedings of the International Joint Conference on Neural Networks, vol. 2017-May. pp. 2338–2345, 2017. doi: 10.1109/IJCNN.2017.7966139.
[68] R. G. Rodrigues, G. P. Guedes, and E. Ogasawara, “Towards a model for personality-based agents for emotional responses,” WebMedia 2016 – Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web. pp. 359–362, 2016. doi: 10.1145/2976796.2988186.
[69] R. Campisano, F. Porto, E. Pacitti, F. Masseglia, and E. Ogasawara, “Spatial Sequential Pattern Mining for Seismic Data,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), Salvador, BA, Oct. 2016.
[70] F. Paschoal, N. F. F. Ebecken, G. V. S. Ribeiro, L. M. De Aragao Daquer, R. C. Mauro, and E. S. Ogasawara, “Healthy behavior with social apps: Proposal for evolution study of the use of fitness social apps on Facebook; [Comportamento Saudável com Aplicativos Sociais: Proposta de estudo de evolução do uso de aplicativos sociais de fitness no Facebook],” Iberian Conference on Information Systems and Technologies, CISTI, vol. 2016-July. 2016. doi: 10.1109/CISTI.2016.7521484.
[71] E. Machado, M. Serqueira, E. Ogasawara, R. Ogando, M. A. G. Maia, L. N. Da Costa, R. Campisano, G. Paiva Guedes, and E. Bezerra, “Exploring machine learning methods for the Star/Galaxy Separation Problem,” Proceedings of the International Joint Conference on Neural Networks, vol. 2016-October. pp. 123–130, 2016. doi: 10.1109/IJCNN.2016.7727189.
[72] P. Mattos, A. M. Iorgulescu, R. Salles, E. Bezerra, E. Ogasawara, and L. Lima, “Uso de Redes Neurais para Previsão da Temperatura da Superfície do Mar do Oceano Atlântico Tropical,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Aug. 2015, pp. 131–140. doi: 10.5753/bresci.2015.7214.
[73] E. Machado, E. Bezerra, R. Ogando, M. Maia, L. da Costa, A. F. Neto, and E. Ogasawara, “Um Processo Exploratório para Classificação de Estrelas e Galáxias,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Aug. 2015, pp. 81–90. doi: 10.5753/bresci.2015.7209.
[74] W. Gomes, P. Castro, E. Cardoso, M. Malheiro, R. Castaneda, G. P. Guedes, R. Mauro, and E. Ogasawara, “Provendo um Serviço Web para Interação e Coleta de Dados de Aplicativos Educacionais,” in Anais do Simpósio Brasileiro de Informática na Educação, Oct. 2015, p. 957. doi: 10.5753/cbie.sbie.2015.957.
[75] G. P. Guedes, E. Bezerra, E. Ogasawara, and G. Xexéo, “Exploring multiple clusterings in attributed graphs,” Proceedings of the ACM Symposium on Applied Computing, vol. 13-17-April-2015. pp. 915–918, 2015. doi: 10.1145/2695664.2696008.
[76] E. Honorato, C. O. S. Mendes, J. R. Quadros, R. Castaneda, J. Soares, R. Mauro, S. Duarte, and E. Ogasawara, “Explorando uma Aplicação m-learning para Ensino de Vetores na Física do Ensino Médio,” in Anais do Simpósio Brasileiro de Informática na Educação, Oct. 2015, p. 1. doi: 10.5753/cbie.sbie.2015.1.
[77] R. Salles, E. Bezerra, J. Soares, and E. Ogasawara, “Evaluating Linear Models as a Baseline for Time Series Imputation,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), Petrópolis, RJ, Oct. 2015.
[78] A. B. Cruz, S. Serique, L. Preuss, A. Ogasawara, J. Quadros, E. Bezerra, U. Souza, and E. Ogasawara, “Amê: An environment to learn and analyze adversarial search algorithms using stochastic card games,” Proceedings of the ACM Symposium on Applied Computing, vol. 13-17-April-2015. pp. 208–213, 2015. doi: 10.1145/2695664.2695734.
[79] V. Lourenço, U. Souza, and E. Ogasawara, “Utilização de Algoritmos Genéticos para a Elaboração do Quadro de Horários do Ensino Médio-Técnico Integrado do CEFET/RJ,” in Anais do Encontro Nacional de Computação dos Institutos Federais (ENCompIF), SBC, Jul. 2014, pp. 5–8.
[80] F. S. Júnior, K. Belloze, F. P. Jr, E. Bezerra, J. R. Quadros, and E. Ogasawara, “Uma Abordagem Simplificada para Experimentação de Artefatos em Trabalhos de Conclusão de Curso,” in Anais do Workshop sobre Educação em Computação (WEI), SBC, Jul. 2014, pp. 299–308.
[81] J. T. Pintas, D. De Oliveira, K. A. C. S. Ocaña, E. Ogasawara, and M. Mattoso, “SciLightning: A cloud provenance-based event notification for parallel workflows,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8377 LNCS. pp. 352–365, 2014. doi: 10.1007/978-3-319-06859-6_31.
[82] A. Silva, F. Rosa, I. Rocha, F. P. P. Junior, E. Bezerra, G. Guedes, and E. Ogasawara, “RFIDBook: Uma Abordagem para Programas de Bonificação Baseada em Redes Sociais,” in Anais do Brazilian Workshop on Social Network Analysis and Mining (BraSNAM), SBC, Aug. 2014, pp. 81–92.
[83] L. Paschoal, T. Bento, T. Velasco, C. O. Schocair, R. Castaneda, T. Oliveira, and E. Ogasawara, “JOE: Jogo Ortográfico Educacional,” in Anais do Simpósio Brasileiro de Informática na Educação, 2014, p. 652. doi: 10.5753/cbie.sbie.2014.652.
[84] G. Alves, P. Warley, J. Quadros, L. Lignani, and E. Ogasawara, “ControlHarvest: Ensino de Ecologia por Meio de Gamificação do Controle Biológico,” in Anais do Simpósio Brasileiro de Informática na Educação, 2014, p. 342. doi: 10.5753/cbie.sbie.2014.342.
[85] R. Machado, M. Santos, H. Soares, E. Ogasawara, F. David, R. Soares, and B. Guimarães, “Arquitetura de um Simulador em Larga em Escala de Ataques Distribuídos de Negação de Serviço,” in Anais do Seminário Integrado de Software e Hardware (SEMISH), SBC, Jul. 2014, pp. 72–83.
[86] M. Mattoso, K. Ocãa, F. Horta, J. Dias, E. Ogasawara, V. Silva, D. De Oliveira, F. Costa, and I. Araújo, “User-steering of HPC workflows: State-of-the-art and future directions,” Proceedings of the 2nd ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies, SWEET 2013. 2013. doi: 10.1145/2499896.2499900.
[87] V. Silva, J. Dias, D. de Oliveira, E. Ogasawara, and M. Mattoso, “Uma Arquitetura P2P de Distribuição de Atividades para Execução Paralela de Workflows Científicos,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2013, pp. 1795–1802.
[88] I. D. Santos, J. Dias, D. D. Oliveira, E. Ogasawara, K. Ocaña, and M. Mattoso, “Runtime dynamic structural changes of scientific workflows in clouds,” Proceedings – 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC 2013. pp. 417–422, 2013. doi: 10.1109/UCC.2013.83.
[89] F. Horta, V. Silva, F. Costa, D. De Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and M. Mattoso, “Provenance traces from Chiron parallel workflow engine,” ACM International Conference Proceeding Series. pp. 337–338, 2013. doi: 10.1145/2457317.2457379.
[90] I. de A. dos Santos, J. Dias, D. de Oliveira, E. Ogasawara, and M. Mattoso, “DynAdapt: Alterações na Definição de Atividades de Workflows Científicos em Tempo de Execução,” in Anais do Brazilian e-Science Workshop (BreSci), SBC, Jul. 2013, pp. 1831–1838.
[91] D. De Oliveira, V. Viana, E. Ogasawara, K. Ocaña, and M. Mattoso, “Dimensioning the virtual cluster for parallel scientific workflows in clouds,” ScienceCloud 2013 – Proceedings of the 4th ACM Workshop on Scientific Cloud Computing. pp. 5–12, 2013. doi: 10.1145/2465848.2465852.
[92] F. Costa, V. Silva, D. De Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and M. Mattoso, “Capturing and querying workflow runtime provenance with PROV: A practical approach,” ACM International Conference Proceeding Series. pp. 282–289, 2013. doi: 10.1145/2457317.2457365.
[93] J. Dias, E. Ogasawara, D. De Oliveira, F. Porto, P. Valduriez, and M. Mattoso, “Algebraic dataflows for big data analysis,” Proceedings – 2013 IEEE International Conference on Big Data, Big Data 2013. pp. 150–155, 2013. doi: 10.1109/BigData.2013.6691567.
[94] J. C. de A. Gonçalves, D. de Oliveira, K. A. Ocana, E. Ogasawara, J. Dias, and M. Mattoso, “Using Provenance Analyzers to Improve the Performance of Scientific Workflows in Cloud Environments,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2012.
[95] J. C. D. A. R. Gonçalves, D. De Oliveira, K. A. C. S. Ocaña, E. Ogasawara, and M. Mattoso, “Using domain-specific data to enhance scientific workflow steering queries,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7525 LNCS. pp. 152–167, 2012. doi: 10.1007/978-3-642-34222-6_12.
[96] F. Costa, D. D. Oliveira, K. Ocana, E. Ogasawara, J. Dias, and M. Mattoso, “Handling failures in parallel scientific workflows using clouds,” Proceedings – 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC 2012. pp. 129–139, 2012. doi: 10.1109/SC.Companion.2012.28.
[97] K. A. C. S. Ocaña, D. De Oliveira, F. Horta, J. Dias, E. Ogasawara, and M. Mattoso, “Exploring molecular evolution reconstruction using a parallel cloud based scientific workflow,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7409 LNBI. pp. 179–191, 2012. doi: 10.1007/978-3-642-31927-3_16.
[98] F. Chirigati, V. Silva, E. Ogasawara, D. De Oliveira, J. Dias, F. Porto, P. Valduriez, and M. Mattoso, “Evaluating parameter sweep workflows in high performance computing,” ACM International Conference Proceeding Series. 2012. doi: 10.1145/2443416.2443418.
[99] F. Costa, D. De Oliveira, K. A. C. S. Ocaña, E. Ogasawara, and M. Mattoso, “Enabling re-executions of parallel scientific workflows using runtime provenance data,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7525 LNCS. pp. 229–232, 2012. doi: 10.1007/978-3-642-34222-6_22.
[100] K. A. C. S. Ocaña, D. De Oliveira, J. Dias, E. Ogasawara, and M. Mattoso, “Discovering drug targets for neglected diseases using a pharmacophylogenomic cloud workflow,” 2012 IEEE 8th International Conference on E-Science, e-Science 2012. 2012. doi: 10.1109/eScience.2012.6404431.
[101] F. Costa, D. De Oliveira, E. Ogasawara, A. A. B. Lima, and M. Mattoso, “Athena: Text mining based discovery of scientific workflows in disperse repositories,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6799 LNCS. pp. 104–121, 2012. doi: 10.1007/978-3-642-27392-6_8.
[102] F. Horta, J. Dias, K. A. C. S. Ocaña, D. de Oliveira, E. Ogasawara, and M. Mattoso, “Abstract: Using Provenance to Visualize Data from Large-Scale Experiments,” in 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Nov. 2012, pp. 1418–1419. doi: 10.1109/SC.Companion.2012.228.
[103] V. Silva, F. Chirigati, E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M. Mattoso, “Uma avaliação da Distribuição de Atividades Estática e Dinâmica em Ambientes Paralelos usando o Hydra,” in Anais do Brazilian e-Science Workshop (BreSci), 2011, pp. 1–8.
[104] J. Dias, E. Ogasawara, D. De Oliveira, F. Porto, A. L. G. A. Coutinho, and M. Mattoso, “Supporting dynamic parameter sweep in adaptive and user-steered workflows,” WORKS’11 – Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science, Co-located with SC’11. pp. 31–36, 2011. doi: 10.1145/2110497.2110502.
[105] K. A. C. S. Ocaña, D. De Oliveira, E. Ogasawara, A. M. R. Dávila, A. A. B. Lima, and M. Mattoso, “SciPhy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6832 LNBI. pp. 66–70, 2011. doi: 10.1007/978-3-642-22825-4_9.
[106] V. Viana, D. de Oliveira, E. Ogasawara, and M. Mattoso, “SciCumulus-ECM: Um Serviço de Custos para a Execução de Workflows Científicos em Nuvens Computacionais,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2011.
[107] J. Dias, E. Ogasawara, D. De Oliveira, and M. Mattoso, “Poster: Scientific data parallelism using P2P techniques,” SC’11 – Proceedings of the 2011 High Performance Computing Networking, Storage and Analysis Companion, Co-located with SC’11. pp. 27–28, 2011. doi: 10.1145/2148600.2148615.
[108] K. A. C. S. Ocaña, D. De Oliveira, J. Dias, E. Ogasawara, and M. Mattoso, “Optimizing phylogenetic analysis using SciHmm cloud-based scientific workflow,” Proceedings – 2011 7th IEEE International Conference on eScience, eScience 2011. pp. 62–69, 2011. doi: 10.1109/eScience.2011.17.
[109] D. de Oliveira, E. Ogasawara, F. Baiao, and M. Mattoso, “Adding Ontologies to Scientific Workflow Composition,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 2011.
[110] E. Bezerra, B. Firmino, R. Castaneda, J. Soares, E. Ogasawara, and R. Goldschmidt, “A subjectivity detection method for opinion mining based on lexical resources,” Proceedings of the IADIS International Conference WWW/Internet 2011, ICWI 2011. pp. 317–324, 2011.
[111] D. De Oliveira, K. Ocaña, E. Ogasawara, J. Dias, F. Baião, and M. Mattoso, “A performance evaluation of X-ray crystallography scientific workflow using scicumulus,” Proceedings – 2011 IEEE 4th International Conference on Cloud Computing, CLOUD 2011. pp. 708–715, 2011. doi: 10.1109/CLOUD.2011.99.
[112] E. Ogasawara, J. Dias, D. Oliveira, C. Rodrigues, C. Pivotto, R. Antas, V. Braganholo, P. Valduriez, and M. Mattoso, “A P2P approach to many tasks computing for scientific workflows,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6449 LNCS. pp. 327–339, 2011. doi: 10.1007/978-3-642-19328-6_31.
[113] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Braganholo, L. Murta, and M. Mattoso, “SimiFlow: Uma Arquitetura para Agrupamento de Workflows por Similaridade,” in Anais do Brazilian e-Science Workshop (BreSci), 2010, pp. 1–8.
[114] J. Dias, C. Rodrigues, E. Ogasawara, D. D. Oliveira, V. Braganholo, E. Pacitti, and M. Mattoso, “SciMulator: Um Ambiente de Simulação de Workflows Científicos em Redes P2P,” presented at the VI Workshop de Redes Dinâmicas e Sistemas Peer-to-Peer 2010, May 2010, p. 12.
[115] D. De Oliveira, E. Ogasawara, F. Baião, and M. Mattoso, “SciCumulus: A lightweigh cloud middleware to explore many task computing paradigm in scientific workflows,” Proceedings – 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010. pp. 378–385, 2010. doi: 10.1109/CLOUD.2010.64.
[116] A. Marinho, L. Murta, C. Werner, V. Braganholo, E. Ogasawara, S. M. S. Da Cruz, and M. Mattoso, “Integrating provenance data from distributed workflow systems with ProvManager,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6378 LNCS. pp. 286–288, 2010. doi: 10.1007/978-3-642-17819-1_35.
[117] J. Dias, E. Ogasawara, D. De Oliveira, E. Pacitti, and M. Mattoso, “Improving many-task computing in scientific workflows using P2P techniques,” 2010 3rd Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS10. 2010. doi: 10.1109/mtags.2010.5699430.
[118] D. De Oliveira, E. Ogasawara, F. Seabra, V. Silva, L. Murta, and M. Mattoso, “GExpLine: A tool for supporting experiment composition,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6378 LNCS. pp. 251–259, 2010. doi: 10.1007/978-3-642-17819-1_28.
[119] E. Silva, E. Ogasawara, D. Oliveira, M. Benevides, and M. Mattoso, “Especificação Formal e Verificação de Workflows Científicos,” in Anais do Brazilian e-Science Workshop (BreSci), 2010.
[120] F. Coutinho, E. Ogasawara, D. De Oliveira, V. Braganholo, A. A. B. Lima, A. M. R. Dávila, and M. Mattoso, “Data parallelism in bioinformatics workflows using Hydra,” HPDC 2010 – Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. pp. 507–515, 2010. doi: 10.1145/1851476.1851550.
[121] E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrão, G. L. Pappa, and M. Mattoso, “Adaptive Normalization: A novel data normalization approach for non-stationary time series,” Proceedings of the International Joint Conference on Neural Networks. 2010. doi: 10.1109/IJCNN.2010.5596746.
[122] B. Costa, E. Ogasawara, L. Murta, and M. Mattoso, “Uma Estratégia de Versionamento de Workflows Científicos em Granularidade Fina,” in Anais do Brazilian e-Science Workshop (BreSci), 2009, pp. 49–56.
[123] D. de Oliveira, E. Ogasawara, F. Chirigati, V. Sousa, L. Murta, C. Werner, and M. Mattoso, “Uma Abordagem Semântica para Linhas de Experimentos Científicos Usando Ontologias,” in Anais do Brazilian e-Science Workshop (BreSci), 2009.
[124] E. Ogasawara, L. Murta, G. Zimbrão, and M. Mattoso, “Neural networks cartridges for data mining on time series,” Proceedings of the International Joint Conference on Neural Networks. pp. 2302–2309, 2009. doi: 10.1109/IJCNN.2009.5178615.
[125] E. Ogasawara, D. De Oliveira, F. Chirigati, C. E. Barbosa, R. Elias, V. Braganholo, A. Coutinho, and M. Mattoso, “Exploring many task computing in scientific workflows,” Proceedings of the 2nd ACM Workshop on Many-Task Computing on Grids and Supercomputers 2009, MTAGS ’09. 2009. doi: 10.1145/1646468.1646470.
[126] E. Ogasawara, C. Paulino, L. Murta, C. Werner, and M. Mattoso, “Experiment line: Software reuse in scientific workflows,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5566 LNCS. pp. 264–272, 2009. doi: 10.1007/978-3-642-02279-1_20.
[127] M. Mattoso, C. Werner, G. Travassos, V. Braganholo, L. Murta, E. Ogasawara, F. Oliveira, and W. Martinho, “Desafios no apoio à composição de experimentos científicos em larga escala,” in Seminário Integrado de Software e Hardware, 2009, p. 36.
[128] E. Ogasawara, P. Rangel, C. Werner, M. Mattoso, and L. Murta, “Comparison and versioning of scientific workflows,” Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software Models, CVSM 2009. pp. 25–30, 2009. doi: 10.1109/CVSM.2009.5071718.
[129] E. Ogasawara, L. Murta, C. Werner, and M. Mattoso, “Linhas de Experimento: Reutilização e Gerência de Configuração em Workflows Científicos,” in Anais do Brazilian e-Science Workshop (BreSci), 2008, pp. 31–40.
[130] E. Ogasawara and M. Mattoso, “Uma Avaliação Experimental sobre Técnicas de Indexação em Bancos de Dados Orientados a Objetos,” in Anais do Simpósio Brasileiro de Banco de Dados (SBBD), 1999, pp. 1–13.