

ÁLGEBRA RELACIONAL

Eduardo Ogasawara eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara

Álgebra relacional

- Álgebra relacional:
 - Conjunto básico de operações para o modelo relacional
- Expressão da álgebra relacional:
 - Sequência de operações da álgebra relacional
- O objetivo da álgebra relacional é permitir o cálculo de consultas declaradas com linguagens de nível mais alto no modelo relacional

Álgebra relacional

- Linguagem procedural
- Operadores básicos:
 - seleção: σ
 - projeção: π
 - união: U
 - interseção: ∩
 - diferença de conjuntos: –
 - produto cartesiano: ×
 - junção: ⋈
 - agregação: Γ
 - divisão: ÷
 - renomeação: ρ
- Os operadores usam uma ou duas relações como entrada e produzem uma nova relação como resultado

Esquema de exemplo usado

- agencia (<u>nomeAgencia</u>, cidadeAgencia, ativo)
- cliente (<u>nomeCliente</u>, ruaCliente, cidadeCliente)
- conta (<u>numeroConta</u>, nomeAgencia*, saldo)
- emprestimo (<u>numeroEmprestimo</u>, nomeAgencia*, quantia)
- depositante (<u>nomeCliente</u>*, <u>numeroConta</u>*)
- tomador (<u>nomeCliente</u>*, <u>numeroEmprestimo</u>*)
- (*) são chaves estrangeiras

Operação seleção

- Notação: $\sigma_p(R)$
- p é chamado o predicado de seleção e R é o nome de uma relação
- Definida como:

$$\sigma_p(R) = \{t \mid t \in R \land p(t)\}$$

 Onde p é uma fórmula em cálculo proposicional consistindo em termos conectados por: ∧ (and), ∨ (or), ¬ (not)
 Cada termo pode ser:

```
<atributo> op <atributo> ou <constante> onde op pode ser: =, \neq, >, \geq, <, \leq
```

- Exemplo:
 - Trazer todas as informações das contas da agência Perryridge $\sigma_{nomeAgencia="Perryridge"}(conta)$

Operação seleção – exemplo

■ Relação *R*

a	b	С	d
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

• $\sigma_{(\mathbf{a}=\mathbf{b})\wedge(\mathbf{d}>5)}(R)$

a	b	С	d
α	α	1	7
β	β	23	10

Operação projeção

Notação:

```
\pi_{\mathbf{a}_1,\mathbf{a}_2,\cdots,\mathbf{a}_k}(R)
onde \mathbf{a}_1,\mathbf{a}_2,\cdots,\mathbf{a}_k são nomes de atributo
e R é um nome de uma relação
```

- O resultado é definido como a relação de k colunas obtidas excluindo-se as colunas que não estão listadas
- Linhas duplicadas são removidas do resultado, de modo que as relações sejam conjuntos
- Exemplo:
 - Trazer todos os números de conta e seus respectivos saldos $\pi_{numeroConta,saldo}(conta)$

Operação projeção – exemplo

Relação R:

a	b	С
α	10	1
α	20	1
β	30	1
β	40	2

• $\pi_{\mathbf{a},\mathbf{c}}(R)$

A	С
α	1
β	1
β	2

Operação união

- Notação: *R* U *S*
- Definida como:

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

- Para que *R* U *S* seja válido:
 - *R* e *S* precisam ser da mesma aridade (o mesmo número de atributos)
 - Os domínios de atributo precisam ser compatíveis (exemplo: 2a coluna de R lida com o mesmo tipo de valores que a 2a coluna de S)
- Exemplo:
 - Encontre todos os clientes com uma conta ou um empréstimo $\pi_{nomeCliente}(depositante) \cup \pi_{nomeCliente}(tomador)$

Operação união – exemplo

■ Relações *R*, *S*:

 \blacksquare $R \cup S$

R

a	b
α	1
α	2
β	1

S

a	b
α	2
β	3

a	b
α	1
α	2
β	1
β	3

Operação de interseção

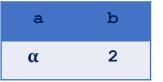
- Notação: *R* ∩ *S*
- Definida como:

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

- A interseção de conjuntos precisa de relações compatíveis
 - R e S precisam ter a mesma aridade
 - os domínios de atributo de R e S precisam ser compatíveis

Operação interseção – exemplo

■ Relação *R*, *S*:


 $\blacksquare R \cap S$

R

S

a	b
α	1
α	2
β	1

a	b
α	2
β	3

Operação de diferença

- Notação R S
- Definida como:

$$R - S = \{t \mid t \in R \land t \notin S\}$$

- A diferença de conjuntos precisam de relações compatíveis
 - R e S precisam ter a mesma aridade
 - os domínios de atributo de R e S precisam ser compatíveis

Operação de diferença – exemplo

■ Relações *R*, *S*:

	R	ς
_	$I\Lambda$	 J

R

a	b
α	1
α	2
β	1

S

a	b
α	2
β	3

a	b
α	1
β	1

Operação de produto cartesiano

- Notação *R* × *S*
- Definida como:

$$R \times S = \{t \mid q \mid t \in R \land q \in S\}$$

- Considere que os atributos de $R(\mathcal{R})$ e $S(\mathcal{S})$ sejam disjuntos
 - $\mathcal{R} \cap \mathcal{S} = \emptyset$
- Se os atributos de $R(\mathcal{R})$ e $S(\mathcal{S})$ não forem disjuntos, então, o restante precisa ser usado

Operação de produto cartesiano – exemplo

■ Relações *R*, *S*

$\blacksquare R$	\times \mathcal{S}	5
------------------	------------------------	---

	K
a	b
α	1
β	2

	0	
С	d	е
α	10	x
β	10	x
β	20	У
γ	10	У

a	b	С	d	е
α	1	α	10	x
α	1	β	10	x
α	1	β	20	У
α	1	γ	10	У
β	2	α	10	х
β	2	β	10	x
β	2	β	20	У
β	2	γ	10	У

Expressão Algébrica: definição formal

- Uma expressão básica na álgebra relacional consiste em qualquer um dos seguintes:
 - Uma relação no banco de dados
 - Uma relação constante
- Seja E_1 e E_2 expressões de álgebra relacional; todas as expressões a seguir são de álgebra relacional:
 - $E_1 \cup E_2$
 - $E_1 E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, p é um predicado nos atributos em E_1
 - $\pi_S(E_1)$, S é uma lista consistindo em alguns dos atributos em E_1

Exemplo de expressão algébrica

Relação

a	b	С	d	е
α	1	α	10	x
α	1	β	10	x
α	1	β	20	У
α	1	γ	10	У
β	2	α	10	x
β	2	β	10	x
β	2	β	20	У
β	2	γ	10	У

•
$$\sigma_{A=C}(R \times S)$$

a	b	С	d	е
α	1	α	10	x
β	2	β	10	x
β	2	β	20	У

Operação atribuição

- A operação atribuição (←) fornece uma maneira conveniente de expressar consultas complexas
- Escreva consulta como um programa sequencial consistindo em
 - uma série de atribuições
 - seguidas de uma expressão cujo valor é exibido como resultado da consulta
 - A atribuição precisa sempre ser feita para uma variável de relação temporária
- Exemplo:
 - $R \leftarrow (tomador \times emprestimo)$
 - $S \leftarrow \sigma_{tomador.numeroEmprestimo = emprestimo.numeroEmprestimo}(R)$

Operação junção natural

- Notação: R ⋈ S
- Sejam R e S relações nos esquemas R e S respectivamente. Então, $R\bowtie S$ é uma relação no esquema $R\cup S$ obtida desta forma:
 - Considere cada par de tuplas tr de R e ts de S.
 - Se tr e ts possuem o mesmo valor em cada um dos atributos em $\mathcal{R} \cap \mathcal{S}$, acrescente uma tupla t ao resultado, onde
 - lacktriangledown t possui o mesmo valor de tr em R
 - t possui o mesmo valor de ts em S
- Exemplo:
 - $R(\mathcal{R}) = (A, B, C, D)$
 - $\bullet S(S) = (E, B, D)$
 - esquema $(R \bowtie S) = (A, B, C, D, E)$
 - $R \bowtie S$ é definido como:

$$\pi_{r.A,r.B,r.C,r.D,s.E} \left(\sigma_{r.B=s.B \land r.D=s.D} \left(R \times S \right) \right)$$

Operação junção natural – Exemplo

■ Relações *R*, *S*:

	R	\bowtie	S
--	---	-----------	---

R		
b	С	d
1	α	Х
2	γ	Х
4	β	У
1	γ	Х
2	β	У
	1 2 4 1	 b c 1 α 2 γ 4 β 1 γ

S		
b	d	е
1	Х	α
3	Х	β
1	Х	γ
2	У	δ
3	У	ε

a	b	С	d	е
α	1	α	Х	α
α	1	α	Х	γ
α	1	γ	Х	α
α	1	γ	Х	γ
δ	2	β	У	δ

Projeção generalizada

 Estende a operação projeção permitindo que funções aritméticas sejam usadas na lista de projeção

$$\pi_{F_1,F_2,\ldots,F_n}(E)$$

- *E* é qualquer expressão de álgebra relacional
- Cada $F_1, F_2, ..., F_n$ é uma expressão aritmética envolvendo constantes e atributos no esquema de E

Funções e operações agregadas

- As funções agregadas tomam uma coleção de valores e retornam um único valor como resultado
 - avg: valor médio
 - min: valor mínimo
 - max: valor máximo
 - sum: soma dos valores
 - count: número de valores
- Operação agregada na álgebra relacional
- $G_1, G_2, ..., G_n \Gamma_{F_1(a_1), F_2(a_2), ..., F_m(a_m)}(E)$
- *E* é qualquer expressão de álgebra relacional
 - $G_1, G_2, ..., G_n$ uma lista de atributos em que agrupar (pode ser vazia)
 - Cada F_i é uma função agregada
 - Cada a_i é um nome de atributo

Operação agregada – Exemplo

Relação R:

a	b	С
α	α	7
α	β	7
β	β	3
β	β	10

• $\Gamma_{sum(c)}(R)$

Operação agregada – Exemplo

Relação conta agrupada por nomeAgencia:

• $nomeAgencia\Gamma_{sum(saldo)}(conta)$

nomeAgencia	numeroConta	soma
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

nomeAgencia	sum(saldo)
Perryridge	1300
Brighton	1500
Redwood	700

Funções agregadas (cont.)

- O resultado da agregação não possui um nome
 - Pode usar a operação renomeação para fornecer-lhe um nome
 - Para conveniência, permitimos a renomeação como parte da operação agregada
 - $nomeAgencia \Gamma_{sum(saldo)}$ as saldoSoma(conta)

Junção externa

- Uma extensão da operação junção que evita a perda de informações
- Calcula a junção e acrescenta ao resultado as tuplas de uma relação que não correspondem às tuplas na outra relação
- Usa valores nulos:
 - nulo significa que o valor é desconhecido ou inexistente
 - Todas as comparações envolvendo valores nulos são (grosseiramente falando) falsas por definição
 - Estudaremos o significado exato das comparações com nulos mais adiante

Junção interna

Relação R

a	b	
L-170	Red	
L-230	Green	
L-160	Blue	

■ Relação *S*

b	С	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

\blacksquare $R \bowtie S$

a	b	С	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith

Junção externa esquerda

Relação R

a	b	
L-170	Red	
L-230	Green	
L-160	Blue	

■ Relação *S*

b	С	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

 \blacksquare $R\bowtie S$

a	b	С	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith
L-160	Blue	null	null

Junção externa direita

Relação R

a	b	
L-170	Red	
L-230	Green	
L-160	Blue	

■ Relação *S*

b	С	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

$\blacksquare R \bowtie S$

a	b	С	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith
null	Yellow	1000	Suzan

Junção externa integral

Relação R

a	b	
L-170	Red	
L-230	Green	
L-160	Blue	

■ Relação *S*

b	С	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

$\blacksquare R \bowtie S$

a	b	С	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith
L-160	Blue	null	null
null	Yellow	1000	Suzan

Operação divisão

- Notação: R ÷ S
- Adequado para consultas que incluem a frase "para todo"
- Sejam R e S relações nos esquemas \mathcal{R} e S respectivamente, onde
 - $\bullet \mathcal{R} = (A_1 \dots, A_m, B_1, \dots, B_n)$
 - $S = (B_1, \dots, B_n)$
 - O resultado de $R \div S$ é uma relação no esquema
 - \mathcal{R} - $\mathcal{S} = (A_1 \dots, A_m)$
 - $\blacksquare R \div S = \{ t \mid t \in \pi_{R-S}(R) \land \forall u \in S (tu \in R) \}$
 - Onde tu significa a concatenação das tuplas t e u para produzir uma única tupla

Operação divisão - Exemplo

Relações R, S:

r	7	
h	ヾ	
	•	

(a	d
	α	1
	α	2
	α	3
	β	1
	γ	1
	δ	1
	8	3

δ

3

3

β

4

6

1

2

S

b
1
2

■ R ÷ S:

a
α
β

Outro exemplo de divisão

Relações R, S:

■ R ÷ S:

R

b	С	d	е
x	α	x	1
x	γ	x	1
x	γ	У	1
x	γ	x	1
ж	γ	У	3
x	γ	ж	1
x	γ	У	1
x	β	У	1
	ж ж ж ж	 x α x γ x γ x γ x γ x γ x γ 	x α x x γ x x γ y x γ x x γ y x γ y x γ y

S

d	е
x	1
У	1

a	b	С
α	x	γ
γ	x	γ

Modificação do banco de dados

- O conteúdo do banco de dados pode ser modificado usando as seguintes operações:
 - Exclusão
 - Inserção
 - Atualização
- Todas essas operações são expressas usando o operador de atribuição

Exclusão

- Uma requisição de exclusão é expressa semelhantemente a uma consulta, exceto que, em vez de exibir tuplas ao usuário, as tuplas selecionadas são removidas do banco de dados
- Pode excluir apenas tuplas inteiras; não pode excluir valores em atributos específicos
- Na álgebra relacional, uma exclusão é expressa por:

$$R \leftarrow R - E$$

• onde R é uma relação e E é uma consulta de álgebra relacional

Inserção

- Para inserir dados em uma relação:
 - especificamos uma tupla a ser inserida
 - escrevemos uma consulta cujo resultado é um conjunto de tuplas a serem inseridas
- Na álgebra relacional, uma inserção é expressa por:

$$R \leftarrow R \cup E$$

- onde *R* é uma relação e *E* é uma expressão de álgebra relacional
- A inserção de uma única tupla é expressa fazendo E ser uma relação constante contendo uma tupla

- Encontre todos os empréstimos de mais de US\$ 1200
 - emprestimo (<u>numeroEmprestimo</u>, nomeAgencia, quantia)

 $\sigma_{quantia} > 1200 \ (emprestimo)$

- Encontre o número de empréstimo para aqueles com quantia maior que US\$ 1200
 - emprestimo (<u>numeroEmprestimo</u>, nomeAgencia, quantia)

 $\pi_{numeroEmprestimo}(\sigma_{quantia} > 1200 (emprestimo))$

- Encontre os nomes de todos os clientes que têm um empréstimo, uma conta, ou ambos, do banco
 - depositante (<u>nomeCliente</u>, <u>numeroConta</u>)
 - tomador (<u>nomeCliente</u>, <u>numeroEmprestimo</u>)

 $\pi_{nomeCliente}(tomador) \cup \pi_{nomeCliente}(depositante)$

- Encontre os nomes de todos os clientes que têm um empréstimo e uma conta no banco
 - depositante (<u>nomeCliente</u>, <u>numeroConta</u>)
 - tomador (<u>nomeCliente</u>, <u>numeroEmprestimo</u>)

 $\pi_{nomeCliente}(tomador) \cap \pi_{nomeCliente}(depositante)$

- Encontre o nome de todos os clientes que têm um empréstimo no banco e descubra a quantia do empréstimo
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - tomador (nomeCliente, numeroEmprestimo)

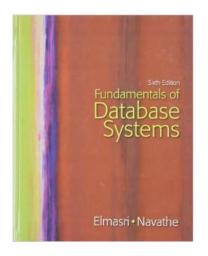
 $\pi_{nomeCliente,numeroEmprestimo,quantia}(tomador\bowtie emprestimo)$

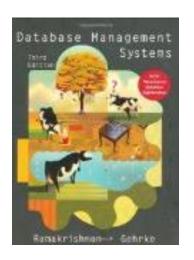
Dada a relação infoCredito(nomeCliente, limite, saldoCredito), descubra quanto mais cada pessoa pode gastar:

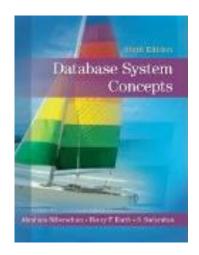
 $\pi_{nomeCliente,limite-saldoCredito}(infoCredito)$

- Encontre todos os clientes que têm uma conta em todas as agências localizadas na cidade de Brooklyn
 - agencia (nomeAgencia, cidadeAgencia, ativo)
 - conta (numeroConta, nomeAgencia, saldo)
 - depositante (nomeCliente, numeroConta)

```
\pi_{nomeCliente,nomeAgencia} (depositante \bowtie conta) \div \pi_{nomeAgencia} (\sigma_{cidadeAgencia} = "Brooklyn" (agencia))
```


- Exclua todos os registros de conta na agência Perryridge
 - conta (numeroConta, nomeAgencia, saldo)


$$conta \leftarrow conta - \sigma_{nomeAgencia = "Perryridge"} (conta)$$


- Insira informações no banco de dados especificando que Smith possui
 US\$ 1200 na conta A-973 na agência Perryridge
 - conta (numeroConta, nomeAgencia, saldo)

```
conta \leftarrow conta \cup \{(A - 973, "Perryridge", 1200)\}
 depositante \leftarrow depositante \cup \{("Smith", A - 973)\}
```

Referências

