



Laboratório Nacional de Computação Científica

# TIME SERIES EVENT DETECTION



## Eduardo Ogasawara

eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara

## Short Bio

- D.Sc. In Computer Science and Engineering at (COPPE/UFRJ) in 2011
- Professor at EIC CEFET/RJ
  - Computer Science Department
  - Technical High-School in Computer Science
- Permanent Staff at
  - Postgraduate Program in Computer Science (PPCIC)
  - Postgraduate Program in Production Engineering and Systems (PPPRO)
- Member of IEEE, SBC, and ACM



## https://eic.cefet-rj.br/~eogasawara

#### Time series

 A time series is a sequence of observations of a phenomenon of interest collected over time



Statistical properties may vary over time in streaming data





## Stationarity

- Stationarity
  - Dataset D
  - Samples D<sub>s</sub> from D
  - Statistical properties in  $D_s$  do not vary over time
    - mean, variance, covariance
- Non-stationarity
  - When stationary does not hold
- Data analytics methods
  - Most methods implicitly assume stationarity
- Pseudo-stationarity
  - When values of the time series are limited in a particular range during an interval

#### Stationarity and non-stationary time series



R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, "Nonstationary time series transformation methods: An experimental review", Knowledge-Based Systems, nov. 2018.

#### Time Series Components



R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, "Nonstationary time series transformation methods: An experimental review", Knowledge-Based Systems, nov. 2018.

#### Events

- A point or an interval where a significant change in the time series behavior occurs
- Events may appear as anomalies, change points, or frequent patterns (motifs)



[1] V. Guralnik and J. Srivastava, 1999, Event Detection from Time Series Data, In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 33–42

#### Taxonomy of events



#### Anomalies

- A pattern or observation that does not conform to the expected behavior
- It can be categorized as punctual or interval (sequence)



[1] ] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3 (\*) In this example, it can also be classified as a discord

#### Change Points

- Points (or time intervals) that mark significant change in time series behavior
- They separate different states in the process that generates the time series



[1] J.-I. Takeuchi e K. Yamanishi, 2006, A unifying framework for detecting outliers and change points from time series, IEEE Transactions on Knowledge and Data Engineering, v. 18, n. 4, p. 482–492. Image source: <u>https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Change\_detection\_and\_monitoring.htm</u>

#### Motifs

 A pattern (unknown) that occurs a significant number of times in time series



P. Patel, E. Keogh, J. Lin, and S. Lonardi, "Mining motifs in massive time series databases," in Proceedings - IEEE International Conference on Data Mining, ICDM, 2002, pp. 370–377
 A. Mueen, "Time series motif discovery: Dimensions and applications," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 2, pp. 152–159, 2014
 S. Torkamani and V. Lohweg, "Survey on time series motif discovery," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 2, 2017.

#### Summary of event detection initiatives

| Anomaly<br>detection         | Finding unexpected behavior (deviations)                                |
|------------------------------|-------------------------------------------------------------------------|
| Change<br>point<br>detection | Finding change points<br>It is related to finding drifts in time series |
| Motif<br>detection           | Identifying frequent patterns in time series                            |

#### The many faces of event detection



[1] R. Salles, L. Escobar, L. Baroni, R. Zorrilla, A. Ziviani, V. Kreischer, F. Delicato, P. Pires, L. Maia, et al., 2020, Um framework para integração e análise de métodos de detecção de eventos em séries temporais, In: Anais do Simpósio Brasileiro de Banco de Dados (SBBD)

## Dimensionality

| value |  |
|-------|--|
| 13.8  |  |
| 13.9  |  |
| 14.1  |  |
| 13.8  |  |
| 13.9  |  |
| 13.9  |  |
| 14.1  |  |
| 14.0  |  |
| 14.1  |  |
| 14.2  |  |
| (a)   |  |

| time | value |
|------|-------|
| 1971 | 13.8  |
| 1972 | 13.9  |
| 1973 | 14.1  |
| 1974 | 13.8  |
| 1975 | 13.9  |
| 1976 | 13.9  |
| 1977 | 14.1  |
| 1978 | 14.0  |
| 1979 | 14.1  |
| 1980 | 14.2  |
| (    | b)    |

| time | global temperature | crude oil production |
|------|--------------------|----------------------|
| 1971 | 13.8               | 2491                 |
| 1972 | 13.9               | 2634                 |
| 1973 | 14.1               | 2870                 |
| 1974 | 13.8               | 2875                 |
| 1975 | 13.9               | 2740                 |
| 1976 | 13.9               | 2966                 |
| 1977 | 14.1               | 3069                 |
| 1978 | 14.0               | 3108                 |
| 1979 | 14.1               | 3229                 |
| 1980 | 14.2               | 3111                 |
|      |                    |                      |

(c)

## Granularity

| Monthly    |      |      |      |      |      |      |      |      |      |      |      | Yearly |  |      |       |
|------------|------|------|------|------|------|------|------|------|------|------|------|--------|--|------|-------|
| year\month | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12     |  | year | value |
| 1971       | 13.9 | 13.8 | 13.8 | 13.8 | 13.9 | 13.8 | 13.9 | 13.9 | 13.9 | 13.8 | 13.9 | 13.9   |  | 1971 | 13.8  |
| 1972       | 13.7 | 13.7 | 14.0 | 14.0 | 13.9 | 14.0 | 14.0 | 14.0 | 13.9 | 14.0 | 14.0 | 14.0   |  | 1972 | 13.9  |
| 1973       | 14.3 | 14.3 | 14.3 | 14.2 | 14.1 | 14.2 | 14.1 | 14.0 | 14.0 | 14.0 | 13.9 | 14.0   |  | 1973 | 14.1  |
| 1974       | 13.8 | 13.7 | 13.9 | 13.9 | 13.9 | 13.8 | 13.9 | 14.0 | 13.9 | 13.8 | 13.8 | 13.8   |  | 1974 | 13.8  |
| 1975       | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 13.9 | 13.9 | 13.9 | 13.8 | 13.7 | 13.8   |  | 1975 | 13.9  |
| 1976       | 13.9 | 13.8 | 13.8 | 13.9 | 13.8 | 13.9 | 13.9 | 13.9 | 13.9 | 13.7 | 13.9 | 14.0   |  | 1976 | 13.9  |
| 1977       | 14.1 | 14.1 | 14.2 | 14.2 | 14.2 | 14.2 | 14.1 | 14.1 | 14.1 | 14.0 | 14.1 | 14.0   |  | 1977 | 14.1  |
| 1978       | 14.1 | 14.1 | 14.1 | 14.0 | 14.0 | 14.0 | 14.0 | 13.9 | 14.0 | 14.0 | 14.1 | 14.0   |  | 1978 | 14.0  |
| 1979       | 14.0 | 13.8 | 14.1 | 14.0 | 14.1 | 14.1 | 14.1 | 14.2 | 14.2 | 14.2 | 14.2 | 14.4   |  | 1979 | 14.1  |
| 1980       | 14.3 | 14.3 | 14.2 | 14.2 | 14.3 | 14.2 | 14.2 | 14.1 | 14.1 | 14.1 | 14.2 | 14.1   |  | 1980 | 14.2  |
| (a)        |      |      |      |      |      |      |      |      |      |      | ()   | c)     |  |      |       |

- Events are discovered after the time series has been collected
- It involves analyzing the time series retrospectively to identify patterns or changes that may indicate the occurrence of an event



#### Scenarios - Online

- Events are discovered in a time series as they are collected
- It involves continuously monitoring the time series



• At time *t*, predict that an event is going to occur at time t + k



## Detection strategies



- Build a model (theory-driven or data-driven)
- Predict using model
- Analysis of differences

|    |                |                |                        |                        |                 | $t_{t}$                |
|----|----------------|----------------|------------------------|------------------------|-----------------|------------------------|
| t  | $x_{t-4}$      | $x_{t-3}$      | $x_{t-2}$              | $x_{t-1}$              | $\widehat{x}_t$ | x <sub>t</sub>         |
| 5  | $v_1$          | $v_2$          | $v_3$                  | $v_4$                  | $\hat{v}_{5}$   | $v_5$                  |
| 6  | $v_2$          | $v_3$          | $v_4$                  | $v_5$                  | $\hat{v}_{6}$   | $v_6$                  |
| 7  | $v_3$          | $v_4$          | $v_5$                  | $v_6$                  | $\hat{v}_7$     | $v_7$                  |
| 8  | $v_4$          | $v_5$          | $v_6$                  | $v_7$                  | $\hat{v}_{8}$   | $v_8$                  |
| 9  | $v_5$          | $v_6$          | $v_7$                  | $v_8$                  | $\hat{v}_{9}$   | v <sub>9</sub>         |
| 10 | $v_6$          | $v_7$          | $v_8$                  | v <sub>9</sub>         | $\hat{v}_{10}$  | $v_{10}$               |
| 11 | $v_7$          | $v_8$          | v <sub>9</sub>         | $v_{10}$               | $\hat{v}_{11}$  | <i>v</i> <sub>11</sub> |
| 12 | $v_8$          | v <sub>9</sub> | $v_{10}$               | $v_{11}$               | $\hat{v}_{12}$  | $v_{12}$               |
| 13 | v <sub>9</sub> | $v_{10}$       | <i>v</i> <sub>11</sub> | $v_{12}$               | $\hat{v}_{13}$  | <i>v</i> <sub>13</sub> |
| 14 | $v_{10}$       | $v_{11}$       | $v_{12}$               | <i>v</i> <sub>13</sub> | $\hat{v}_{14}$  | <i>v</i> <sub>14</sub> |

1] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3

2] M. Gupta, J. Gao, C.C. Aggarwal, e J. Han, 2014, Outlier Detection for Temporal Data: A Survey, IEEE Transactions on Knowledge and Data Engineering, v. 26, n. 9, p. 2250–2267.

[1] R.A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I.A. Targio Hashem, E. Ahmed, and M. Imran, 2019, Real-time big data processing for anomaly detection: A Survey, International Journal of Information Management, v. 4

#### Classification-based

Labels: Supervised or semi-supervised learning

|    |           |                         |                         |                        |                        | J                 | 1                      |
|----|-----------|-------------------------|-------------------------|------------------------|------------------------|-------------------|------------------------|
| t  | $x_{t-4}$ | <i>x</i> <sub>t-3</sub> | <i>x</i> <sub>t-2</sub> | $x_{t-1}$              | x <sub>t</sub>         | $\hat{e}_t$       | e <sub>t</sub>         |
| 5  | $v_1$     | $v_2$                   | $v_3$                   | $v_4$                  | $v_5$                  | $\hat{b}_{5}$     | $b_5$                  |
| 6  | $v_2$     | $v_3$                   | $v_4$                   | $v_5$                  | $v_6$                  | $\hat{b}_{6}$     | <b>b</b> <sub>6</sub>  |
| 7  | $v_3$     | $v_4$                   | $v_5$                   | $v_6$                  | $v_7$                  | $\hat{b}_{7}$     | <b>b</b> <sub>7</sub>  |
| 8  | $v_4$     | $v_5$                   | $v_6$                   | $v_7$                  | $v_8$                  | $\hat{b}_{8}$     | <b>b</b> <sub>8</sub>  |
| 9  | $v_5$     | $v_6$                   | $v_7$                   | $v_8$                  | v <sub>9</sub>         | $\widehat{b}_{9}$ | <b>b</b> 9             |
| 10 | $v_6$     | $v_7$                   | $v_8$                   | v <sub>9</sub>         | <i>v</i> <sub>10</sub> | $\hat{b}_{10}$    | <i>b</i> <sub>10</sub> |
| 11 | $v_7$     | $v_8$                   | v <sub>9</sub>          | <i>v</i> <sub>10</sub> | <i>v</i> <sub>11</sub> | $\hat{b}_{11}$    | <b>b</b> <sub>11</sub> |
| 12 | $v_8$     | v <sub>9</sub>          | $v_{10}$                | $v_{11}$               | $v_{12}$               | $\hat{b}_{12}$    | <b>b</b> <sub>12</sub> |
|    |           |                         |                         |                        |                        |                   |                        |

#### Training

| resulty |           |                        |                        |           |                        |                |  |  |  |  |  |
|---------|-----------|------------------------|------------------------|-----------|------------------------|----------------|--|--|--|--|--|
| t       | $x_{t-4}$ | $x_{t-3}$              | $x_{t-2}$              | $x_{t-1}$ | x <sub>t</sub>         | $\hat{e}_t$    |  |  |  |  |  |
| 13      | $v_9$     | <i>v</i> <sub>10</sub> | <i>v</i> <sub>11</sub> | $v_{12}$  | <i>v</i> <sub>13</sub> | $\hat{b}_{13}$ |  |  |  |  |  |
| 14      | $v_{10}$  | $v_{11}$               | $v_{12}$               | $v_{13}$  | $v_{14}$               | $\hat{b}_{14}$ |  |  |  |  |  |

Tocting

[1] G. Pang, C. Shen, L. Cao, and A.V.D. Hengel, 2021, Deep Learning for Anomaly Detection: A Review, ACM Computing Surveys, v. 54, n. 2

[2] A. Blázquez-García, A. Conde, U. Mori, and J.A. Lozano, 2021, A Review on Outlier/Anomaly Detection in Time Series Data, ACM Computing Surveys, v. 54, n. 3

[3] S. Thudumu, P. Branch, J. Jin, and J.J. Singh, 2020, A comprehensive survey of anomaly detection techniques for high dimensional big data, Journal of Big Data, v. 7, n. 1.

22

## Clustering based

- Associate clusters to sequences
- Analyze differences with a representative sequence of a cluster

| t  | $x_{t-4}$ | <i>x</i> <sub>t-3</sub> | $x_{t-2}$ | $x_{t-1}$ | x <sub>t</sub> | r <sub>c</sub> | d <sub>t</sub>         |    |              |                  |                  |                  |                  |                  |
|----|-----------|-------------------------|-----------|-----------|----------------|----------------|------------------------|----|--------------|------------------|------------------|------------------|------------------|------------------|
| 5  | $v_1$     | $v_2$                   | $v_3$     | $v_4$     | $v_5$          | $\ddot{r}_1$   | $d_5$                  | ₹. |              |                  |                  |                  |                  |                  |
| 6  | $v_2$     | $v_3$                   | $v_4$     | $v_5$     | $v_6$          | $\ddot{r}_1$   | <b>d</b> <sub>6</sub>  |    |              |                  |                  |                  |                  |                  |
| 7  | $v_3$     | $v_4$                   | $v_5$     | $v_6$     | $v_7$          | $\ddot{r}_1$   | $d_7$                  |    | $\ddot{r}_t$ | $x_{t-4}$        | $x_{t-3}$        | $x_{t-2}$        | $x_{t-1}$        | $x_t$            |
| 8  | $v_4$     | $v_5$                   | $v_6$     | $v_7$     | $v_8$          | Ϋ <sub>2</sub> | <b>d</b> <sub>8</sub>  |    | $\ddot{r}_1$ | $\ddot{v}_{1,4}$ | $\ddot{v}_{1,3}$ | $\ddot{v}_{1,2}$ | $\ddot{v}_{1,1}$ | $\ddot{v}_{1,0}$ |
| 9  | $v_5$     | $v_6$                   | $v_7$     | $v_8$     | $v_9$          | Ϋ <sub>2</sub> | <b>d</b> 9             |    | $\ddot{r}_2$ | $\ddot{v}_{2,4}$ | $\ddot{v}_{2,3}$ | $\ddot{v}_{2,2}$ | $\ddot{v}_{2,1}$ | $\ddot{v}_{2,0}$ |
| 10 | $v_6$     | $v_7$                   | $v_8$     | $v_9$     | $v_{10}$       | $\ddot{r}_1$   | <i>d</i> <sub>10</sub> |    |              |                  |                  |                  |                  |                  |
| 11 | $v_7$     | $v_8$                   | $v_9$     | $v_{10}$  | $v_{11}$       | $\ddot{r}_1$   | <i>d</i> <sub>11</sub> |    |              |                  |                  |                  |                  |                  |
| 12 | $v_8$     | $v_9$                   | $v_{10}$  | $v_{11}$  | $v_{12}$       | Ϋ <sub>2</sub> | <i>d</i> <sub>12</sub> |    |              |                  |                  |                  |                  |                  |
| 13 | $v_9$     | $v_{10}$                | $v_{11}$  | $v_{12}$  | $v_{13}$       | Ϋ <sub>2</sub> | <i>d</i> <sub>13</sub> |    |              |                  |                  |                  |                  |                  |
| 14 | $v_{10}$  | $v_{11}$                | $v_{12}$  | $v_{13}$  | $v_{14}$       | $\ddot{r}_2$   | <i>d</i> <sub>14</sub> |    |              |                  |                  |                  |                  |                  |

1] A.A. Cook, G. Misirli, and Z. Fan, 2020, Anomaly Detection for IoT Time-Series Data: A Survey, *IEEE Internet of Things Journal*, v. 7, n. 7, p. 6481–6494.

[2] M. Braei and S. WagnerERRO. Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Ai

[3] H. Wang, M.J. Bah, and M. Hammad, 2019, Progress in Outlier Detection Techniques: A Survey, IEEE Access, v. 7, p. 107964–108000.

#### Statistical based

- Distribution analysis
  - Analysis of noise anomaly detection
  - Analysis of window drift



 [1] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, 2019, Learning under Concept Drift: A Review, *IEEE Transactions on Knowledge and Data Engineering*, v. 31, n. 12, p. 2346–2363
 [2] A.S. Iwashita and J.P. Papa, 2019, An Overview on Concept Drift Learning, *IEEE Access*, v. 7, p. 1532–1547. https://discourse.julialang.org/t/statistic-for-differentiating-two-distributions/31492

## Theory based

- Create a model based on theory
  - Econometric model

$$\overline{y}_{i,p}^{s} = \frac{\sum_{k=1}^{p} t_{k}}{p} \mid t_{k} \in seq_{i,p}^{s}(y), \ p \le i \le |y|$$

$$(3)$$

$$\hat{y}_{i,p}^{s} = \frac{\sum_{k=1}^{p} \alpha_{k} \cdot t_{k}}{\sum_{k=1}^{p} \alpha_{k}} \mid t_{k} \in seq_{i,p}^{s}(y), \alpha_{k} = \left(1 - \frac{2}{p+1}\right)^{p-k}, \ p \le i \le |y|$$
(4)

$$anomaly(y) = \{i\}, \forall i \mid y_i \notin [Q_1(y) - 3 \cdot IQR(y), Q_3(y) + 3 \cdot IQR(y)]$$





stimation of COVID-19 Under-Reporting in the Brazilian tates Through SARI

BRIDE D

ithazar Paixão<sup>1</sup> - Lais Baroni<sup>1</sup>O - Marcel Pedroso<sup>2</sup> - Rebecca Salles<sup>1</sup> ciana Escobar<sup>1</sup> - Carlos de Sousa<sup>2</sup> - Raphael de Freitas Saldanha<sup>2</sup> rge Soares<sup>1</sup> - Rafaelli Coutinho<sup>1</sup> - Fabio Porto<sup>3</sup> - Eduardo Ogasawara

anned: 19 December 2020 / Accepted: 4 March 2021 Rimsha, Ltd. and Springer Japan KK, part of Springer Nature 202

#### ......

simpling, a controlling k . It is there that match expanding a diperferent factor is the second s

Keywords COVID-19 - Under-reporting - SARI - Time series modeling - Data analytics

Lain Baron Jain Jaron Den arth ( ) for

(5)

<sup>7</sup> Federal Center for Technological Education of Rio de Janeiro, CEFE3382, Rio de Janeiro, Brazil

National Laboratory of Scientific Computing, LNCC, Ris de Janeiro, Brazil

Published enline: 14 March 2021 Orrmsho 🗱 🖉 Spring

[1] B. Paixão, L. Baroni, M. Pedroso, R. Salles, L. Escobar, C. de Sousa, R. de Freitas Saldanha, J. Soares, R. Coutinho, et al., 2021, Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI, *New Generation Computing*, v. 39, n. 3–4, p. 623–645.

#### Accurateness

- Classifier Accuracy: percentage of test set tuples that are correctly classified
  - accurary =  $\frac{TP+TN}{All}$ • precision =  $\frac{TP}{TP+FP}$ •  $recall = \frac{TP}{TP + FN}$

•  $F_1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$ 

ROC Curve

#### Confusion Matrix (CM)





#### *Time tolerance in detection*



[1] R. Salles, J. Lima, R. Coutinho, E. Pacitti, F. Masseglia, R. Akbarinia, C. Chen, J. Garibaldi, F. Porto, et al.ERRO. SoftED: Metrics for Soft Evaluation of Time Series Event Detection.

## Expensiveness

- Elapsed time
- Time constraints for online detection
  - Drift
  - Incremental learning

#### Data Analytics Lab Team

#### Doutorado







Leonardo Carvalho (CEFET/RJ)



Rebecca Salles (CEFET/RJ)

#### Mestrado



Antônio Mello (CEFET/RJ)



Arthur Garcia (CEFET/RJ)



Cristiane Gea (CEFET/RJ)



Diego Salles (CEFET/RJ)



Janio Lima (CEFET/RJ)



Jéssica de Souza (CEFET/RJ)





Laboratório Nacional de Computação Científica

# TIME SERIES EVENT DETECTION



## Eduardo Ogasawara

eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara