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Why Data Mining? 

▪ The explosive growth of data: from terabytes to
petabytes

▪ Data collection and data availability

▪ Automated data collection tools, database systems, Web

▪ Major sources of abundant and diverse data (Big Data)

▪ Business: Web, e-commerce, transactions, stocks

▪ Science: sensors, astronomy, bioinformatics, simulation

▪ Society and everyone: news, photos, videos, open data, IoT

▪ We are drowning in data, but starving for knowledge!

▪ “Need is the mother of invention”

▪ Data mining - Automated analysis of massive data sets
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What is Data Mining?

▪ Data mining (knowledge discovery from data)

▪ Extraction of interesting (non-trivial, implicit, previously
unknown and potentially useful) patterns or knowledge from a
massive amount of data

▪ Alternative names

▪ Knowledge discovery in databases (KDD)

▪ knowledge extraction

▪ business intelligence

▪ data analysis

▪ Watch out: Is everything “data mining”?

▪ Simple search and query processing 

▪ (Deductive) expert systems 
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Knowledge discovery from data (KDD) process

▪ This is a view from typical database systems

▪ Data mining plays an essential role in the KDD process

Data Cleaning

Data Integration

Databases

Data Warehouse

Task-relevant Data

Selection

Data Mining

Pattern Evaluation
Knowledge☆
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Data Analysis

▪ Data analysis is a process of inspecting, cleansing,
transforming, and modeling data for KDD

▪ The process of data analysis

▪ Data selection

▪ Data processing

▪ Cleaning, transforming

▪ Exploratory data analysis

▪ Communication



Basics of R
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Introduction to R

▪ R is a programming language and free software
environment for statistical computing

▪ Supported by the R Foundation for Statistical Computing

▪ Created by Ross Ihaka and Robert Gentleman at
Auckland University, New Zealand

▪ R was derived by S (Bell Laboratories - AT&T)

▪ R is a language broadly used by statisticians, data
miners, and data scientists
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R Console

Available for Windows, Mac, Linux
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R Studio

http://www.rstudio.com

Great advantages: IDE with data visualization, debugging
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CRAN Packages

▪ A broad number of packages (CRAN)
▪ https://cran.r-project.org

▪ Strong Point of R
▪ More than 14000 available packages (apr/2019)
▪ http://cran.r-project.org/web/packages/

▪ Package installation
▪ Package loading

http://cran.r-project.org/web/packages/
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Basic concepts

▪ Assignment
▪ Value display
▪ Logical test
▪ Vector definition

▪ Computing BMI 

▪ Printing values



12

Plotting graphics & Statistical analysis

▪ Plotting a scatter
graphics
▪ Canvas is active until the

next plot

▪ Test theoretical value of
BMI equals to 22.5
▪ Null hypothesis: no 

difference observed (p-
value > 5%)

▪ Alternative hypothesis:
they are different
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Default arguments and help for functions

▪ Functions have default
values

▪ View parameters of the
function

▪ Use online help
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More about vectors

▪ Operations with NA

▪ Name of observations

▪ Scalar multiplication
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Matrix

▪ Creation

▪ Creation by rows

▪ Names for rows and
columns

▪ Transpose

▪ Determinant
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Factors

▪ Factors are variables in R
that refer to categorical
data

▪ Factors in R are stored as a
vector of integer values
with a corresponding set of
character values to use
when the factor is displayed

▪ Both numeric and character
variables can be made into
factors, but a factor's levels
are always character values
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Lists

▪ Lists are the R objects
which contain elements
of different types, such as
numbers, strings, vectors,
matrix, data frame, and
another list inside it.

▪ A list can also contain a
matrix or a function as its
elements

▪ A list is created using the
list() function
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Data frames

▪ A data frame is a table
where each column
corresponds to
attributes, and each
row corresponds to a
tuple (object)
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Implicitly Loops – sapply, lapply

• lapply, sapply executes a
function for each column
• The first character defines the

return type
• l – list, s – simple (vector

or matrix)
• The second parameter is the

function to invoke
• Following parameters are

passed to the invoked
function

• apply is the generic function
• The second parameter defines

if it calls the function for each
row (1) or each column (2)
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Sort and order
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Loading and saving files
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Creating functions
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Pipelines

The dplyr is an important package to know

Pipeline dataset %>% operators %>% first parameter of functions is implicit from the pipeline
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The ggplot graphics

RColorBrewer is a nice package to setup colors

GGPlot is a nice tool to plot graphics
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The melt function

The melt function transforms columns values into rows grouped by id.vars.

The name of columns is used to fill the variable attribute created during the melt.
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Line graphics

Take some time studying myGraphics.ipynb
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Joining data frames
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Loops and Conditional

▪ R supports loops and conditionals in a similar way as in
Java

▪ Loops should be used when strictly needed
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Practicing

▪ Take some time to practice the examples

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myIntroduction.ipynb

▪ Take a look at how to prepare nice graphics using
ggplot2

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myGraphics.ipynb

https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myIntroduction.ipynb
https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myGraphics.ipynb


Exploratory analysis
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Types of Data Sets 

▪ Record
▪ Relational datasets

▪ Matrix
▪ numerical matrix, crosstabs

▪ Documents
▪ texts, term-frequency vector

▪ Transactions
▪ Graph and network

▪ World Wide Web
▪ Social or information networks

▪ Ordered
▪ Temporal data: time-series
▪ Sequential data: transaction sequences

▪ Spatial, image, and multimedia
▪ Spatial data: maps
▪ Images
▪ Videos
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Important Characteristics of Structured Data

▪ Dimensionality

▪ Curse of dimensionality

▪ Sparsity

▪ Only presence counts

▪ Resolution

▪ Patterns depend on the scale

▪ Distribution

▪ Centrality and dispersion
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Relational data

▪ Data sets are made up of data objects

▪ A data object represents an entity

▪ sales database: customers, store items, sales

▪ medical database: patients, treatments, illness

▪ university database: students, professors, courses

▪ Attributes describe data objects

▪ Database

▪ rows -> data objects (tuples)

▪ columns -> attributes
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Attributes

▪ Attribute (or dimensions, features, variables)

▪ a data field, representing a characteristic or feature of a data
object

▪ E.g., customer _ID, name, address

▪ Types

▪ Nominal

▪ Binary

▪ Ordinal

▪ Numeric
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Attribute Types 

▪ Nominal: categories, states, or “names of things”
▪ Hair_color = {auburn, black, blond, brown, grey, red, white}
▪ marital status, occupation, ID numbers, zip codes

▪ Binary
▪ Attribute with only two states (0 and 1)
▪ Symmetric binary: both outcomes equally important

▪ e.g., gender
▪ Asymmetric binary: outcomes not equally important

▪ e.g., medical test (positive vs. negative)
▪ Convention: assign 1 to the most important outcome (e.g., HIV

positive)

▪ Ordinal
▪ Values have a meaningful order (ranking), but magnitude between

successive values is not known
▪ Size = {small, medium, large}, grades, army rankings
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Numeric Attribute Types 

▪ Quantity (integer or real-valued)

▪ Interval
▪ Measured on a scale of equal-sized units

▪ Values have order

▪ E.g., the temperature in C˚or F˚, calendar dates

▪ No true zero-point

▪ Ratio
▪ Inherent zero-point

▪ We can speak of values as being an order of magnitude
larger than the unit of measurement (10 K˚ is twice as high
as 5 K˚).

▪ e.g., the temperature in Kelvin, length, counts,
monetary quantities
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Discrete vs. Continuous Attributes 

▪ Discrete Attribute

▪ Has only a finite or countably infinite set of values

▪ Sometimes, represented as integer variables

▪ Continuous Attribute

▪ Has real numbers as attribute values

▪ E.g., temperature, height, or weight

▪ Practically, real values can only be measured and represented
using a finite number of digits

▪ Continuous attributes are typically represented as floating-
point variables
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Iris Dataset
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Basic Statistical Descriptions of Data

▪ Motivation

▪ To better understand the data:

▪ central tendency, variation and spread

▪ Data centrality and dispersion characteristics

▪ median, max, min, quantiles, outliers, variance

▪ Numerical dimensions correspond to sorted intervals

▪ Boxplot or quantile analysis on sorted intervals
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Descriptive Measures

▪ Centrality
▪ Mean (algebraic measure)

▪ ҧ𝑥 =
σ𝑖=1
𝑛 𝑥𝑖

𝑛

▪ Median
▪ Middle value if an odd number of values, or weighted average of the

middle two values otherwise
▪ Mode

▪ The value that occurs most frequently in the data
▪ Unimodal, bimodal, trimodal
▪ Empirical formula:

▪ 𝑚𝑒𝑎𝑛 − 𝑚𝑜𝑑𝑒 = 3 ⋅ (𝑚𝑒𝑎𝑛 −𝑚𝑒𝑑𝑖𝑎𝑛)

▪ Dispersion
▪ Variance and standard deviation

▪ Variance: (algebraic, scalable computation)
▪ Standard deviation (𝜎): square root of the variance (𝜎2)

▪ 𝜎2 =
σ𝑖=1
𝑛 (𝑥𝑖−𝜇)

2

𝑛
=

σ𝑖=1
𝑛 𝑥𝑖

2

𝑛
− 𝜇2
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Measuring the Dispersion of Data

▪ Quartiles, outliers and boxplots
▪ Quartiles: Q1 (25th percentile), Q3 (75th percentile)

▪ Inter-quartile range: IQR = Q3 – Q1

▪ Five number summary: min, Q1, median, Q3, max

▪ Boxplot: ends of the box are the quartiles; median is marked;
add whiskers, and plot outliers individually



42

Properties of Normal Distribution Curve

▪ The normal (distribution) curve

▪ From μ–σ to μ+σ: contains about 68% of the measurements
(μ: mean, σ: standard deviation)

▪ From μ–2σ to μ+2σ: contains about 95% of it

▪ From μ–3σ to μ+3σ: contains about 99.7% of it
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Symmetric vs. Skewed Data

▪ Median and mean for:

▪ positive, symmetric, and negatively skewed data
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Probability density function
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Density distributions per class label
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Graphic Displays of Basic Statistical Descriptions

▪ Boxplot

▪ Histogram

▪ Quantile-quantile (q-q) plot

▪ Scatter plot
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Boxplot Analysis

▪ Five-number summary of a distribution
▪ Min., Q1, Median, Q3, Max.

▪ Boxplot
▪ Data is represented with a box

▪ The ends of the box are at the first and third quartiles, i.e., the height of
the box is IQR

▪ A line within the box marks the median

▪ Whiskers: two lines outside the box extended to Minimum and Maximum

▪ Outliers are values:

▪ higher than Q3 + 1.5 x IQR

▪ lower than Q1 - 1.5 x IQR
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Boxplot for all variables
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Boxplot per class label
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Histogram Analysis

▪ The histogram displays values of tabulated frequencies

▪ It shows what proportion of cases into each category

▪ The area of the bar that denotes the value
▪ It is a crucial property when the categories are not of uniform width

▪ The categories specify non-overlapping intervals of some variable

▪ The categories (bars) must be adjacent
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Histograms may tell more than Boxplots

▪ The two histograms shown

in the left may have the

same boxplot

representation

▪ The same values for min,

Q1, median, Q3, max

▪ However, they have rather

different data distributions
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Quantile-Quantile (Q-Q) Plot

▪ Graphs the quantiles of one univariate distribution
against the corresponding quantiles of another
(theoretical distribution)

▪ A good approach to visual inspect if the distribution is
similar to a standard normal
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Scatter plot

▪ Provides the first look at bivariate data to see clusters of
points, outliers

▪ Each pair of values is treated as a pair of coordinates
and plotted as points in the plane
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Data correlation

The first row presents negatively correlated data
The second row presents uncorrelated data
The third row presents positively correlated data



55

Data Visualization

▪ Why data visualization?
▪ Gain insight into an information space by mapping data onto

graphical primitives

▪ Provide a qualitative overview of large data sets

▪ Search for patterns, trends, structure, irregularities, relationships
among data

▪ Help find interesting regions and suitable parameters for further
quantitative analysis

▪ Provide visual proof of computer representations derived

▪ Categorization of visualization methods:
▪ Pixel-oriented visualization techniques

▪ Geometric projection visualization techniques

▪ Icon-based visualization techniques

▪ Hierarchical visualization techniques

▪ Visualizing complex data and relations
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Pixel-Oriented Visualization Techniques

▪ For a data set of m dimensions, create m windows on
the screen, one for each dimension

▪ The m dimension values of a record are mapped to m
pixels at the corresponding positions in the windows

▪ The colors of the pixels reflect the corresponding values
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Geometric Projection Visualization Techniques

▪ Visualization of geometric transformations and
projections of the data

▪ Methods

▪ Direct visualization

▪ Scatterplot and scatterplot matrices

▪ Landscapes

▪ Parallel coordinates
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Scatterplot Matrices

A matrix of scatterplots (x-y-diagrams)

k-dimensional data: total of (k2/2-k) scatterplots]



59

Scatterplot matrices with a class label
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Advanced Matrices Plot

▪ The matrix of optimized plots of the k-dim. data
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Advanced Matrices Plot with a class label



62

Landscapes

▪ Visualization of the data as perspective landscape

▪ The data needs to be transformed into a (possibly
artificial) 2D spatial representation which preserves the
characteristics of the data
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Parallel Coordinates of a Data Set
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Icon-Based Visualization Techniques

▪ Visualization of the data values as features of icons

▪ Typical visualization methods

▪ Chernoff Faces

▪ Salience

▪ General techniques

▪ Shape coding: Use shape to represent certain information
encoding

▪ Color icons: Use color icons to encode more information

▪ Tile bars: Use small icons to represent the relevant feature
vectors in document retrieval
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Chernoff Faces

▪ A way to display variables on a two-dimensional surface

▪ Let x be eyebrow slant, y be eye size, z be nose length

▪ The figure shows faces produced using ten
characteristics: head eccentricity, eye size, eye spacing,
eye eccentricity, pupil size, eyebrow slant, nose size,
mouth shape, mouth size, and mouth opening):

▪ Each assigned one of 10 possible values

Gonick, L. and Smith, W. The Cartoon Guide to Statistics. New York: Harper Perennial, p. 212, 1993

Weisstein, Eric W. "Chernoff Face." From MathWorld -A Wolfram Web Resource. mathworld.wolfram.com/ChernoffFace.html
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Chernoff Faces example with the Iris dataset

Can you see any pattern?
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Chernoff Faces example with the Iris dataset
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Salience
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Practicing

▪ Take some time to practice the examples

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myExploratoryAnalysis.ipynb

▪ Learn to use Jupyter with R

▪ http://jupyter.org

https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myExploratoryAnalysis.ipynb


Data Preprocessing
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Data Quality: Why Preprocess the Data?

▪ Measures for data quality: A multidimensional view

▪ Accuracy: correct or wrong, accurate or not

▪ Completeness: not recorded, unavailable, …

▪ Consistency: some modified but some not, dangling, …

▪ Timeliness: timely update?

▪ Believability: how trustable the data are correct?

▪ Interpretability: how easily the data can be understood?
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Major Tasks in Data Preprocessing

▪ Data cleaning

▪ Fill in missing values, smooth noisy data, identify or remove
outliers, and resolve inconsistencies

▪ Data integration

▪ Integration of multiple databases, data cubes, or files

▪ Data reduction

▪ Dimensionality reduction

▪ Numerosity reduction

▪ Data compression

▪ Data transformation and data discretization

▪ Normalization

▪ Concept hierarchy generation
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Outlier removal based on boxplot

▪ Interval for regular data [𝑄1-1.5∙IQR, 𝑄3+1.5∙IQR]

▪ More conservative interval [𝑄1-3∙IQR, 𝑄3+3∙IQR]
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Handling Redundancy in Data Integration

▪ Redundant data occur often when integration of
multiple databases

▪ Object identification: The same attribute or object may have
different names in different databases

▪ Derivable data: One attribute may be a “derived” attribute in
another table, e.g., annual revenue

▪ Redundant attributes may be able to be detected by
correlation analysis and covariance analysis

▪ Careful integration of the data from multiple sources
may help reduce/avoid redundancies and
inconsistencies and improve mining speed and quality



75

Correlation Analysis (Numeric Data)

▪ Correlation coefficient (Pearson’s product moment coefficient)

▪ 𝑟𝐴,𝐵 =
σ𝑖=1
𝑛 (𝑎𝑖− ҧ𝐴)(𝑏𝑖− ത𝐵)

(𝑛−1)𝜎𝐴𝜎𝐵
=

σ𝑖=1
𝑛 (𝑎𝑖𝑏𝑖) −𝑛 ҧ𝐴 ത𝐵

(𝑛−1)𝜎𝐴𝜎𝐵

where n is the number of tuples, and are the respective
means of A and B, σA and σB are the respective standard
deviation of A and B, and Σ(aibi) is the sum of the AB cross-
product.

▪ If rA,B > 0, A and B are positively correlated (A’s values increase as
B’s). The higher, the stronger correlation.

▪ rA,B = 0: independent; rAB < 0: negatively correlated
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Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1
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Sampling

▪ Sampling: obtaining a small sample s to represent the
whole data set N

▪ Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data

▪ Key principle: Choose a representative subset of the
data

▪ Simple random sampling may have very poor performance in
the presence of skew

▪ Develop adaptive sampling methods, e.g., stratified sampling:

▪ Note: Sampling may not reduce database I/Os (page at a
time)
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Types of Sampling

▪ Simple random sampling

▪ There is an equal probability of selecting any particular item

▪ Sampling without replacement

▪ Once an object is selected, it is removed from the population

▪ Sampling with replacement

▪ A selected object is not removed from the population

▪ Stratified sampling:

▪ Partition the data set, and draw samples from each partition
(proportionally, i.e., approximately the same percentage of the
data)

▪ Used in conjunction with skewed data
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Raw Data

Sampling: With or without Replacement
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Sampling: Cluster or Stratified Sampling

Raw Data Cluster/Stratified Sample
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Sampling - Examples

80% 20%
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Data Transformation

▪ A function that maps the entire set of values of a given
attribute to a new set of replacement values s.t. each
old value can be identified with one of the new values

▪ Methods

▪ Attribute/feature construction

▪ New attributes constructed from the given ones

▪ Complex aggregation

▪ Normalization: Scaled to fall within a smaller, specified range

▪ Discretization / Smoothing

▪ Concept hierarchy climbing

▪ Categorical Mapping
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Normalization

▪ Min-max normalization: to [nminA, nmaxA]

▪ 𝑛𝑣 =
𝑣−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
𝑛𝑚𝑎𝑥𝐴 − 𝑛𝑚𝑖𝑛𝐴 + 𝑛𝑚𝑖𝑛𝐴

▪ Z-score normalization (μ: mean, σ: standard deviation):

▪ 𝑛𝑣 =
𝑣−𝜇𝐴

𝜎𝐴

▪ Normalization by decimal scaling

▪ 𝑛𝑣 =
𝑣

10𝑗
, where j is the smallest integer such that max(|nv|) < 1

▪ Let income range ($12,000,$98,000) with μ = 54,000, σ = 16,000,

then $73,600

▪ is mapped to
73600−12000

98000−12000
1 − 0 + 0 = 0.716 using min-max (0-1)

▪ is mapped to
73600−54000

16000
= 1.225 using z-score

▪ Is mapped to
𝑣

106
= 0.736 using decimal scaling
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Normalization

Data Min-max [0-1] Z-score/N(0,1) N(0.5,
0.5

2.698
)
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Discretization & Smoothing

▪ Discretization is the process of transferring continuous
functions, models, variables, and equations into discrete
counterparts

▪ Smoothing is a technique that creates an approximating
function that attempts to capture important patterns in
the data while leaving out noise or other fine-scale
structures/rapid phenomena

▪ A important part of the discretization/smoothing is to
set up bins for proceeding the approximation
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Binning methods for data smoothing

▪ Equal-width (distance) partitioning

▪ Divides the range into N intervals of equal size: uniform grid

▪ if A and B are the lowest and highest values of the attribute,
the width of intervals will be: W = (B –A)/N

▪ The most straightforward, but outliers may dominate
presentation

▪ Skewed data is not handled well

▪ Equal-depth (frequency) partitioning

▪ Divides the range into N intervals, each containing
approximately same number of samples

▪ Good data scaling

▪ Managing categorical attributes can be tricky
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Binning methods for data smoothing

▪ Sorted data for price (in dollars):
▪ 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

▪ Binning of size 3
▪ Partition of equal-length: (34-4)/3

▪ Bin 1 [4-13[: 4, 8, 9
▪ Bin 2 [14-23[: 15, 21, 21
▪ Bin 3 [23-34]: 24, 25, 26, 28, 29, 34

▪ Partition into equal-frequency (equi-depth) bins:
▪ Bin 1: 4, 8, 9, 15
▪ Bin 2: 21, 21, 24, 25
▪ Bin 3: 26, 28, 29, 34
▪ Smoothing by bin means:

▪ Bin 1: 9, 9, 9, 9
▪ Bin 2: 23, 23, 23, 23
▪ Bin 3: 29, 29, 29, 29

▪ Smoothing by bin boundaries:
▪ Bin 1: 4, 4, 4, 15
▪ Bin 2: 21, 21, 25, 25
▪ Bin 3: 26, 26, 26, 34
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Influence on binning during data smoothing techniques

Equal interval width (binning)

Equal frequency (binning) K-means clustering

data



89

Categorical Mapping

▪ n binary derived inputs: one for each value of the
original attribute

▪ This 1-to-N mapping is commonly applied when N is relatively
small

▪ As N grows, the number of inputs to the model
increases and consequently the number of parameters
to be estimated increases

▪ Thus, this method is not applicable to high-cardinality
attributes with hundreds or thousands of distinct values
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Example Categorical Mapping
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Practicing

▪ Take some time to practice the examples

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myPreprocessing.ipynb

https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myPreprocessing.ipynb


Regression
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Regression Models

▪ Linear regression

▪ Data modeled to fit a straight line

▪ Often uses the least-square method to fit the line

▪ Multiple regression

▪ Allows a response variable Y to be modeled as a linear
function of the multidimensional feature vector
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Regression Analysis

▪ A collective name for
techniques for the modeling
and analysis of numerical data
consisting
▪ values of a dependent variable

(also called response variable
or measurement)

▪ one or more independent
variables

▪ The parameters are estimated
to give a "best fit" of the data

▪ Most commonly the best fit is
evaluated by using the least
squares method, but other
criteria have also been used

▪ Used for prediction (including

forecasting of time-series data),

inference, hypothesis testing, and

modeling of causal relationships

y

x

y = x + 1

X1

Y1

Y1’
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Types of regression models

▪ Linear regression: Y = w X + b

▪ Two regression coefficients, w and b, specify the line and are
to be estimated by using the data at hand

▪ Using the least squares criterion to the known values of Y1, Y2,
…, X1, X2, ….

▪ Multiple regression: Y = b0 + b1 X1 + b2 X2

▪ Many nonlinear functions can be approximated by the above

▪ Polynomial regression: Y = b0 + b1 X1 + b2 X1
2
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Boston dataset
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Fitting a first model

▪ Explaining house price using lower status population
variable

▪ lm builds the model

▪ summary describes the significance of the built model
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Prediction

▪ The predict function makes predictions from the adjusted
model

▪ The predictions can be presented with either confidence and
prediction intervals
▪ These intervals can be analyzed at

https://statisticsbyjim.com/hypothesis-testing/confidence-
prediction-tolerance-intervals/
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Plotting the regression model

▪ Good practice to plot the regression model

▪ Enables us to have a feeling of its quality
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Polynomial regression

▪ It is possible to introduce polynomial dimensions of
independent data

▪ It is important to notice that it is still a linear model
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Plotting the polynomial regression

▪ It is only necessary to present the basic dimension
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Assessing the polynomial regression

▪ Using ANOVA

▪ Null hypothesis: Both models are not different

▪ p-value > 5%

▪ Alternative hypothesis: They are different

▪ p-value < 5%
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Multiple regression

▪ It is possible to use more than one dimension for
independent data
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Plotting the surface of regression

▪ Explore from different angles …
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Checking the significance of the model

▪ Using ANOVA
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Logistic Regression

▪ Classification
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Simplifying the problem

▪ Focus in one class prediction

▪ Ex.: versicolor versus non-versicolor

▪ 33% versus 67%
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Building the model

▪ Uses logistic regression

▪ Using all variables except Species (class label!)

▪ Measuring the adjustment of the model
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Measuring the performance of the model

▪ Prediction
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Building a simpler model

▪ Petal.Length and Petal.Width were more significant in
the exploratory analysis

▪ During preprocessing, they also lead to lower entropy
during discretization
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Measuring the performance of the model

▪ Prediction
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Practicing

▪ Take some time to practice the examples

▪ https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blo
b/master/myRegression.ipynb

https://nbviewer.jupyter.org/github/eogasawara/mylibrary/blob/master/myRegression.ipynb
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