

DATA CENTRIC AI APPROACHES FOR TIME SERIES EVENT DETECTION

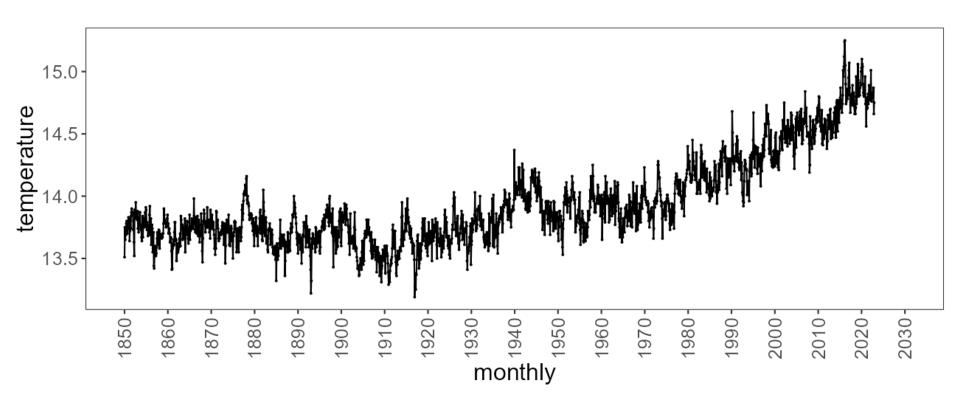
Eduardo Ogasawara eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara

Road map

- Overview of Time Series Event Detection
- Data-Centric Al Initiatives
- Challenges

Time Series Events

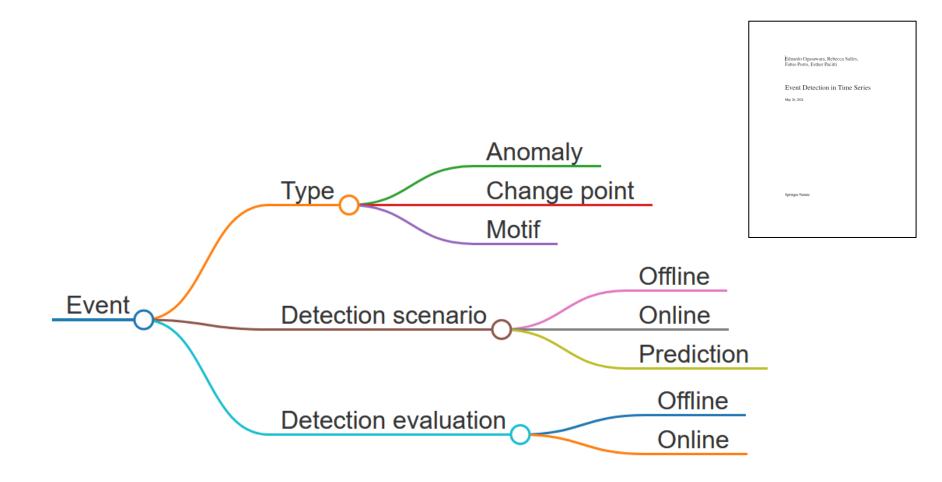
- Time series events are commonly instants or intervals in the time series where observations change in a manner that is considered important for analysis or decision-making processes
 - The interpretation of an event can vary significantly across different domains
 - They can be categorized into main types: anomalies, change points, and motifs



Event Detection

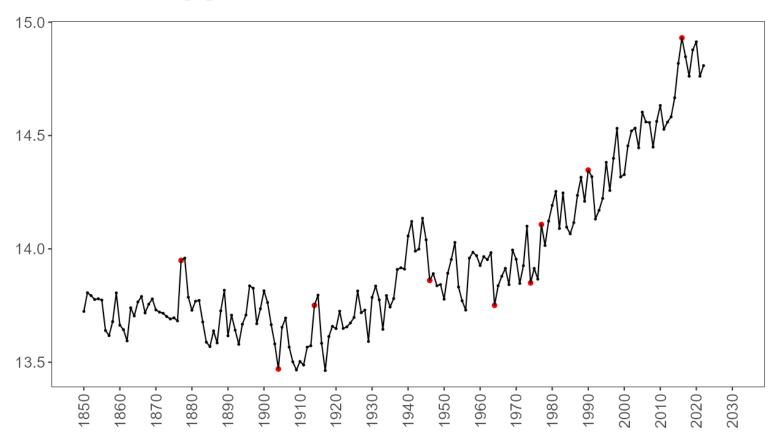
- Process of identifying events
- Important for monitoring and surveillance
 - Industry, seismic, oil exploration, epidemiology, climate
- There are many studies, but
 - Focused on specific types of events
 - Lacking a holistic view of the problem

Taxonomy



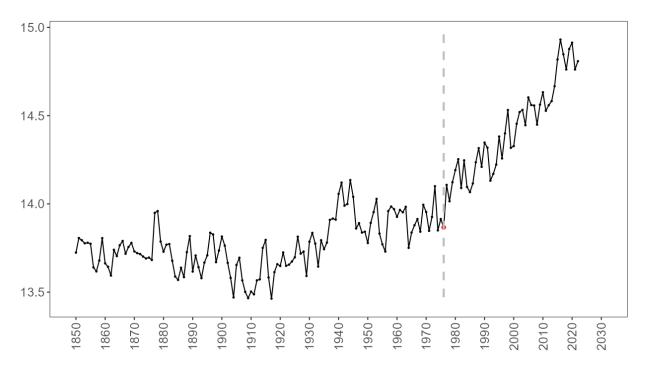
Anomalies

 Anomalies are observations that do not conform to the typical ones at the time series [1]



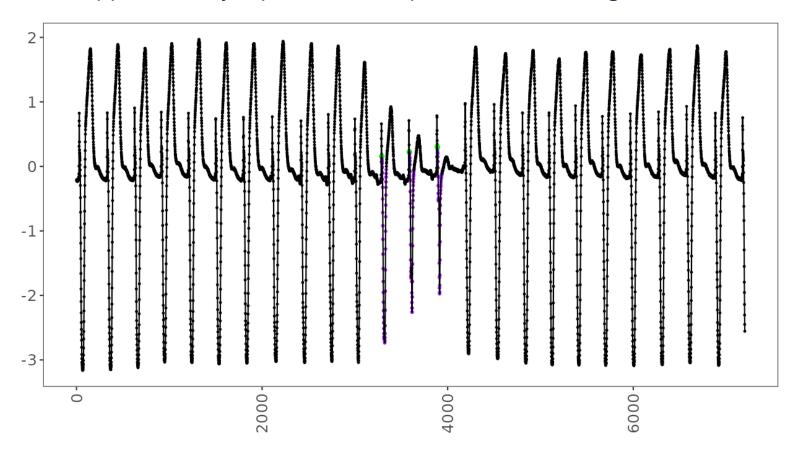
Change points

- Change points are time intervals where there is a significant change in the statistical properties in a time series [1]
 - This can include changes in mean, variance, correlation, distribution
- They represent a transition between different states in a process that generates the time series [2]

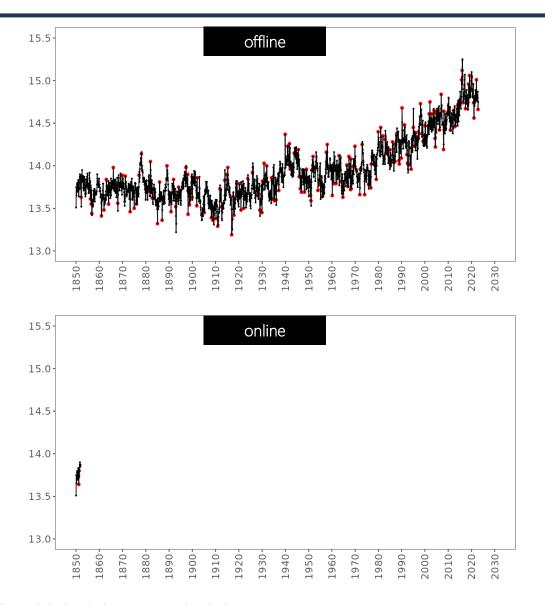


Motifs

- Time series motifs are sequences of significantly similar observations within a time series
 - It is an approximately repeated subsequence within a longer time series [1]



Offline versus online detection



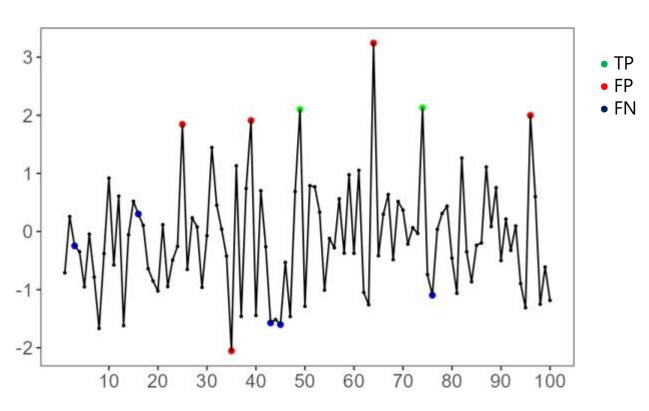
prediction

Basic metrics for event detection

• precision =
$$\frac{TP}{TP+FP}$$

•
$$F_1 = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision+recall}}$$

• recall =
$$\frac{TP}{TP+FN}$$



Data-Centric Al Initiatives

Data Centric Al

- Data-centric AI is an approach that emphasizes data preparation
 - Data Quality: accurate, complete, and representative data
 - Data Transformation: normalization, encoding categorical variables, and transforming features to improve model performance
 - Feature Engineering: new features to better capture the underlying patterns
 - Data labeling: Maintaining consistent data labels
 - Bias mitigation: Identifying and addressing biases in the data
 - Data augmentation: Using techniques to increase dataset size artificially

It might be a buzzword for data preprocessing

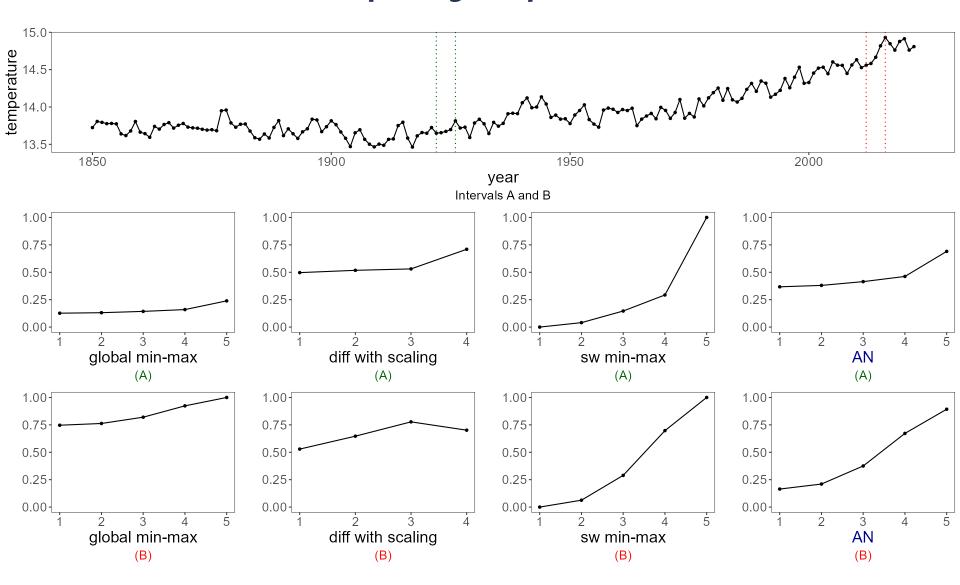
Adaptive normalization

- Integrated normalization for sliding windows
- Compute a moving average for each sliding window
- Differentiate in each sliding window observation relative to its moving average
- Remove windows with outliers
- Scale each window between 0 and 1 with respect to the maximum and minimum differences of all windows

PERFORMANCE OF ALGORITHMS TO FORECAST THE MONTHLY AVERAGE EXCHANGE RATE OF U.S. DOLLAR TO BRAZILIAN REAL TIME SERIES

	RMSE		
Algorithm	1-step	12-step	
AR	0.082	0.545	
NN-MM	0.177	1.173	
NN-DS	0.094	1.444	
NN-ZS	0.126	0.814	
NN-SW	0.088	0.451	
NN-AN	0.062	0.345	

Inspecting comparison



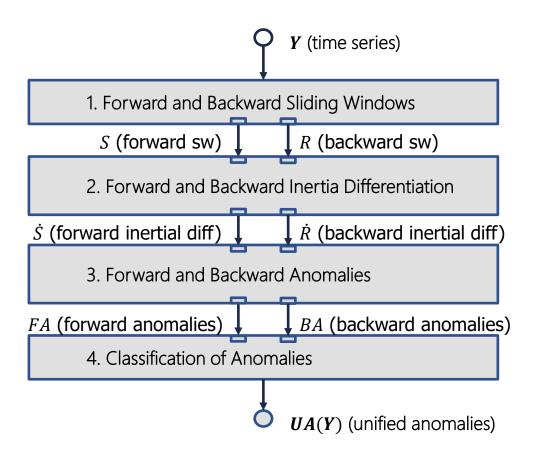
[1] E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrão, G. L. Pappa, and M. Mattoso, "Adaptive Normalization: A novel data normalization approach for non-stationary time series," *Proceedings of the International Joint Conference on Neural Networks*. 2010. doi: 10.1109/IJCNN.2010.5596746.

AN Properties

- Provides inertia during time series analysis
 - Higher moving average, higher inertia
- It usually provides good step-ahead predictions using machine learning
- It enables outlier removal (could be used for anomaly detection)
- Limitations
 - Should establish the moving average

FBIAD: Forward-Backward Inertia Anomaly Detection

Use AN ideas for anomaly detection



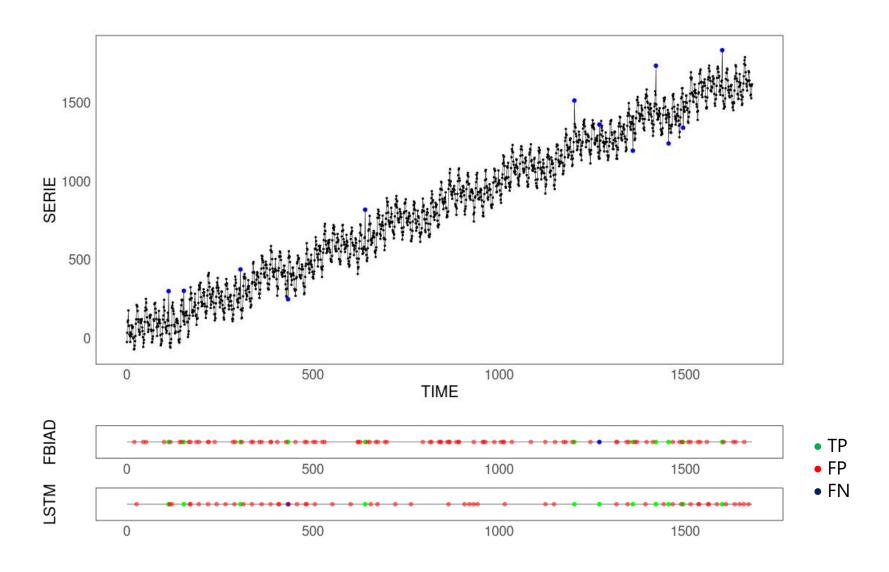
876-1701-967-96253) DS 00022 EEE
Authorized instructions influent in Control Related to December Toron Related to December

Comparison

Dataset studied (Yahoo, Numenta and Gecco)

Method	Precision	Recall	F1	Accuracy
FBIAD	0.066	0.528	0.085	0.731
ARIMA	0.045	0.556	0.067	0.746
LSTM	0.041	0.534	0.062	0.735
ELM	0.041	0.517	0.063	0.726
Conv1D	0.036	0.519	0.055	0.724
SVM	0.030	0.542	0.049	0.732

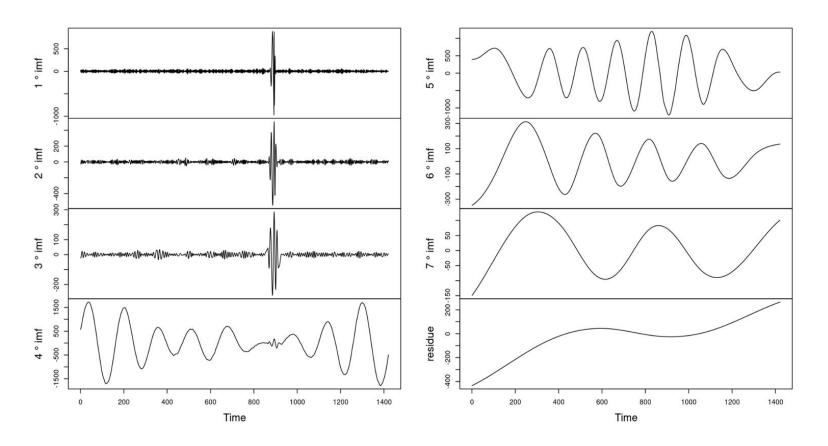
Inspecting Performance Comparison



[1] J. Lima, R. Salles, F. Porto, R. Coutinho, P. Alpis, L. Escobar, E. Pacitti, and E. Ogasawara, "Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method," Proceedings of the International Joint Conference on Neural Networks, vol. 2022-July. 2022. doi: 10.1109/IJCNN55064.2022.9892088.

Addressing moving average limitation using EMD

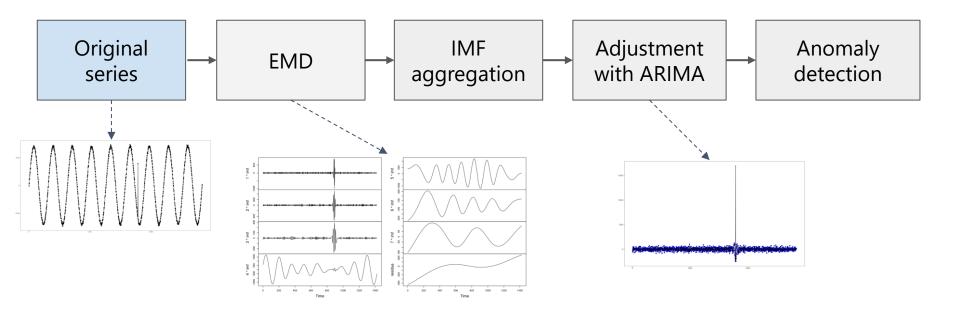
 Empirical Mode Decomposition (EMD) is a technique for decomposing non-linear and non-stationary series into a series of functions called Intrinsic Mode Functions (IMFs)



[1] Y. Lei, J. Lin, Z. He, and M. J. Zuo, "A review on empirical mode decomposition in fault diagnosis of rotating machinery," Mechanical Systems and Signal Processing, vol. 35, no. 1–2. pp. 108–126, 2013. doi: 10.1016/j.ymssp.2012.09.015.

REMD

- REMD: A hybrid method consisting of four steps
 - EMD decomposition
 - IMF aggregation
 - ARIMA adjustment
 - Anomaly detection: analysis of distribution error

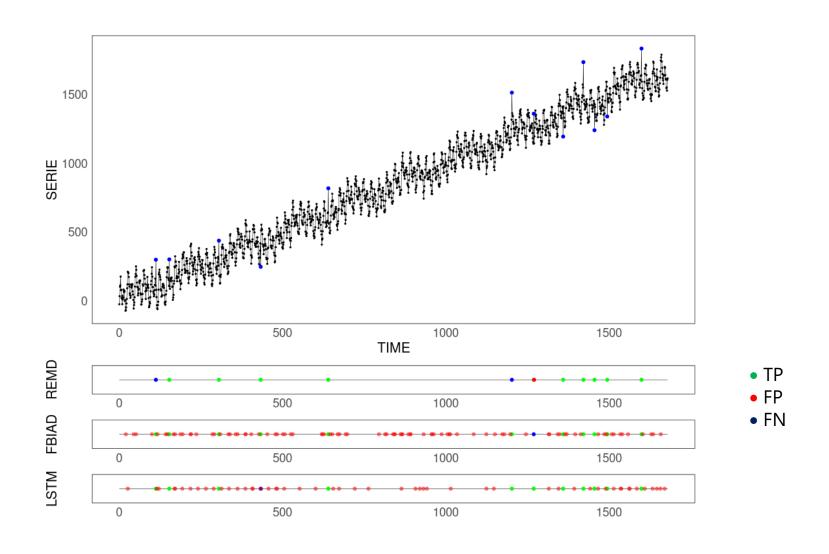


Comparison

- Datasets: Yahoo, Numenta, and Gecco
- REMD presents a much better performance than the secondplaced method
 - EMD-based method, when we use F1 as the main selection criterion

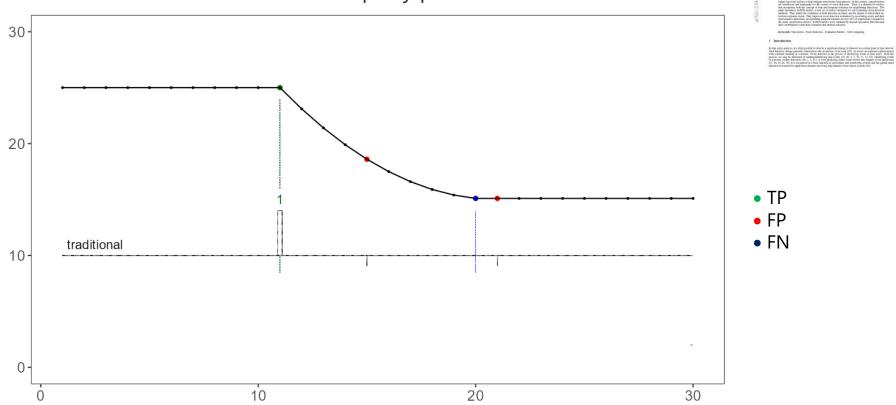
Method	Precision	Recall	F1
REMD	0.684	0.386	0.448
EMD	0.243	0.408	0.207
FBIAD	0.066	0.528	0.085
ARIMA	0.045	0.556	0.067
LSTM	0.041	0.534	0.062
ELM	0.041	0.517	0.063
Conv1D	0.036	0.519	0.055
SVM	0.030	0.542	0.049

Inspecting performance comparison



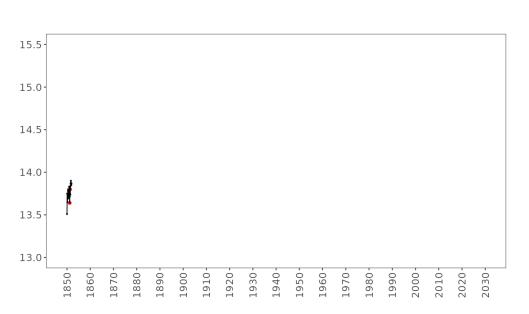
Time should count while evaluating events

- Traditional scoring methods, such as precision and recall, are not sufficient to assess the performance of event detection
 - They do not incorporate time and do not reward close detections.
 - True positives are rewarded
 - All other outcomes are equally penalized



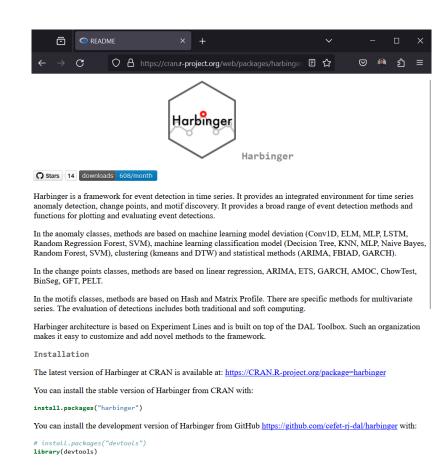
Still need improvements when it comes to streaming and online events

- The schizophrenic behavior of detectors in online detection
- Detection Probability: $DP(x_i) = \frac{df(x_i)}{bf(x_i)}$
 - *df*: detection frequency
 - bf: batch frequency
- Detection Lag: $Lag_i^s = fdb_i sb_i$
 - fdb (first detection batch)
 - sb (start batch)



Harbinger: Framework for Time Series Event Detection

- Holistic view of the problem
 - Anomalies
 - Change points
 - Motif discovery
- Properties
 - Uniform Data Model
 - Rigid interface (algebraic)
 - Expansible
 - Based on experimental line
- Inspiration from Sci-Kit Learn
 - Fit()
 - Detection()
- More than 50 event detectors
- R Package available at CRAN



CEFET/RJ Team

D.Sc. students

Janio Lima Ellen Paixão

Lucas Giusti*

Paulo Elias* (UFF)

M.Sc. students

Antônio Mello

Arthur Garcia

Cristiane Gea

Edson Sobrinho

Fabiana Santos*

Frank Faisca

Jéssica de Souza

Josélia Rabelo Luiz Oliveira

Michel Reis*

Ricardo Buçard*

Rodrigo Machado

Thiago Marques

Biografia

- Doutor em Engenharia de Sistemas e Computação (COPPE/UFRJ) em 2011
- Professor no EIC CEFET/RJ
 - Departamento de Ciência da Computação
 - Curso Técnico de Informática
 - Programa de Pós-Graduação em Ciência da Computação (PPCIC)
 - Programa de Pós-Graduação em Engenharia de Produção e Sistemas (PPPRO)
- Membro do Sênior da IEEE
- Membro da SBC e ACM
- Editor Associado da IEEE Latin America Transactions

https://eic.cefet-rj.br/~eogasawara

DATA ANALYTICS LAB

https://eic.cefet-rj.br/~dal