Ementa

Análise de Séries Temporais. Conceitos fundamentais e componentes estruturais das séries temporais. Técnicas de pré-processamento e representação de dados temporais. Avaliação em tarefas temporais. Métodos estatísticos e computacionais para análise de séries temporais. Detecção de eventos, incluindo anomalias, pontos de mudança, desvio de conceito e padrões recorrentes. Análise de séries temporais em fluxo e em tempo real. Implementação prática de métodos e avaliação de desempenho em dados reais.

Objetivos

Fundamentar os conhecimentos indispensáveis à análise e modelagem de dados temporais, com foco na identificação de padrões, eventos relevantes e comportamentos dinâmicos ao longo do tempo. Para isso, é realizado um estudo sistemático dos conceitos fundamentais de séries temporais, das técnicas de pré-processamento e representação, bem como dos métodos estatísticos e computacionais voltados à detecção de anomalias, pontos de mudança, desvio de conceito e predição. O curso busca proporcionar um sólido embasamento teórico aliado à prática computacional, capacitando o aluno a selecionar, aplicar, avaliar e interpretar métodos de análise de séries temporais em diferentes contextos, incluindo cenários offline e online, e a desenvolver soluções computacionais aplicadas a dados temporais reais.

 


Slides

1 – Fundamentos de Séries Temporais e Processos Estocásticos — fundamentos de séries temporais e processos estocásticos aplicados.

2 – Estrutura Temporal em Séries Temporais — estrutura temporal e componentes de séries temporais.

3 – Modelos Lineares em Séries Temporais — modelos lineares e seus pressupostos em séries temporais.

4 – Previsão em Séries Temporais — técnicas de previsão e avaliação preditiva.

5 – Por que Estender os Modelos Lineares — limitações dos modelos lineares e motivações para extensões.

6 – Séries Temporais como Objeto de Processamento — séries temporais como objetos de processamento e análise.

7 – Representação de Eventos em Séries Temporais — representação de eventos em dados temporais.

8 – Eventos em Séries Temporais — conceitos e tipos de eventos em séries temporais.

9 – Anomalias em Séries Temporais — detecção de anomalias em séries temporais.

10 – Formulação do Problema de Detecção — formulação do problema de detecção de eventos.

11 – Pontos de Mudança em Séries Temporais — pontos de mudança e conceitos relacionados.

12 – Detecção de Pontos de Mudança — métodos de detecção de pontos de mudança.

13 – Motifs em Séries Temporais — descoberta de motifs em séries temporais.

14 – Discords em Séries Temporais — identificação de discords e padrões raros.

15 – Paradigmas de Detecção Temporal — paradigmas de detecção temporal.

16 – Classes de Métodos Online — classes de métodos online para detecção.

17 – Teoria Geral de Eventos em Séries Temporais — teoria geral de eventos em séries temporais.

18 – O Problema da Avaliação de Eventos — avaliação de eventos e critérios de desempenho.

19 – Eventos como Pontos: uma Simplificação — eventos como pontos: simplificação e implicações.

20 – Avaliação como Problema Científico — avaliação como problema científico em detecção temporal.

21 – A Área de Detecção de Eventos — panorama da área de detecção de eventos.

22 – Detecção de Eventos como Problema Aberto — detecção de eventos como problema aberto de pesquisa.

H1 – Harbinger — Harbinger: framework para detecção de eventos em séries temporais.

 


Playlist

 


Harbinger

Harbinger é uma estrutura (framework) para detecção de eventos em séries temporais. Ela oferece um ambiente integrado para detecção de anomalias, pontos de mudança e descoberta de motivos em séries temporais. Disponibiliza uma ampla variedade de métodos de detecção de eventos, além de funções para visualização e avaliação das detecções realizadas.

https://cefet-rj-dal.github.io/harbinger/