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Biograph

▪ D.Sc. in Systems and Computer Engineering 

(COPPE/UFRJ) in 2011
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Research Themes
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Let’s start
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Disease Outbreaks

▪ A disease outbreak is the occurrence of disease cases in excess of normal 
expectancy
▪ The number of cases varies according to the disease-causing agent, and the size and 

type of previous and existing exposure to the agent

▪ Disease outbreaks are usually caused by an infection, transmitted through person-
to-person contact, animal-to-person contact, or from the environment or other 
media
▪ Outbreaks may also occur following exposure to chemicals or to radioactive materials

https://www.who.int/teams/environment-climate-change-and-health/emergencies/disease-outbreaks

Source: WHO,2022
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Events

▪ A point or an interval where a significant change in the time series behavior occurs

▪ Events may appear as anomalies, change points, or frequent patterns (motifs)

[1] V. Guralnik and J. Srivastava, 1999, Event Detection from Time Series Data, In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 

33–42

Image source: World Global Temperature, https://datahub.io/core/global-temp

event

Global Temperature
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Anomalies

▪ A pattern or observation that do not conform to expected behavior [1] 

▪ It can be categorized as punctual, contextual or collective

[1] ] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3

(*) In this example, it can also be classified as a discord

(*)
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Change Points

▪ Points (or time intervals) that mark significant change in time
series behavior [1]

▪ They separate different states in the process that generates
the time series

[1] J.-I. Takeuchi e K. Yamanishi, 2006, A unifying framework for detecting outliers and change points from time series, IEEE Transactions on Knowledge and Data Engineering, v. 18, n. 4, p. 482–492. 

Image source: https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-

monitoring/Change_detection_and_monitoring.htm

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Change_detection_and_monitoring.htm
https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Change_detection_and_monitoring.htm


9

Motifs

▪ A pattern (unknown) that occurs a significant number of times in time 

series [1,2,3]

[1] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive time series databases,” in Proceedings - IEEE International Conference on Data Mining, ICDM, 2002, pp. 370–377

[2] A. Mueen, “Time series motif discovery: Dimensions and applications,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 2, pp. 152–159, 2014

[3] S. Torkamani and V. Lohweg, “Survey on time series motif discovery,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 2, 2017.

How to do it in non-stationarity time series?
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Event detection

▪ An event can represent a phenomenon with a specific meaning defined in 

a certain domain

▪ Event detection is the process of finding events

▪ It is a basic function in surveillance and monitoring systems

▪ Example of applications:

[1] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3

[2] M. Gupta, J. Gao, C.C. Aggarwal, e J. Han, 2014, Outlier Detection for Temporal Data: A Survey, IEEE Transactions on Knowledge and Data Engineering, v. 26, n. 9, p. 2250–2267. 

[3] H. Wang, M.J. Bah, e M. Hammad, 2019, Progress in Outlier Detection Techniques: A Survey, IEEE Access, v. 7, p. 107964–108000. 

Electronic IT security

Healthcare

Medical diagnostics and monitoring

Industrial monitoring & Damage detection

Sensor Networks
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Importance of event detection

[1] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko, A review of novelty detection, Signal Processing, Volume 99, 2014, Pages 215-249, ISSN 0165-1684, 

https://doi.org/10.1016/j.sigpro.2013.12.026.

Failure to 

identify 

events

Affects 

decision 

making

Leads to 

false 

positives

Loss of 

credibility 

in control 

techniques

Possible 

damage to 

applications
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Event detection initiatives

[1] Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko, A review of novelty detection, Signal Processing, Volume 99, 2014, Pages 215-249, ISSN 0165-1684, 

https://doi.org/10.1016/j.sigpro.2013.12.026.

Anomaly 

detection
Finding unexpected behavior (deviations)

Change 

point 

detection

Finding change points

It is related to finding drifts in time series

Motif 

detection
Identifying frequent patterns in time series
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Anomaly detection

(distribution analysis)

▪ Statistical analysis
▪ Differentiation (backshift operator)

▪ Residuals from moving average

▪ Residuals from filters (Kalman)

▪ Model adjustment 
▪ Residuals from decomposed signal

▪ Residuals from linear models (regression)

▪ Residuals from autoregressive models (ARIMA)

▪ Residuals from volatility models (GARCH)

▪ Residuals from machine learning models

▪ Clustering of subsequences
▪ Distribution analysis over difference between subsequences and centroids

▪ DBScan

▪ Time series decomposition
▪ Trend

▪ Seasonal

▪ Fourier transform

▪ Wavelets

▪ IMF - intrinsic mode function

▪ Hilbert-Huang transform

[1] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3



14

Change point detection

▪ Seminal change point [1]

▪ Change Finder [2]

[1] J.-I. Takeuchi and K. Yamanishi, 2006, A unifying framework for detecting outliers and change points from time series, IEEE Transactions on Knowledge and Data Engineering, v. 18, n. 4, p. 482–492. 

[2] V. Guralnik and J. Srivastava, 1999, Event Detection from Time Series Data, In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 33–42

Image source: https://towardsdatascience.com/real-time-time-series-anomaly-detection-981cf1e1ca13

Windowed approach
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Motif discovery

▪ Indexing

▪ Discretization

▪ SAX [1]

▪ Brute force

▪ Hash-based (random 

projection) [2]

▪ Matrix profile [3]

[1] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel symbolic representation of time series,” Data Mining and Knowledge Discovery, vol. 15, no. 2, pp. 107–144, 2007

[2] A. Mueen, “Time series motif discovery: Dimensions and applications,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 2, pp. 152–159, 2014

[3] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh, 2020, Matrix profile goes MAD: variable-length motif and discord discovery in data series, Data Mining and Knowledge Discovery, v. 34, n. 4, p. 1022–1071. 

(*) https://towardsdatascience.com/introduction-to-matrix-profiles-5568f3375d90
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The many faces of event detection

[1] R. Salles, L. Escobar, L. Baroni, R. Zorrilla, A. Ziviani, V. Kreischer, F. Delicato, P. Pires, L. Maia, et al., 2020, Um framework para integração e análise de métodos de 

detecção de eventos em séries temporais, In: Anais do Simpósio Brasileiro de Banco de Dados (SBBD)

Method B: trend anomalies & change points

Method C: volatility anomalies
Methods A,B & C: 

trend anomalies, volatility anomalies and 
change points

Method A: trend anomalies



17

Metrics for event detection

▪ Classifier Accuracy: percentage 

of test set tuples that are 

correctly classified

▪ 𝑎𝑐𝑐𝑢𝑟𝑎𝑟𝑦 =
𝑇𝑃+𝑇𝑁

𝐴𝑙𝑙

▪ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

▪ 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

▪ 𝐹1 =
2∙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

▪ ROC Curve

Confusion Matrix (CM)

Predicted

Actual
Ê ¬Ê

E TP FN

¬E FP TN
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Online event detection

▪ Handles streaming time series

Image source: https://towardsdatascience.com/real-time-time-series-anomaly-detection-981cf1e1ca13
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Online event detection infrastructure

[1] R. A. A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed, M. Imran, Real-time big data processing for anomaly detection: A Survey, International Journal of

Information Management, Volume 45, 2019, Pages 289-307, ISSN 0268-4012
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Online change-point detection

▪ Detection occurs incrementally

Image source: https://towardsdatascience.com/real-time-time-series-anomaly-detection-981cf1e1ca13

[1] G. Ditzler, M. Roveri, C. Alippi, e R. Polikar, 2015, Learning in Nonstationary Environments: A Survey, IEEE Computational Intelligence Magazine, v. 10, n. 4, p. 12–25. 

[2] https://youtu.be/woRmeGvOaz4
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Online event detection challenges

(when to adapt)

[1] S.O. Haykin, 2008, Neural Networks and Learning Machines. 3 ed. New York, Prentice Hall.

[2] Grossberg, S., 1988. Neural Networks and Natural Intelligence, Cambridge, MA: MIT Press.

[3] G. Ditzler, M. Roveri, C. Alippi, e R. Polikar, 2015, Learning in Nonstationary Environments: A Survey, IEEE Computational Intelligence Magazine, v. 10, n. 4, p. 12–25. 

Adaptability:

Incremental learning

Plasticity and Stability Dilemma
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Online event detection challenges

(too many methods)

Myriad of event detection 

methods (detectors)

Detection performance

Parameters

Detector

Pre-

processing

methods

Choice of appropriate 

detectors/parameters 

for event detection is a 

challenge

Directly related to initial 

assumptions about the 

behavior and statistical 

properties of data

The nature of the events observed is 

often unknown

Detectors specialized in a type of event 

may disregard the occurrence of another, 

or even misidentify them
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Online event detection challenges

(metrics)

▪ Traditional scoring methods, such as precision and recall, don’t suffice for 

evaluating online event detection performance.

▪ They do not incorporate time and do not reward early detection.

▪ True positives are rewarded. All other results are “harshly” and equally punished.

[1] Lavin, A., & Ahmad, S. (2015, December). Evaluating Real-Time Anomaly Detection Algorithms--The Numenta Anomaly Benchmark. In 2015 IEEE 14th International Conference on Machine

Learning and Applications (ICMLA) (pp. 38-44). IEEE.

[2] Singh, N., & Olinsky, C. (2017, May). Demystifying Numenta anomaly benchmark. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1570-1577). IEEE.

Event 
detection

Eventrewarded

penalized
penalized

penalized

Early detection

Slightly delayed detection
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What type of disease outbreaks?

▪ Doenças Relacionadas ao Saneamento Ambiental Inadequado (DRSAI)

▪ Internações Hospitalares por Doenças Imunopreveníveis: CID-10 por 

Doenças Imunopreveníveis

▪ Taxa de Internação por infecção respiratória aguda de menores de cinco 

anos de idade (IRA5)
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Feliz 2021!Data Analytics Lab Team

https://eic.cefet-rj.br/~dal/equipe/
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Other researches

▪ An Analysis of Malaria in the Brazilian Legal Amazon 

Using Divergent Association Rules

▪ Estimation of COVID-19 Under-Reporting in the Brazilian 

States Through SARI

▪ Neonatal mortality rates in Brazilian municipalities: from 

1996 to 2017
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Novidades
Inscreva-se em: https://eic.cefet-rj.br/~eogasawara/youtube

✓

https://eic.cefet-rj.br/~eogasawara/youtube
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