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What is Cluster Analysis?

▪ Cluster: A collection of data objects
▪ similar (or related) to one another within the same group

▪ dissimilar (or unrelated) to the objects in other groups

▪ Cluster analysis (or clustering, data segmentation, …)
▪ Finding similarities between data according to the

characteristics found in the data and grouping similar data
objects into clusters

▪ Unsupervised learning
▪ no predefined classes (i.e., learning by observations vs.

learning by examples: supervised)

▪ Typical applications
▪ As a stand-alone tool to get insight into data distribution

▪ As a preprocessing step for other algorithms
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Applications of Cluster Analysis

▪ Data reduction

▪ Summarization: Preprocessing for regression, PCA,
classification, and association analysis

▪ Prediction based on groups

▪ Cluster & find characteristics/patterns for each group

▪ Outlier detection: Outliers are often viewed as those
“far away” from any cluster
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Clustering: Application Examples

▪ Biology: taxonomy of living things: kingdom, phylum,
class, order, family, genus and species

▪ Information retrieval: document clustering

▪ Marketing: Help marketers discover distinct groups in
their customer bases, and then use this knowledge to
develop targeted marketing programs

▪ City-planning: Identifying groups of houses according to
their house type, value, and geographical location

▪ Economic Science: market research
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Basic Steps to Develop a Clustering Task

▪ Feature selection
▪ Select info concerning the task of interest

▪ Minimal information redundancy

▪ Proximity measure
▪ Similarity of two feature vectors

▪ Clustering criterion
▪ Expressed via a cost function or some rules

▪ Clustering algorithms
▪ Choice of algorithms

▪ Validation of the results
▪ Validation test (also, clustering tendency test)

▪ Interpretation of the results
▪ Integration with applications
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Quality: What Is Good Clustering?

▪ A good clustering method will produce high quality
clusters

▪ high intra-class similarity: cohesive within clusters

▪ low inter-class similarity: distinctive between clusters

▪ The quality of a clustering method depends on

▪ the similarity measure used by the method

▪ its implementation, and

▪ Its ability to discover some or all of the hidden patterns
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Measure the Quality of Clustering

▪ Dissimilarity/Similarity metric

▪ Similarity is expressed in terms of a distance function, typically
metric: d(i, j)

▪ The definitions of distance functions are usually rather
different for interval-scaled, boolean, categorical, ordinal ratio,
and vector variables

▪ Weights should be associated with different variables based on
applications and data semantics

▪ Quality of clustering:

▪ There is usually a separate “quality” function that measures
the “goodness” of a cluster.

▪ It is hard to define “similar enough” or “good enough”

▪ The answer is typically highly subjective
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Considerations for Cluster Analysis

▪ Partitioning criteria
▪ Single level vs. hierarchical partitioning (often, multi-level

hierarchical partitioning is desirable)

▪ Separation of clusters
▪ Exclusive (e.g., one customer belongs to only one region) vs.

non-exclusive (e.g., one document may belong to more than
one class)

▪ Similarity measure
▪ Distance-based (e.g., Euclidian, road network, vector) vs.

connectivity-based (e.g., density or contiguity)

▪ Clustering space
▪ Full space (often when low dimensional) vs. subspaces (often

in high-dimensional clustering)
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Requirements and Challenges

▪ Scalability
▪ Clustering all the data instead of only on samples

▪ Ability to deal with different types of attributes
▪ Numerical, binary, categorical, ordinal, linked, and mixture of these

▪ Constraint-based clustering
▪ User may give inputs on constraints

▪ Use domain knowledge to determine input parameters

▪ Interpretability and usability

▪ Others
▪ Discovery of clusters with arbitrary shape

▪ Ability to deal with noisy data

▪ Incremental clustering and insensitivity to input order

▪ High dimensionality
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Similarity and Dissimilarity

▪ Similarity

▪ Numerical measure of how alike two data objects are

▪ Value is higher when objects are more alike

▪ Often falls in the range [0,1]

▪ Dissimilarity (e.g., distance)

▪ Numerical measure of how different two data objects are

▪ Lower when objects are more alike

▪ Minimum dissimilarity is often 0

▪ Upper limit varies

▪ Proximity refers to a similarity or dissimilarity



11

Data Matrix and Dissimilarity Matrix

▪ Data matrix
▪ n data points with p

attributes
▪ Two modes: objects and

attributes

▪ Dissimilarity matrix
▪ n data points, but registers

only the distance
▪ A triangular matrix
▪ Single mode: distances
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Proximity Measure for Nominal Attributes

▪ Can take 2 or more states, e.g., red, yellow, blue, green
(generalization of a binary attribute)

▪ Method 1: Simple matching

▪ m: # of matches, p: total # of variables

▪ 𝑑 𝑖, 𝑗 =
𝑝−𝑚

𝑝

▪ Method 2: Use a large number of binary attributes

▪ creating a new binary attribute for each of the M nominal
states
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Proximity Measure for Binary Attributes

▪ A contingency table for binary data

▪ Distance measure for symmetric

binary variables

▪ 𝑑 𝑖, 𝑗 =
𝑟+𝑠

𝑞+𝑟+𝑠+𝑡

▪ Distance measure for asymmetric

binary variables

▪ 𝑑 𝑖, 𝑗 =
𝑟+𝑠

𝑞+𝑟+𝑠

▪ Jaccard coefficient (similarity

measure for asymmetric binary

variables):

▪ 𝑑 𝑖, 𝑗 =
𝑞

𝑞+𝑟+𝑠

• Note: Jaccard coefficient is the same as “coherence”

Object j

1 0 sum

O
b

je
c
t 
i

1 q r q+r

0 s t s+t

sum q+s r+t p



14

Distance on Numeric Data: Minkowski Distance

▪ Minkowski distance: A popular distance measure

▪ 𝑑 𝑖, 𝑗 =
ℎ

𝑥𝑖1 − 𝑥𝑗1
ℎ
+ 𝑥𝑖2 − 𝑥𝑗2

ℎ
+⋯+ 𝑥𝑖𝑝 − 𝑥𝑗𝑝

ℎ

▪ where i = (𝑥𝑖1 , 𝑥𝑖2, …, 𝑥𝑖𝑝) and j = (𝑥𝑗1, 𝑥𝑗2 , …, 𝑥𝑗𝑝) are two p-

dimensional data objects, and h is the order (the distance so
defined is also called L-h norm)

▪ Properties

▪ d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

▪ d(i, j) = d(j, i) (Symmetry)

▪ d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

▪ A distance that satisfies these properties is a metric
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Example: Minkowski Distance

Dissimilarity Matrices
point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum 
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Ordinal Variables

▪ An ordinal variable can be discrete or continuous

▪ Order is important, e.g., rank

▪ Can be treated like interval-scaled

▪ replace 𝑥𝑖𝑓 by their rank 𝑟𝑖𝑓 ∈ 1,… ,𝑀𝑓

▪ map the range of each variable onto [0, 1] by replacing i-th

object in the f-th variable by 𝑧𝑖𝑓 =
𝑟𝑖𝑓−1

𝑀𝑓−1
1,… ,𝑀𝑓

▪ compute the dissimilarity using methods for interval-scaled
variables
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Cosine Similarity

▪ A document can be represented by thousands of attributes, each
recording the frequency of a particular word (such as keywords)
or phrase in the document

▪ Other vector objects: gene features in micro-arrays, …
▪ Applications: information retrieval, biologic taxonomy, gene

feature mapping, ...
▪ Cosine measure: If 𝑑1 and 𝑑2 are two vectors (e.g., term-

frequency vectors), then

▪ cos 𝑑1, 𝑑2 =
(𝑑1⋅𝑑2)

|𝑑1||𝑑2|
,

▪ where ⋅ indicates vector dot product, |𝑑|: the length of vector 𝑑
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Example: Cosine Similarity

▪ cos(d1, d2) = (d1 • d2) /||d1|| ||d2|| ,
▪ where • indicates vector dot product, ||d|: the length of vector d

▪ Ex: Find the similarity between documents 1 and 2.

▪ d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)

▪ d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

▪ d1•d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

▪ ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 =
6.481

▪ ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 =
4.12

▪ cos(d1, d2 ) = 0.94
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Combining Mixed Types

▪ A database may contain all attribute types

▪ Nominal, symmetric binary, asymmetric binary, numeric,
ordinal

▪ One may use a weighted formula to combine their effects

▪ 𝑑 𝑖, 𝑗 =
σ
𝑓=1
𝑝

𝛿𝑖𝑗
𝑓
𝑑𝑖𝑗
𝑓

σ
𝑓=1
𝑝

𝛿𝑖𝑗
𝑓

▪ 𝛿𝑖𝑗
𝑓

= 0

▪ if (1) either xif or xjf is missing

▪ or xif = xjf = 0 and attribute is binary asymmetric

▪ 𝛿𝑖𝑗
𝑓

= 1, otherwise

▪ f is binary or nominal: 𝑑𝑖𝑗
𝑓

= 0 if xif = xjf , or 𝑑𝑖𝑗
𝑓

= 1 otherwise

▪ f is numeric: use a normalized distance

▪ f is ordinal: convert to ranks rif and compute zif
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Major Clustering Approaches

▪ Partitioning approach:

▪ Construct various partitions and then evaluate them by some
criterion, e.g., minimizing the sum of square errors

▪ Typical methods: k-means, k-medoids, CLARANS

▪ Hierarchical approach:

▪ Create a hierarchical decomposition of the set of data (or
objects) using some criterion

▪ Typical methods: Diana, Agnes, BIRCH, CAMELEON

▪ Density-based approach:

▪ Based on connectivity and density functions

▪ Typical methods: DBSCAN, OPTICS, DenClue
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Partitioning Algorithms: Basic Concept

▪ Partitioning method: Partitioning a database 𝐷 of n
objects into a set of 𝑘 clusters, such that the sum of
squared distances is minimized (where 𝑐𝑖 is the centroid
or medoid of cluster 𝐶𝑖)

▪ Given 𝑘, find a partition of 𝑘 clusters that optimizes the
chosen partitioning criterion

▪ 𝐸 = σ𝑖=1
𝑘 σ𝑝∈𝐶𝑖

𝑑(𝑝, 𝑐𝑖)
2

▪ Global optimal: exhaustively enumerate all partitions

▪ Heuristic methods: k-means and k-medoids algorithms

▪ k-means: Each cluster is represented by the center of the
cluster

▪ k-medoids or PAM (Partition around medoids): Each cluster is
represented by one of the objects in the cluster
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The K-Means Clustering Method 

▪ Given k, the k-means algorithm is implemented in four
steps:

▪ [1] Partition objects into k nonempty subsets

▪ [2] Compute seed points as the centroids of the clusters of the
current partitioning (the centroid is the center, i.e., mean
point, of the cluster)

▪ [3] Assign each object to the cluster with the nearest seed
point

▪ [4] Go back to Step 2, stop when the assignment does not
change
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An Example of K-Means Clustering

K=2

Arbitrarily 
partition 
objects into 
k groups

Update the 
cluster 
centroids

Update the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data set

◼ Partition objects into k nonempty 

subsets

◼ Repeat

◼ Compute centroid (i.e., mean 

point) for each partition 

◼ Assign each object to the 

cluster of its nearest centroid  

◼ Until no change
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Comments on the K-Means Method

▪ Strength: Efficient: 𝑂(𝑡𝑘𝑛), where 𝑛 is number objects, 𝑘 is
number of clusters, and 𝑡 is number of iterations. Normally,
𝑘, 𝑡 << 𝑛.

▪ Comparing:
▪ 𝑃𝐴𝑀: 𝑂(𝑘(𝑛 − 𝑘)2)
▪ CLARA: 𝑂(𝑘𝑠2 + 𝑘(𝑛 − 𝑘))

▪ Comment: Often terminates at a local optimal
▪ Weakness

▪ Applicable only to objects in a continuous n-dimensional space
▪ Using the k-modes method for categorical data
▪ In comparison, k-medoids can be applied to a wide range of data

▪ Need to specify 𝑘, the number of clusters, in advance
▪ there are ways to automatically determine the best 𝑘

▪ Sensitive to noisy data and outliers
▪ Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

▪ Most of the variants of the k-means which differ in

▪ Selection of the initial k means

▪ Dissimilarity calculations

▪ Strategies to calculate cluster means

▪ Handling categorical data: k-modes

▪ Replacing means of clusters with modes

▪ Using new dissimilarity measures to deal with categorical
objects

▪ Using a frequency-based method to update modes of clusters

▪ A mixture of categorical and numerical data: k-prototype
method
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What Is the Problem of the K-Means Method?

▪ The k-means algorithm is sensitive to outliers

▪ Since an object with an extremely large value may
substantially distort the distribution of the data

▪ K-Medoids: Instead of taking the mean value of the
object in a cluster as a reference point, medoids can be
used, which is the most centrally located object in a
cluster
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The K-Medoid Clustering Method

▪ K-Medoids Clustering

▪ Find representative objects (medoids) in clusters

▪ PAM

▪ Starts from an initial set of medoids and iteratively replaces
one of the medoids by one of the non-medoids if it improves
the total distance of the resulting clustering

▪ PAM works effectively for small data sets, but does not scale
well for large data sets (due to the computational complexity)

▪ Efficiency improvement on PAM

▪ CLARA : PAM on samples

▪ CLARANS: Randomized re-sampling
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PAM: A Typical K-Medoids Algorithm
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Centroid, Radius and Diameter of a cluster 

(for numerical data sets)

▪ Centroid:

▪ the “middle” of a cluster 𝑐𝑚 =
σ𝑖=1
𝑛 𝑡𝑖𝑝

𝑛

▪ Radius:

▪ square root of average distance from any point of the cluster

to its centroid 𝑅𝑚 =
σ𝑖=1
𝑛 (𝑡𝑖𝑝−𝑐𝑚)2

𝑛

▪ Diameter:

▪ square root of average mean squared distance between all

pairs of points in the cluster D𝑚 =
σ𝑖=1
𝑛 σ𝑖=1

𝑛 (𝑡𝑖𝑝−𝑡𝑖q)
2

𝑛(𝑛−1)

X
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Distance between Clusters

▪ Single link:

▪ smallest distance between an element in one cluster and an
element in the other, i.e., 𝑑𝑖𝑠𝑡(𝐾𝑖 , 𝐾𝑗) = min(𝑡𝑖𝑝, 𝑡𝑗𝑞)

▪ Complete link:

▪ largest distance between an element in one cluster and an
element in the other, i.e., 𝑑𝑖𝑠𝑡(𝐾𝑖 , 𝐾𝑗) = m𝑎𝑥(𝑡𝑖𝑝, 𝑡𝑗𝑞)

▪ Average:

▪ avg distance between an element in one cluster and an

element in the other, i.e., 𝑑𝑖𝑠𝑡 𝐾𝑖 , 𝐾𝑗 = 𝑚𝑒𝑎𝑛(𝑡𝑖𝑝, 𝑡𝑗𝑞)

▪ Centroid/Medoid:

▪ distance between the centroids/medoids of two clusters, i.e.,

𝑑𝑖𝑠𝑡 𝐾𝑖 , 𝐾𝑗 = 𝑚𝑒𝑎𝑛(𝑐𝑖 , 𝑐𝑗)

X X
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Hierarchical Clustering

▪ Use distance matrix as clustering criteria.

▪ This method does not require the number of clusters k as an
input, but needs a termination condition

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

(AGNES)

divisive

(DIANA)
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Density-Based Clustering Methods

▪ Clustering based on density (local cluster criterion), such
as density-connected points

▪ Major features:

▪ Discover clusters of arbitrary shape

▪ Handle noise

▪ One scan

▪ Need density parameters as termination condition

▪ Several interesting studies:

▪ DBSCAN

▪ OPTICS

▪ DENCLUE

▪ CLIQUE
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Density-Based Clustering: Basic Concepts

▪ Two parameters:

▪ 𝐸𝑝𝑠: Maximum radius of the neighborhood

▪ 𝑀𝑖𝑛𝑃𝑡𝑠: Minimum number of points in an Eps-neighborhood
of that point

▪ 𝑁𝐸𝑝𝑠(𝑞): {𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}

▪ Directly density-reachable: A point p is directly density-
reachable from a point 𝑞 w.r.t. 𝐸𝑝𝑠, 𝑀𝑖𝑛𝑃𝑡𝑠 if

▪ 𝑝 belongs to 𝑁𝐸𝑝𝑠(𝑞)

▪ core point condition:|𝑁𝐸𝑝𝑠 𝑞 |≥ MinPts
MinPts = 5

Eps = 1 cm

p

q
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Density-Reachable and Density-Connected

▪ Density-reachable:

▪ A point 𝑝 is density-reachable from a point 𝑞 w.r.t. 𝐸𝑝𝑠,
𝑀𝑖𝑛𝑃𝑡𝑠 if there is a chain of points 𝑝1, …, 𝑝𝑛, 𝑝1 = 𝑞, 𝑝𝑛 = 𝑝
such that 𝑝𝑖+1 is directly density-reachable from 𝑝𝑖

▪ Density-connected

▪ A point 𝑝 is density-connected to a point 𝑞 w.r.t. 𝐸𝑝𝑠, 𝑀𝑖𝑛𝑃𝑡𝑠
if there is a point o such that both, p and q are density-
reachable from 𝑜 w.r.t. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠

p q

o

p

q
p1



35

DBSCAN: Density-Based Spatial Clustering 

of Applications with Noise

▪ Relies on a density-based notion of cluster: A cluster is
defined as a maximal set of density-connected points

▪ Discovers clusters of arbitrary shape in spatial databases
with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

▪ Arbitrary select a point 𝑝

▪ Retrieve all points density-reachable from 𝑝 w.r.t. 𝐸𝑝𝑠
and 𝑀𝑖𝑛𝑃𝑡𝑠

▪ If 𝑝 is a core point, a cluster is formed

▪ If 𝑝 is a border point, no points are density-reachable
from 𝑝 and DBSCAN visits the next point of the database

▪ Continue the process until all of the points have been
processed

▪ If a spatial index is used, the computational complexity
of DBSCAN is 𝑂(𝑛 ∙ 𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of
database objects. Otherwise, the complexity is 𝑂(𝑛2)
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Measuring Clustering Quality

▪ Three kinds of measures:
▪ External
▪ Internal
▪ Relative

▪ External: supervised, employ criteria not inherent to the
dataset
▪ Compare a clustering against prior or expert-specified knowledge

(i.e., the ground truth) using certain clustering quality measure

▪ Internal: unsupervised, criteria derived from data itself
▪ Evaluate the goodness of a clustering by considering how well the

clusters are separated, and how compact the clusters are, e.g.,
Silhouette coefficient

▪ Relative: directly compare different clustering, usually those
obtained via different parameter settings for the same
algorithm
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Measuring Clustering Quality: External Methods 

▪ Clustering quality measure: Q(C, T), for a clustering C
given the ground truth T

▪ Q is good if it satisfies the following essential criteria

▪ Cluster homogeneity: the purer, the better
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Some Commonly Used External Measures

▪ Matching-based measures

▪ Purity, maximum matching, F-measure

▪ Entropy-Based Measures

▪ Conditional entropy

▪ Normalized mutual information (NMI)

▪ Variation of information

▪ Pair-wise measures

▪ Four possibilities: TP, FN, FP, TN

▪ Jaccard coefficient

Ground truth partitioning T1 T2

Cluster C1
Cluster C2
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Entropy-Based Measure (I): Conditional Entropy

▪ Entropy of clustering C: 𝐻 𝐶 = −σ𝑖=1
𝑟 𝑝𝐶𝑖 ∙ log(𝑝𝐶𝑖)

▪ 𝑝𝐶𝑖 =
𝑛𝑖

𝑛
, the probability of cluster 𝐶𝑖

▪ Entropy of partitioning 𝑇: 𝐻 𝑇 = −σ𝑖=1
𝑟 𝑝𝑇𝑖 ∙ log(𝑝𝑇𝑖)

▪ Entropy of 𝑇 w.r.t. cluster 𝐶𝑖 : 𝐻 𝑇|𝐶𝑖 = −σ𝑗=1
𝑘 𝑛𝑖𝑗

𝑛𝑖
log(

𝑛𝑖𝑗

𝑛𝑖
)

▪ Conditional entropy of T w.r.t. clustering C:

▪ 𝐻 𝑇|𝐶 = −σ𝑗=1
𝑘 𝑛𝑖

𝑛
𝐻 𝑇|𝐶𝑖 = −σ𝑖=1

𝑟 σ𝑗=1
𝑘 𝑝𝑖𝑗 ∙ log(

𝑝𝑖𝑗

𝑝𝐶𝑖
)

▪ 𝐻 𝑇|𝐶 = −σ𝑖=1
𝑟 σ𝑗=1

𝑘 𝑝𝑖𝑗 ∙ log 𝑝𝑖𝑗 + σ𝑖=1
𝑟 (log(𝑝𝐶𝑖) ∙ σ𝑗=1

𝑘 𝑝𝑖𝑗)

▪ = −σ𝑖=1
𝑟 σ𝑗=1

𝑘 𝑝𝑖𝑗 ∙ log 𝑝𝑖𝑗 + σ𝑖=1
𝑟 𝑝𝐶𝑖 ∙ log 𝑝𝐶𝑖 = 𝐻 𝐶, 𝑇 − 𝐻(𝐶)

▪ The more a cluster’s members are split into different partitions, the higher
the conditional entropy

▪ For a perfect clustering, the conditional entropy value is 0, where the worst
possible conditional entropy value is log k



41

Practicing

▪ Take some time to practice the examples

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myClustering.ipynb

https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myClustering.ipynb
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Main References

Most of the slides were extracted from  
Data Mining Concepts and Techniques


