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Time series

= A time series is a sequence of observations of a phenomenon of interest
collected over time

Image source: https:/, ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series




Time series — online analysis

= Statistical properties may vary over time in streaming data




Stationarity

Stationarity
= Dataset D

n interval

[1 RH. Shumway e D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. 4 ed. New York, NY, Springer.




Stationarity and non-stationary time series

(b) - trend stationary

(d) - heteroscedastic

time
(e) - random walk

R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, Knowledge-
Based Systems, nov. 2018.



Time Series Components
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Events

= A point or an interval where a significant change in the time series behavior occurs

= Fvents may appear as anomalies, change points, or frequent patterns (motifs)

[1] V. Guralnik an va, 1999, Event Detection from Time Series Data, In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
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Taxonomy of events




Anomalies

= A pattern or observation that does not conform to the expected behavior
= |t can be categorized as punctual or interval (sequence)

Punctual

Sequence

[1] V. Chandola, A. Banerjee, e V. Kumar, 2009, Anomaly detection: A survey, ACM Computing Surveys, v. 41, n. 3
(*) In this example, it can also be classified as a discord
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Change Points

= Points (or time intervals) that mark significant change in time series
behavior

= They separate different states in the process that generates the time series

) gftra ete utliers ana c ( ) c ctio ) wiedg c JINE ng, v. lo, n. 4, 4G
mage Irce: https ur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/L aboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land
nonitoring/Change detection and monitoring.htr 11



https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Change_detection_and_monitoring.htm
https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Research/Integrated-land-monitoring/Change_detection_and_monitoring.htm

Motifs

= A pattern (unknown) that occurs a significant number of times in time
series
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2002, pp. 370-3

lining motifs in massive time series databases,” in Proceedings - IEEE International Conference on Data Mining, ICDM
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 2, pp. 152159, 20
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 2, 2017

[1] P. Patel, E. Keogh, J. Lin, and S. Lonardi, "M

[2] A. Mueen, “Time series motif discovery: Dimensions and applic

(3] S. Torkamani and V. Lohweg, “Survey on time series motif disc
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Summary of event detection initiatives

[1] Marco AF. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko, A review of novelty detection, Signal Processing, Volume 99, 2014, Pages 215-249, ISSN 0165-1684,
https://doi.org/10.1016/j.sigpro.2013.12.026.
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The many faces of event detection
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Method A: trend anomalies Method B: trend anomalies & change points

Methods A,B & C:
Method C: volatility anomalies trend anomalies, volatility anomalies and change points

[1] R. Salles, L. Escobar, L. Baroni, R. Zorrilla, A. Ziviani, V. Kreischer, F. Delicato, P. Pires, L. Maia, et al., 2020, Um framework para integracdo e analise de

métodos de deteccao de eventos em séries temporais, In: Anais do Simpdsio Brasileiro de Banco de Dados (SBBD)




Dimensionality

15



Monthly
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Scenarios - Offline

= Fvents are discovered after the time series has been collected

= |t involves analyzing the time series retrospectively to identify patterns or
changes that may indicate the occurrence of an event
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Scenarios - Online

= Fvents are discovered in a time series as they are collected
= |t involves continuously monitoring the time series
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Scenarios — Event Prediction

= At time t, predict that an event is going to occur at time t + k
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Detection strategies
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Model deviation

» Build a model (theory-driven or data-driven)
= Predict using model
= Analysis of differences

Surveys, v. 41, n. 3
IEEE Transactions on Knowledge and Data Engineering, v. 26, n. 9, p. 2250-2267

an, 2019, Real-time big data processing for anomaly detection: A Survey, International Journal of Information Management, v. 45



Classification-based

» | abels: Supervised or semi-supervised learning

Testing

Training

[1 G. Pang, C. Shen, L. Cao, and A.V.D. Hengel, 2021, Deep Learning for Anomaly Detection: A Review, ACM Computing Surveys, v. 54, n. 2
[2] A. Blazquez-Garcfa, A. Conde, U. Mori, and J.A. Lozano, 2021, A Review on Outlier/Anomaly Detection in Time Series Data, ACM Computing Surveys, v. 54, n. 3 22
[3] S. Thudumu, P. Branch, J. Jin, and J.J. Singh, 2020, A comprehensive survey of anomaly detection techniques for high dimensional big data, Journal of Big Data, v. 7, n.



Clustering based

= Associate clusters to sequences
= Analyze differences with a representative sequence of a cluster

riy Via Vi3 V12 V11 V1o

Tz V4 V23 V22 V21 V20

[11 A.A. Cook, G. Misirli, and Z. Fan, 2020, Anomaly Detection for loT Time-Series Data: A Survey, IEEE Internet of Things Journal, v. 7, n. 7, p. 6481-6494.
[2] M. Braei and S. WagnerERRO. Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art. 23
[3] H. Wang, M.J. Bah, and M. Hammad, 2019, Progress in Outlier Detection Techniques: A Survey, IEEE Access, v. 7, p. 107964-108000.
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Statistical based

= Distribution analysis
= Analysis of noise — anomaly detection
= Analysis of window - drift

11J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, 2019, Learning under Concept Drift: A Review, IEEE Transactions on Knowledge and Data Engineering
IEEE Access

CE 1ransdactio
Drift Learninc Access, v. 7, p. 1532-1547

wo-distributions,

1 AS. lwashita and J.P. Papa, 2019, An Overview on Co
/t/statistic-for-differentiatin

tps://discourse julialang.or

v. 31,n. 12, p. 2346-2363

24



Theory based

=

» Create a model based on theory "
= Econometric model oz
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[1] B. Paixdo, L. Baroni, M. Pedroso, R. Salles, L. Escobar, C. de Sousa, R. de Freitas Saldanha, J. Soares, R. Coutinho, et al., 2021, Estimation of COVID-19
Under-Reporting in the Brazilian States Through SARI, New Generation Computing, v. 39, n. 3—4, p. 623-645. 25



Accurateness

Confusion Matrix (CM)
= (Classifier Accuracy: percentage h A
of test set tuples that are PrAedt'Cteld £l
Y ctua
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= recall =
TP+FN
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Time tolerance in detection
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[1] R. Salles, J. Lima, R. Coutinho, E. Pacitti, F. Masseglia, R. Akbarinia, C. Chen, J. Garibaldi, F. Porto, et al. ERRO. SoftED: Metrics for Soft
Evaluation of Time Series Event Detection.




Expensiveness

» Flapsed tim

= [ime cons
= Drift
= |ncre
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