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Biography

▪ Doctorate in Systems and Computer Engineering 

(COPPE/UFRJ) in 2011

▪ Professor at EIC - CEFET/RJ

▪ DEPIN

▪ COINFO 

▪ Permanent professor at

▪ Postgraduate Program in Computer Science (PPCIC)

▪ Postgraduate Program in Production and Systems Engineering 

(PPPRO)

▪ Member of IEEE, SBC, ACM, and INNS

▪ Institutional representative of SBC

http://lattes.cnpq.br/0528303491410251

https://www.researchgate.net/profile/Eduardo_Ogasawara

https://www.linkedin.com/in/eogasawara

eogasawara@ieee.org

https://eic.cefet-rj.br/~eogasawara

https://eic.cefet-rj.br/~eogasawara
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Notices
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IX EIC Workshop

▪ Workshop has more than 200 participants

▪ Many interesting themes

▪ Confirmed talks:

▪ Oct 19 – 4pm – Pesquisa e Extensão na EIC: De onde viemos? Quem somos? Para onde
iremos? – Carmen de Queiroz, Jorge Soares, Joel Santos, Eduardo Ogasawara

▪ Oct 20 – 2pm – Gabriela Ruberg – BCB

▪ Oct 20 – 6pm – High Performance Data Science – Marta Mattoso, Alvaro Coutinho, 
Fabio Porto, Daniel Oliveira , Kary Ocana, Eduardo Ogasawara

https://eic.cefet-rj.br/

October 18-22, 2021
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Brazilian Symposium on Databases (SBBD)

https://sbbd.org.br/2021/

Join!
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Data Analytics Lab

https://eic.cefet-rj.br/~dal/

http://dgp.cnpq.br/dgp/espelhogrupo/9806930220192669

https://www.youtube.com/channel/UCmn4Kh8fgl7VSM8X9t6qWmA

Follow!
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YouTube channel

https://eic.cefet-rj.br/~eogasawara/

https://www.youtube.com/channel/UCAm1hAXWEqYJfXz4EzzBhVg

like!
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Research Themes
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Let’s start
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Time series

▪ A time series is a sequence of observations of a phenomenon of interest 

collected over time

▪ 𝑦 =< 𝑦1, 𝑦2, … , 𝑦𝑛 >, 𝑦 = 𝑛

[1] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.
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Linear regression

▪ 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜔𝑡

▪ Capture linear trend

▪ 𝑥𝑡 can also be a time variable

[1] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.

[2] R.J. Larsen and M.L. Marx, 2017, An Introduction to Mathematical Statistics and Its Applications. Pearson Education.

[3] D.N. Gujarati and D.C. Porter, 2008, Basic Econometrics. McGraw-Hill Publishing.

𝑦𝑡 = −7131 + 3.59𝑥𝑡
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Polynomial regression

▪ 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡
2 +⋯+ 𝛽𝑛𝑥𝑡

𝑛 + 𝜔𝑡

▪ Capture other degree components

[1] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.

[2] R.J. Larsen and M.L. Marx, 2017, An Introduction to Mathematical Statistics and Its Applications. Pearson Education.

[3] D.N. Gujarati and D.C. Porter, 2008, Basic Econometrics. McGraw-Hill Publishing.
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Increasing the complexity

▪ Theory is important to support other degrees

[1] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.

A detailed video explaining how to choose models is coming soon



14

Multiple regression problem

▪ 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡1 + 𝛽2𝑥𝑡2 +⋯+ 𝛽𝑛𝑥𝑡𝑛 + 𝜔𝑡

▪ 𝑥𝑡1, 𝑥𝑡2,…,𝑥𝑡𝑛 are independent variables

▪ They were commonly theoretically established

▪ 𝜔𝑡 is an intrinsic error, noise variable

[1] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.

[2] R.J. Larsen and M.L. Marx, 2017, An Introduction to Mathematical Statistics and Its Applications. Pearson Education.
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Cardiovascular mortality in Los Angeles

[1] R.H. Shumway, A.S. Azari, and Y. Pawitan, 1988, Modeling mortality fluctuations in Los Angeles as functions of pollution and weather effects, Environmental Research, v. 

45, n. 2 (Apr.), p. 224–241. 

(c) (te) (pa)
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Model building

▪ Model 1: 𝑐𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜔𝑡

▪ Model 2: 𝑐𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2(𝑡𝑒𝑡−ഥ𝑡𝑒) + 𝛽3(𝑡𝑒𝑡−ഥ𝑡𝑒)2 + 𝛽4𝑝𝑎𝑡 + 𝜔𝑡

[1] R.H. Shumway, A.S. Azari, and Y. Pawitan, 1988, Modeling mortality fluctuations in Los Angeles as functions of pollution and weather effects, Environmental Research, v. 

45, n. 2 (Apr.), p. 224–241. 

A detailed video explaining how to choose models is coming soon
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Regression with lagged values

▪ Independent variables can be lagged versions of 𝑦𝑡
▪ 𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 +⋯+ 𝛽𝑛𝑦𝑡−𝑛 + 𝜔𝑡

▪ 𝜔𝑡 is an intrinsic error, noise variable

▪ Open room for data-driven models

[1] A. Ronald, R. Salles, K. Belloze, D. Pastore, and E. Ogasawara, 2019, Modelo Autorregressivo de Integração Adaptativa, In: Anais do Simpósio Brasileiro de Banco de Dados (SBBD), p. 175–180

[2] R.S. Tsay, 2010, Analysis of Financial Time Series. Wiley.
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Autoregressive Integrated Moving Average

▪ ARIMA(p, d, q)

▪ AR(p)

▪ 𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜔𝑡

▪ MA (q)

▪ 𝑦𝑡 = 𝜔𝑡 + 𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 +⋯+ 𝜃𝑛𝜔𝑡−𝑞

▪ Differentiation (d)

[1] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung, 2015, Time Series Analysis: Forecasting and Control. John Wiley & Sons.

A detailed video explaining AR and MA is coming soon
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Subsequences and sliding windows

▪ Subsequence is a continuous sample of a time series

▪ 𝑠𝑒𝑞𝑝,𝑖 𝑦 = < 𝑦𝑖 , 𝑦𝑖+1, … , 𝑦𝑖+𝑝−1 >

▪ 𝑠𝑒𝑞𝑝,𝑖 𝑦 = 𝑝

▪ 1 ≤ 𝑖 ≤ 𝑦 − 𝑝

▪ Sliding window explores all subsequences of a time series 

▪ 𝑠𝑤𝑝 𝑦 = 𝐴

▪ ∀𝑎𝑖 ∈ 𝐴, 𝑎𝑖 = 𝑠𝑒𝑞𝑝,𝑖 𝑦

[1] H. Borges, M. Dutra, A. Bazaz, R. Coutinho, F. Perosi, F. Porto, F. Masseglia, E. Pacitti, and E. Ogasawara, 2020, Spatial-time motifs discovery, Intelligent Data Analysis, v. 

24, n. 5, p. 1121–1140. 

Sliding window of size 5
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Prediction using sliding windows (lagged terms)

Mining process

[1] R. Salles, L. Assis, G. Guedes, E. Bezerra, F. Porto, and E. Ogasawara, 2017, A framework for benchmarking machine learning methods using linear models for univariate 

time series prediction, In: Proceedings of the International Joint Conference on Neural Networks, p. 2338–2345
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A detailed video explaining mining process is coming soon
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Nonstationarity
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Time series

• Statistical properties may vary over time
• 𝜒 ො𝑦𝑠 ≠ 𝜒 ො𝑦𝑡

Image source: http://holoviews.org/user_guide/Streaming_Data.html

[1] G.I. Webb, R. Hyde, H. Cao, H.L. Nguyen, e F. Petitjean, 2016, Characterizing concept drift, Data Mining and Knowledge Discovery, v. 30, n. 4, p. 964–994. 
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Stationarity

▪ Stationarity

▪ Time series 𝑦

▪ Samples ො𝑦𝑠 from 𝑦

▪ Statistical properties in ො𝑦𝑠 do not vary over time

▪ Mean 𝜇 ො𝑦𝑠 ≅ 𝜇 ො𝑦𝑡
▪ Variance:𝜎2 ො𝑦𝑠 ≅ 𝜎2 ො𝑦𝑡
▪ Covariance: 𝑐𝑜𝑣 ො𝑦𝑠, ො𝑦𝑠+𝑑 ≅ 𝑐𝑜𝑣 ො𝑦𝑡 , ො𝑦𝑡+𝑑

▪ Non-stationarity

▪ When stationary does not hold

[1] R.H. Shumway e D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. 4 ed. New York, NY, Springer.
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Stationarity and non-stationary time series

R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, Knowledge-Based Systems, nov.

2018.
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Drawbacks of non-stationarity

▪ Most data analytics methods implicitly assume stationarity

[1] E. Ogasawara, L.C. Martinez, D. De Oliveira, G. Zimbrão, G.L. Pappa, e M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-

stationary time series, In: Proceedings of the International Joint Conference on Neural Networks

global min-max normalization
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Possible solutions

▪ Assumption of stationarity

▪ Adaptability

▪ Drift detection

▪ Memory management

▪ Transformation methods

[1] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, e A. Bouchachia, 2014, A survey on concept drift adaptation, ACM Computing Surveys, v. 46, n. 4

[2] G. Ditzler, M. Roveri, C. Alippi, e R. Polikar, 2015, Learning in Nonstationary Environments: A Survey, IEEE Computational Intelligence Magazine, v. 10, n. 4, p. 12–25. 

[3] R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, Knowledge-Based Systems, nov. 2018.
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Assumption of stationarity

[1] World Global Temperature, https://datahub.io/core/global-temp

Period of pseudo-stationarity assumption

Change point

Monthly temperature in degrees Celsius relative to a base period



28

Adaptability

▪ Some machine learning methods (e.g., neural networks) are known for 
adaptability

▪ Ability to update model due to changes in the environment

▪ Incremental training

▪ Adaptive systems aim to address non-stationarity

▪ Seeking robustness, adaptability is adopted

▪ Greater adaptability, more susceptible to spurious situations, less robust

▪ Dilemma: finding the right time to adapt

[1] S.O. Haykin, 2008, Neural Networks and Learning Machines. 3 ed. New York, Prentice Hall.

[2] Grossberg, S., 1988. Neural Networks and Natural Intelligence, Cambridge, MA: MIT Press.

[3] G. Ditzler, M. Roveri, C. Alippi, e R. Polikar, 2015, Learning in Nonstationary Environments: A Survey, IEEE Computational Intelligence Magazine, v. 10, n. 4, p. 12–25. 

Plasticity-stability dilemma
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Drift detection

▪ Drift detection

▪ Active

▪ Passive

▪ Learning

▪ Incremental

▪ Non-incremental

▪ Models

▪ Single

▪ Ensemble (Boosting)

[1] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, e A. Bouchachia, 2014, A survey on concept drift adaptation, ACM Computing Surveys, v. 46, n. 4

[2] A.M. García-Vico, C.J. Carmona, D. Martín, M. García-Borroto, e M.J. del Jesus, 2018, An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects, 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 8, n. 1

[3] G.I. Webb, R. Hyde, H. Cao, H.L. Nguyen, e F. Petitjean, 2016, Characterizing concept drift, Data Mining and Knowledge Discovery, v. 30, n. 4, p. 964–994. 
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Lucas critique

▪ “Given that the structure of an econometric model consists of optimal 

decision rules of economic agents, and that optimal decision rules vary 

systematically with changes in the structure of series relevant to the 

decision maker, it follows that any change in policy will systematically alter 

the structure of econometric models.”

[1] D. Gujarati, 2002, Basic Econometrics. 4 ed. Boston; Montreal, McGraw-Hill/Irwin.

Goes toward memory management
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Memory management

▪ Process
▪ It is tested in the last batch (forecast)

▪ The last batch is incorporated in the training

▪ Memory
▪ complete

▪ Without memory

▪ sliding windows

[1] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, e A. Bouchachia, 2014, A survey on concept drift adaptation, ACM Computing Surveys, v. 46, n. 4

[2] A.M. García-Vico, C.J. Carmona, D. Martín, M. García-Borroto, e M.J. del Jesus, 2018, An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical 

study, trends, and prospects, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 8, n. 1

Complete Window size: 3
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Transformation methods

R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, Knowledge-Based Systems, nov.

2018.

A detailed video explaining transformations is coming soon
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Detrending and differentiation

▪ Detrending

▪ ො𝑦𝑡 = 𝑦𝑡 − (𝛽0 + 𝛽1𝑥𝑡)

▪ Differentiation (d) 
▪ First order differentiation (d = 1)

▪ ො𝑦𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1
▪ General order differentiation (d > 1)

▪ ∇𝑑 = (1 − 𝐵)𝑑, 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘

R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, Knowledge-Based Systems, nov.

2018.

A detailed video explaining detrending and differentiation is coming soon
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Normalization issues using sliding windows

Monthly average exchange rate of U.S. Dollar to Brazilian Real 
normalized by sliding window technique from aug/2000 to dec/2000 and from apr/2001 to aug/2001
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Adaptive Normalization

▪ Transformation

▪ Using sliding windows

▪ Compute moving average (inertia)

▪ Remove inertia

▪ Outlier removal

▪ Sliding window min-max

▪ Inverse transform

▪ Prediction

▪ Denormalization

▪ Add inertia

[1] E. Ogasawara, L.C. Martinez, D. De Oliveira, G. Zimbrão, G.L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-

stationary time series, In: Proceedings of the International Joint Conference on Neural Networks

A detailed video explaining AN is coming soon
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Intuition

[1] E. Ogasawara, L.C. Martinez, D. De Oliveira, G. Zimbrão, G.L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-

stationary time series, In: Proceedings of the International Joint Conference on Neural Networks
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A detailed video explaining AN is coming soon
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Different preprocessing and prediction methods

[1] E. Ogasawara, L.C. Martinez, D. De Oliveira, G. Zimbrão, G.L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-

stationary time series, In: Proceedings of the International Joint Conference on Neural Networks
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Road map
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Next videos

▪ Linear model fitting 

▪ Linear model selection

▪ Trends and Differentiation

▪ Seasonal Adjustment

▪ Spectral Analysis

▪ Smoothing and Filtering

▪ Autocorrelation

▪ ARIMA

▪ GARCH

▪ State Space Models

▪ Sliding windows and 

normalization

▪ Adaptive normalization

▪ Machine learning models

▪ Data sampling

▪ Mining process

▪ Performance evaluation

▪ evaluation on a rolling forecasting 

origin (time series cross validation)

[1] R.J. Hyndman and G. Athanasopoulos, 2018, Forecasting: principles and practice. OTexts.

[2] R.H. Shumway and D.S. Stoffer, 2017, Time Series Analysis and Its Applications: With R Examples. Springer.

https://www.youtube.com/channel/UCAm1hAXWEqYJfXz4EzzBhVg
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Feliz 2021!Students

https://eic.cefet-rj.br/~dal/equipe/

D.Sc. M.Sc.

Arthur Severiano

Diego Sá

Flavio Marques
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