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Discovering motifs in time series

▪ Data deluge scenario pushes us for new ways for collecting, storing, processing a large amount of data
▪ Many phenomena can be observed and organized as time series (sequences of observations)
▪ A relevant area that is being explored in time series analysis is finding patterns
▪ A particular pattern that occurs a significant number of times in time series is denominated motif [1]
▪ Enables the understanding of some specific behaviors observed in time series, in many areas of

knowledge, such as weather prediction, wind generation, image recognition, seismic amplitude
▪ A vast number of motifs discovery techniques, methods, and algorithms have been developed [2,3]

▪ They include discovering motifs of a variable length, without constraints (parameter-free) , multivariate time series

[1] P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive time series databases,” in Proceedings - IEEE International Conference on 
Data Mining, ICDM, 2002, pp. 370–377
[2] A. Mueen, “Time series motif discovery: Dimensions and applications,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 
vol. 4, no. 2, pp. 152–159, 2014
[3] S. Torkamani and V. Lohweg, “Survey on time series motif discovery,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 
vol. 7, no. 2, 2017.
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Discovering motifs in spatial-time series

▪ Various time-series phenomena present different behaviors when
observed at points of space
▪ Series collected by sensors and IoT

▪ Spatial-time series: each time series is associated to a position in space
▪ Fixed position: Analysis of points/regions
▪ Variable position: trajectory data

▪ Motifs might not be discovered when analyzing each time series
▪ They may be frequent if we consider different spatial-time series at some time

interval or some spatial range
▪ Finding patterns that are frequent in a constrained space and time, i.e., “finding

spatial-time motifs”, may enable us to comprehend how a phenomenon occurs
concerning space and time

▪ Formalize spatial-time motifs
▪ Spatial-time motif needs to occur both in time and space to become interesting

▪ Present an approach to discover them
▪ How to rank spatial-time motifs

▪ There can be many discovered motifs
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Background: time series

▪ A time series 𝑡 is an ordered sequence of values in time: < 𝑡1, ⋯ , 𝑡𝑚 >, 𝑡𝑖 ∈ ℝ
▪ A subsequence is a continuous sample of a time series with a defined length

▪ 𝑠𝑒𝑞𝑛,𝑝(𝑡): 𝑝-th subsequence of size 𝑛 in a time series 𝑡 is a sequence < 𝑡𝑝, …, 𝑡𝑝+𝑛−1 >,
where |𝑠𝑒𝑞𝑛,𝑝(𝑡)| = 𝑛 and 1 ≤ 𝑝 ≤ |𝑡| − 𝑛

▪ Sliding windows consist in exploring all possible subsequences of a time series
▪ function 𝑠𝑤𝑛(𝑡) produces a matrix 𝑊 of size (|𝑡| − 𝑛 + 1) by 𝑛

▪ each line 𝑤𝑖 in 𝑊 is the 𝑖-th subsequence of size 𝑛 from 𝑡
▪ Given 𝑊 = 𝑠𝑤𝑛(𝑡), ∀𝑤𝑖 ∈ 𝑊, 𝑤𝑖 = 𝑠𝑒𝑞𝑛,𝑖(𝑡)

A spatial-time series 𝑠𝑡 is a pair (𝑡, 𝑝), such that a time series 𝑡 with an associated position 𝑝
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Formalizing motifs discovery in time series

▪ Given a sequence 𝑞 and time series 𝑡, 𝑞 is a motif in 𝑡 with
support 𝜎, if and only if 𝑞 is included in 𝑡 at least 𝜎 times

▪ The length of a motif 𝑞 (|𝑞|) is also known as word size

▪ Given a sequence 𝑞 and a time series 𝑡 where 𝑊 = 𝑠𝑤|𝑞|(𝑡),
𝑚𝑜𝑡𝑖𝑓(𝑞, 𝑡, 𝜎) ↔ ∃ 𝑅 ⊆ 𝑊, (|𝑅| ≥ 𝜎), such that ∀𝑤𝑖 ∈ 𝑅,
𝑤𝑖 = 𝑞
▪ Motifs are not previously known and are discovered when scanning

the entire data [1]

▪ Many approaches were proposed in the literature to
discover motifs in time series
▪ They require some data preprocessing such as normalization and

indexing before running the motif discovery algorithms to increase
the performance and precision of results

[1] A. Mueen, “Time series motif discovery: Dimensions and applications,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 
vol. 4, no. 2, pp. 152–159, 2014
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Background: Normalization

▪ Normalization is commonly used to adjust scale of data

▪ Z-score apply a linear transformation where 𝑡𝑖 is an
observation of the time series 𝑡, 𝜇𝑡 is the average, 𝜎𝑡 is the
standard deviation of the time series, and 𝑡′ is the
transformed time series with mean equals to zero and one as
standard deviation

▪ 𝑡𝑖
′ =

(𝑡𝑖−𝜇𝑡)

𝜎𝑡

▪ Min-max apply a linear transformation to the original data,
where the minimum value (𝑚𝑖𝑛(𝑡)) and the maximum value
(𝑚𝑎𝑥(𝑡)) are used to transform each value 𝑡𝑖 of to another
value 𝑡𝑖

′ in a range varying from [0,1]

▪ 𝑡𝑖
′ =

𝑡𝑖−𝑚𝑖𝑛(𝑡)

𝑚𝑎𝑥(𝑡)−𝑚𝑖𝑛(𝑡)
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Background: SAX

▪ SAX is an indexing technique that partitions the domain
of a variable into ranges such that each range is
associated with a particular symbol [1]

▪ The SAX alphabet size defines the number of partitions
for the domain (ex: a, b, c)

[1] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel symbolic representation of time series,” Data Mining and Knowledge 
Discovery, vol. 15, no. 2, pp. 107–144, 2007
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Background: Approaches for motifs discovery

▪ Brute force approach is the simplest method
▪ It has a high computational cost [2] and is indicated for discovering sequences of smaller

size [3]
▪ The coverage and accuracy are complete. It makes all possible comparisons

▪ The random projections approach was proposed to handle large dataset by
reducing dimensionality
▪ Optimizes search by randomly selects some of sliding windows columns for search [4]
▪ Collision matrix that masks the projected columns (subsequence matrix and candidate

search sequence)

▪ Sort the motifs according to their relevance [5]
▪ A standard classification method is k-motif which considers the number of occurrences

of the motifs in time series
▪ Sorted according to their relevance degree (some motifs can be similar to a straight line,

i.e., may not be relevant)
▪ Such motifs can be low qualified or discarded to avoid distorting the analysis
▪ Assess the relevance of motifs based how expected is the motif to occurs [5]

[2] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact discovery of time series motifs,” in Society for Industrial and Applied 
Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics, 2009, vol. 1, pp. 469–480.
[3] L. Li and S. Nallela, “Probabilistic discovery of motifs in water level,” in 2009 IEEE International Conference on Information Reuse and 
Integration, IRI 2009, 2009, pp. 388–393
[4] J. Buhler and M. Tompa, “Finding motifs using random projections,” Journal of computational biology, vol. 9, no. 2, pp. 225–242, 2002
[5] N. C. Castro and P. J. Azevedo, “Significant motifs in time series,” Statistical Analysis and Data Mining, vol. 5, no. 1, pp. 35–53, 2012.
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Related work: motifs in spatial-time

▪ Oates [1] focused on analyzing repetitive sequences of
moving objects
▪ For that, they developed a grammar, applied SAX indexing, and

searched for motifs over trajectory
▪ Difference: we do not have a moving object. Sensors are fixed, and

we analyze a phenomenon that occurs at each position throughout
the time

▪ Du [2], space is modeled by discrete attributes that resemble
states of an object
▪ they refer to the state of companies in the stock market
▪ It is state-space model where a trajectory is the registration of state

transitions
▪ Differences: The modeled phenomenon may not be constrained in

space and time

[1] T. Oates, A. P. Boedihardjo, J. Lin, C. Chen, S. Frankenstein, and S. Gandhi, “Motif discovery in spatial trajectories using grammar inference,” 
in Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, 2013, pp. 1465–1468.
[2] X. a Du, R. a Jin, L. b Ding, V. E. a Lee, and J. H. b T. Jr, “Migration motif: A spatial-temporal pattern mining approach for financial markets,” 
in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, pp. 1135–1143
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Related work: Multivariate time series

▪ Tanaka [1] applied the method to the multidimensional
time-series transforming into one-dimensional time-
series using the Principal Component Analysis

▪ Son [7] proposed two new algorithms: one based on R-
tree and the other is based on dimensionality reduction
through Skyline index

[1] . Tanaka, K. Iwamoto, and K. Uehara, “Discovery of time-series motif from multi-dimensional data based on MDL principle,” Machine Learning, 
vol. 58, no. 2–3, pp. 269–300, 2005
[7] N. T. Son and D. T. Anh, “Discovery of time series k-motifs based on multidimensional index,” Knowledge and Information Systems, vol. 46, 
no. 1, pp. 59–86, 2016
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Discovering Motifs in Space-Time Series

▪ Spatial-time series is a
more complex scenario

▪ known motif discovery
method on each spatial-
time series for a
support 𝜎 ≥ 2
▪ green worm-like found

only in 𝑆𝑇3

▪ Other equivalent worm-
like shape are not
discovered: (𝑆𝑇2, 𝑆𝑇4)

synthetic dataset containing twelve spatial-time series (𝑆𝑇1⋯𝑆𝑇12) 
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Discovering Space-Time Motifs

▪ We are interested in finding motifs that occur in a
constrained space and time

▪ A block 𝑏 is a couple ({𝑠𝑡}, 𝑖) where {𝑠𝑡} is a set of neighbors
spatial-time series and 𝑖 is a time interval
▪ The size of a block 𝑏 is the product of the number of spatial-time

series with interval length: |𝑏| = |𝑠𝑡| ⋅ |𝑖|

▪ Let 𝐵 be a partition of 𝑆 into blocks 𝑏.

▪ Let 𝜎 and 𝜅 be two support values such that 𝜎 ≥ 𝜅
▪ A subsequence 𝑞 is a spatial-time motif if and only if there exists a

block 𝑏 such that 𝑞 is included at least 𝜎 times in it and 𝑞 occurs in
at least 𝜅 different spatial-time series inside 𝑏

▪ From the definition above, the problem can be summarized
as the discovery of spatial-time motifs in a spatial-time series
dataset
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Combined Series Approach (CSA)

▪ 𝑪𝑺𝑨 𝑫,𝒘, 𝒔𝒃, 𝒕𝒃, 𝝈, 𝜿

▪ 𝐷𝑆 ← 𝑛𝑜𝑟𝑚𝑆𝐴𝑋(𝐷, 𝑎)

▪ 𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠 ←
𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑆𝑇𝑀𝑜𝑡𝑖𝑓𝑠(𝐷𝑆,𝑤, 𝑠𝑏, 𝑡𝑏, 𝜎, 𝜅)

▪ 𝑟𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠 ← 𝑟𝑎𝑛𝑘𝑆𝑇𝑀𝑜𝑡𝑖𝑓𝑠(𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠)

▪ return 𝑟𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠

▪ 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑆𝑇𝑀𝑜𝑡𝑖𝑓𝑠(𝐷𝑆, 𝑤, 𝑠𝑏, 𝑡𝑏, 𝜎, 𝜅)

▪ 𝐵 ← 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐷𝑆, 𝑠𝑏, 𝑡𝑏)

▪ 𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠 ← ∅

▪ 𝑐𝑠 ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑏𝑖,𝑗)

▪ 𝑚𝑜𝑡𝑖𝑓𝑠 ← 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟(𝑐𝑠, 𝑤, 𝜎)

▪ 𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠 ← 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒(𝑚𝑜𝑡𝑖𝑓𝑠, 𝜎, 𝜅) ∪
𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠

▪ return 𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠

▪ 𝑛𝑜𝑟𝑚𝑆𝐴𝑋(𝐷, 𝑎)
▪ 𝐷𝑧 ← 𝑧𝑠𝑐𝑜𝑟𝑒(𝐷)
▪ 𝐷𝑆 ← 𝑆𝐴𝑋(𝐷𝑧, 𝑎)
▪ return 𝐷𝑆

▪ 𝑟𝑎𝑛𝑘𝑆𝑇𝑀𝑜𝑡𝑖𝑓𝑠(𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠)
▪ 𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠 ← 𝑔𝑟𝑜𝑢𝑝(𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠)

▪ 𝑒𝑛𝑡𝑖 = σ𝑘=1
|𝑓𝑡(𝑚𝑖)| 𝑓𝑡(𝑚𝑖)𝑘

𝑛
⋅ 𝑙𝑜𝑔2

𝑓𝑡(𝑚𝑖)𝑘

𝑛

▪ 𝑂𝑖 ← 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑚𝑖)
▪ 𝑜𝑐𝑐𝑖 ← 𝑙𝑜𝑔2(𝑂𝑖)

▪ 𝑑𝑖𝑠𝑡𝑖 ←
1

𝑎𝑤(𝑚𝑠𝑡(𝑤𝑎𝑚(𝑂𝑖)))

▪ 𝑟𝑎𝑛𝑘 = 𝑝𝑟𝑜𝑗(𝑛𝑜𝑟𝑚(𝑒𝑛𝑡, 𝑜𝑐𝑐, 𝑑𝑖𝑠𝑡))
▪ return 𝑜𝑟𝑑𝑒𝑟(𝑠𝑡𝑚𝑜𝑡𝑖𝑓𝑠, 𝑟𝑎𝑛𝑘)
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Analysis Using Synthetic Dataset:

Normalization and indexing

(i) alphabet size (𝑎 = 5)
(ii) spatial block size (𝑠𝑏 = 4)
(iii) temporal block size (𝑡𝑏 = 10)
(iv) word size (𝑤 = 4)
(v) thresholds 𝜎 = 2 and 𝜅 = 2

𝑛𝑜𝑟𝑚𝑆𝐴𝑋
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Analysis Using Synthetic Dataset:

Combining series and discovering motifs

▪ Dataset has 12 spatial-time
series and 20 observations

▪ c𝑜𝑚𝑏𝑖𝑛𝑒
▪ The dataset is partitioned into

6 blocks (40 observations)

▪ 𝑠𝑏 = 4 and 𝑡𝑏 = 10

▪ 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟
▪ In each 𝑐𝑠 , the 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟

identifies all motif with 𝜎 ≥ 2

▪ 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
▪ Check 𝜅 constraint

Combined time series
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Analysis Using Synthetic Dataset:

Combining series and discovering motifs

▪ Motifs discovered are
marked with colors red,
green, and orange

▪ The majority of motifs
discovered using the
𝐶𝑆𝐴 approach had not
been found earlier

Spatial-time series
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Analysis Using Synthetic Dataset:

Ranking

▪ Motifs are grouped according neighbor blocks
▪ Dimensions used to rank the identified motifs

▪ Entropy (Ent.) for both 𝑏𝑑𝑒𝑑 and 𝑐𝑒𝑒𝑏 was 1.5 (3/4 distinct characters)
▪ Distance metric (Dist.) is the reciprocal of the average weight of the

minimum spanning tree that connects identified occurrences for each
motif (the closer to one, the better it is)

▪ Occurrences (Occ.) consider the 𝑙𝑜𝑔2 of the occurrences

▪ Ranking (Rank) combines the normalized dimensions (Ent., Dist.

and Occ.) projecting it to normalized vector (
1

3
,

1

3
,

1

3
)

6. Analysis Using Synthetic Dataset

For abetter understanding of theCSA and its steps, consider

a synthetic spatial-time dataset D depicted at Figure 2. Each

row isaspatial-time series (varying from positions1 to 12) with

20 observations. In our example, we established the following

thresholds: (i) word size (w = 4), (ii) alphabet size (a = 5), (iii)

spatial block size (sb = 4), (iv) temporal block size (tb = 10),

(v) thresholdsσ = 2 and = 2.

Figure 3 depicts the result of applying the first step of CSA

(normSAX) into the synthetic dataset using an alphabet size of

5. Values are being replaced by letters (a,b,c,d,e). In this case,

central valuesare tagged asc, lower positivevalues asd, higher

positiveas e, lower negative as b and higher negativeas a. Fig-

ure 3 presents a SAX indexed spatial-time series dataset.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ST1 a a c e e b b a a e b d e d a a e a b a
ST2 c a e e c d a a a d b d e d c b a b a e
ST3 c e e b c c d c c c b a b a d b a b a c
ST4 c c e e b a a c d a a b a b a a b d e d

ST5 c e c e b a b c e a b b b b c c b d e d
ST6 c e e d c a d a d a c d c b c a d c c c
ST7 c e d e b b b e e a b d a d b d c c d c
ST8 c c e e c e c a c a e c a b b d e d a b

ST9 e c e d a a a d b b b a b a c e d d e d

ST10 c e e b e d a d d a e b a d b d e d b d
ST11 c c e e b d a c b b c b e b e d d d d e
ST12 c e e b a c a c d b e b d e d d c d d e

tb = 10

sb
 =

 4
sb

 =
 4

sb
 =

 4

tb = 10

Figure 3: Synthetic dataset partitioned into blocks

The second step of CSA (discoverSTMoti f s) encompasses

combine, discover and validate functions. Figure 3 also shows

how CSA partition of the dataset, where each orange box cor-

responds to a block. Since the dataset has 12 spatial-time se-

ries and 20 observations, the dataset is divided into 6 blocks,

where each one contains 40 observations. Figure 4 shows the

result of the combine and discover functions presented in the

discoverSTMoti f s to our synthetic dataset. Each block pro-

ducesacombined timeseries (cs) with 40 observations. In each

cs, thediscover identifies all motif with σ ≥ 2. The motifs dis-

covered are marked with colors red, green, and orange. Then,

motifs are depicted at their original position with respect to the

dataset as long as they are validated according to both σ and

constraints as presented in Figure 5.
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Figure 4: Motif discovery algorithm applied to combined series

The majority of motifs discovered using the CSA approach

had not been found when applying traditional motif discovery
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Figure 5: Discovered motifs after spatial-temporal validation

algorithms in each spatial-time series. As indicated in Table

1, traditional approach (Trad.) only found two occurrences for

motif baba (marked as green). CSA found four occurrences

of baba, seven of bded (marked as red), and two sets of three

ceeb (marked as orange). In the case of bded, the seven occur-

rences were discovered in neighbor blocks and were grouped

in a single set. However, in the case of ceeb, the two sets of

three occurrences were not grouped since they were not found

in neighbor blocks.

Table 1 also presents the dimensions used to rank the iden-

tified motifs. The entropy (Ent.) for both bded and ceeb was

1.5, since they contain threeout of four distinct characters. The

distance metric (Dist.) is thereciprocal of theaverageweight of

theminimum spanning treethat connects identified occurrences

for each motif (the closer to one, the better it is). Thus, baba

presents thebetter distance (0.83). Theoccurrences (Occ.) con-

sider the log2 of the occurrences. Finally, the ranking (Rank)

combines the normalized dimensions (Ent., Dist. and Occ.)

projecting it to normalized vector (

q
1
3
,

q
1
3
,

q
1
3
). The motif

bded was the better ranked one (1.52) followed close by set

ceeb(1) that occurred from ST10 to ST12 (1.17). Although

ceeb has a better distance, the number of occurrences of bded

compensated this measure. Finally, despite the fact that baba

had a lower entropy, it was better ranked than ceeb(2), which

occurred from ST1 to ST4, due to a better number of occur-

rences and a better distance among them.

Table 1: CSA versus Traditional (Trad.) method in thesynthetic dataset

Motif Trad. CSA Ent. Dist. Occ. Rank

bded - 7 1.5 0.53 2.81 1.52

ceeb(1) - 3 1.5 0.71 1.58 1.17

baba 2 4 1.0 0.83 2.00 0.95

ceeb(2) - 3 1.5 0.47 1.58 0.71

6
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Seismic Analysis Example

Source: https://krisenergy.com/company/about-oil-and-gas/exploration/

We applied CSA in the Netherlands seismic spatial-time series dataset, named F3 Block 
Each spatial-time series has a position in which the geophone or hydrophone is placed 



20

Seismic Analysis Example

Spatial-time series dataset

Each receiver produces a spatial-time series

related to a specific position of the surface

The dataset is organized into inlines (920 spatial-time series with 440 observations in each)
We selected the inline 401 since it has been mapped by seismic specialists



21

(Scientific)

Seismic Analysis Example

▪ The values of observations represents the wave
amplitude reflected from the subsoil

▪ The probability density function (PDF): frequency
distribution with a high concentration of values close to
zero varying from -10000 to 10000
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Experimental Setup

▪ The CSA Algorithm requires parameters 𝑎𝑙𝑝ℎ𝑎, 𝑤𝑜𝑟𝑑, 𝑡𝑏, 𝑠𝑏, 𝜎,
and 𝜅

▪ The 𝑎𝑙𝑝ℎ𝑎 was chosen based on the data adjustment
▪ We varied the alphabet size for SAX encoding from 1 to 25 using maximum

curvature analysis for the 𝑀𝑆𝐸 for each alphabet size

▪ The CSA is available as an R Package (STMotif)
▪ Experimental evaluation was conducted in a cluster with 24 cores

using SparkR
▪ The experimental evaluation ran at wall-time of 1.3 hours
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Analysis of Spatial-Time Motifs

(overall performance according to orientation)

▪ Discovered motifs and their occurrences and
computational time as we vary block size (𝑡𝑏 and 𝑠𝑏),
𝑤𝑜𝑟𝑑, 𝜎, and 𝜅

▪ Three orientations: vertical rectangle (𝑡𝑏 = 40; 𝑠𝑏 = 10),
square (𝑡𝑏 = 20; 𝑠𝑏 = 20), and horizontal rectangle (𝑡𝑏 =
10; 𝑠𝑏 = 40) and the traditional approach
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Analysis of Spatial-Time Motifs

(performance according to word size and orientation)

▪ Number of discovered motifs and the
sets of occurrences

▪ As we increase the word size, the
number of discovered motifs
decrease

▪ The number identified motifs for CSA
when compared to traditional
approach becomes more significant
as we increase the word size

▪ The highest number of identified
motifs occurred in CSA Square
orientation for word size equals to
four

▪ The computation time (in minutes)
for all discovered motifs also
decreases as we increase the word
size
▪ It is due to the ranking function

overhead
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Analysis of Spatial-Time Motifs

(varying 𝜎 and 𝜅)

▪ Influence of 𝜎 and 𝜅 in the number of discovered motifs

▪ Orientation: square block; word size = 4

▪ As we increase 𝜎, lower number of occurrences are
identified

▪ As we increase 𝜅 constraints, the number of occurrences
also decreases



26

Analysis of Ranking of Spatial-Time Motifs

▪ Parameters: Orientation: Square block; Word = 4, 𝜎 = 3, 𝜅 = 3
▪ The highest ranked motif (𝑎𝑎𝑔𝑔) presented a good distance value, an

average entropy, and a high number of occurrences
▪ The second place (𝑑𝑓𝑔𝑒), although having small number of occurrences,

it had a good distance value and a good entropy
▪ The third place (𝑎𝑎𝑎𝑔) was similar to the first motif, but the smaller

number of occurrences
▪ The fourth place (𝑔𝑔𝑓𝑎) compensated for the smaller number of

occurrences with an excellent distance metric
▪ The fifth place (𝑒𝑔𝑓𝑎) was similar to the second place
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Analysis of Top-k Spatial-Time Motifs

(according to ranking)

▪ top-ten discovered motifs

▪ The places where the motifs were plotted are in agreement
with annotations from specialists where seismic horizons are
located

▪ Yellow ones are close to a gas reservoir
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Analysis of Top-k Spatial-Time Motifs

(using ranking as a filter)

▪ Top-ten distinct motifs sorted by their occurrences
▪ Using ranking value to filter: Values greater than 1.0

▪ The occurrences of motifs matched more regions where
seismic horizons are located

▪ Ranking function was conceived for general purpose
usage and did not focus on any aspect to target seismic
horizons



Discovering Tight Space-Time Sequences
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Spatial-time sequence mining

(motivation example)

▪ Quantified-self movement, where people wear connected
bracelets giving their position and inferring their activities
▪ A brand might discover some habits regarding sports and food at

coarse grain

▪ “people who jog in the morning step by a vegan shop once a week”

▪ There might be fine-grained behaviors that cannot be
extracted
▪ They concern a niche (extremely low support)

▪ “people in Manhattan who jog at 7 am and have lunch near Time
Square, spend 1 to 2 minutes in front of the buildings displays”

▪ The challenge is to extract both the pattern (e.g., jog, lunch,
buildings displays), its occurrence time (e.g., from 7 am to
lunchtime), and the location where it occurs (e.g., Time
Square)
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Discovery challenge

▪ We are interested in finding tight space-time sequences

▪ Sequences that are constrained in space and time

▪ Sequences that may not be frequent in the entire dataset

▪ Sequences that may be frequent inside a time interval and
space range (spatiotemporal blocks)

▪ The primary challenge is to discover these blocks and
the frequent sequences they contain
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Related Work: Trajectories datasets

▪ Collection of events of the same moving object at
different spatial locations and times [1,3]

▪ It includes works that search for routes frequently used

▪ The position of moving objects may be inaccurate, some
approaches address the position uncertainty to better
recognize common trajectories [2]

▪ Difference: We are not interested in moving objects that
have the same behavior. Instead, we are interested in
regions and time intervals when some events are related
(constrained) and relevant (with high local support)

[1] Y. Huang, L. Zhang, e P. Zhang, “A framework for mining sequential patterns from spatio-temporal event data sets”, IEEE Transactions on 
Knowledge and Data Engineering, vol. 20, no 4, p. 433–448, 2008.
[2] Y. Li, J. Bailey, L. Kulik, e J. Pei, “Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain 
databases”, in Proceedings - IEEE International Conference on Data Mining, ICDM, 2013, p. 448–457.
[3] F. Giannotti, M. Nanni, F. Pinelli, e D. Pedreschi, “Trajectory pattern mining”, in Proceedings of the ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 2007, p. 330–339.
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Related Work: Event-based datasets

▪ Correspond to the majority of related work

▪ Find sequences constrained by space and time

▪ For that, data is partitioned according to spatial or temporal
dimensions, and events are related whenever they preserve
certain proximity [1,2,3]

▪ Difference: they differ since all identified sequences are
frequent in the entire dataset. In our work, sequences
may only be frequent inside spatiotemporal blocks (i.e.,
a time interval and space range)

[1] H. Alatrista-Salas, J. Azé, S. Bringay, F. Cernesson, N. Selmaoui-Folcher, e M. Teisseire, “A knowledge discovery process for spatiotemporal 
data: Application to river water quality monitoring”, Ecological Informatics, vol. 26, no P2, p. 127–139, 2015.
[2] I. Tsoukatos e D. Gunopulos, “Efficient mining of spatiotemporal patterns”, Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2121, p. 425–442, 2001.
[3] A. Julea, N. Méger, C. Rigotti, E. Trouvé, P. Bolon, e V. Lǎzǎrescu, “Mining pixel evolutions in satellite image time series for agricultural 
monitoring”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 
vol. 6870 LNAI, p. 189–203, 2011..
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Related Work: Emerging patterns

▪ Correspond to solve the problem where data are
continuously added to the database

▪ Previously identified patterns may become irrelevant, and new
patterns may emerge [1,3]

▪ Some initiatives in emerging spatiotemporal datasets have
been developed so far [2]

▪ Difference: these works are complementary to ours
since all identified patterns in both datasets (initial or
updated) have high support

[1] C.-Y. Tsai e Y.-C. Shieh, “A change detection method for sequential patterns”, Decision Support Systems, vol. 46, no 2, p. 501–511, 2009.
[2] Y.-L. Chen e Y.-H. Hu, “Constraint-based sequential pattern mining: The consideration of recency and compactness”, Decision Support 
Systems, vol. 42, no 2, p. 1203–1215, 2006.
[3] B. Aydin e R. A. Angryk, “Spatiotemporal event sequence mining from evolving regions”, in Proceedings - International Conference on Pattern 
Recognition, 2017, p. 4172–4177.
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Formalization

▪ Let t be a time-stamped sequence (TS) < 𝑣1, 𝑣2, . . . , 𝑣𝑛 >, sequence of
items, where |𝑡| = 𝑛 is the number of items in 𝑡

▪ A sequence s = < 𝑤1, 𝑤2, . . . , 𝑤𝑘 > is included in TS if there exist integers
𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 such that 𝑤1 = 𝑣𝑖1 , 𝑤2 = 𝑣𝑖2 , ⋯ , 𝑤𝑘 = 𝑣𝑖𝑘

▪ Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} be a set of positions, a spatial time-stamped
sequence (STS) 𝑑 is a couple (𝑝, 𝑡) where 𝑝 ∈ 𝑃 and 𝑡 is TS

▪ A STS dataset 𝐷 is a set of STS
▪ An STS 𝑑 = (𝑝, 𝑡) is said to support a sequence 𝑠 if 𝑠 is included in 𝑡
▪ The support of a sequence 𝑠 in 𝐷 is the number of STS in 𝐷 in which 𝑠 is

included
▪ The frequency of a sequence 𝑠 in 𝐷 is the fraction of STS in 𝐷 that

supports 𝑠: 𝑓𝑟𝑒𝑞(𝑠, 𝐷) =
𝑠𝑢𝑝(𝑠,𝐷)

|𝐷|

▪ Given a user’s minimum threshold 𝛾 ∈]0. . 1], a sequence 𝑠 is said to be
frequent if 𝑓𝑟𝑒𝑞(𝑠, 𝐷) ≥ 𝛾
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Formalization

▪ A spatial range (or simply range) 𝑟 = (𝑝𝑠, 𝑝𝑒) is defined by a
start position 𝑝𝑠 and an end position 𝑝𝑒
▪ We define the set of all potential ranges over 𝐷 as 𝑃𝑅

▪ The set of STS that belong to range 𝑟 is defined as 𝑇𝑟(𝑟) =
{𝑑: 𝑑 ⊆ 𝐷, 𝑝𝑠 ≤ 𝑑. 𝑝 ≤ 𝑝𝑒}
▪ The frequency of 𝑠 over 𝑇𝑟(𝑟) in STS for 𝑟 is denoted by 𝑓𝑟𝑒𝑞(𝑠, 𝑟)

▪ The support of 𝑠 over 𝑇𝑟 𝑟 in STS is denoted by 𝑠𝑢𝑝(𝑠, 𝑟)

▪ A ranged sequence 𝑠𝑟 is a triple (𝑠, 𝑟, 𝑓𝑟) where 𝑠 is a
sequence, 𝑟 is a range, and 𝑓𝑟 is the frequency of the
sequence 𝑠 over the range 𝑟: 𝑓𝑟 = 𝑓𝑟𝑒𝑞(𝑠, 𝑟)

▪ A time interval (or simply interval) 𝑖 = (𝑖𝑠, 𝑖𝑒) is defined by a
start time 𝑖𝑠 and an end time 𝑖𝑒
▪ The length of an interval 𝑖 is given by: |𝑖| = 𝑖𝑒 − 𝑖𝑠 + 1.

▪ We define the set of all possible intervals over 𝐷 as 𝑃𝐼
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Formalization

▪ A block 𝑏 is a couple (𝑟, 𝑖) where 𝑟 is a range (𝑟 ∈ 𝑃𝑅) and 𝑖
is an interval (𝑖 ∈ 𝑃𝐼): |𝑏| = |𝑏. 𝑟| ⋅ |𝑏. 𝑖|.
▪ We define the set of all possible blocks over a range 𝑟 as 𝑃𝐵(𝑟)

▪ A sequence 𝑠 𝒐𝒄𝒄𝒖𝒓 in 𝑏 if the first element of 𝑠 is inside in
𝑏.
▪ 𝑜𝑐𝑐𝑢𝑟(𝑠, 𝑏) is a set of pairs (𝑝, 𝑡) that corresponds to the beginning*

of 𝑠 in 𝑏

▪ The support of a sequence 𝑠 in a block 𝑏, 𝑠𝑢𝑝(𝑠, 𝑏) is the
number of occurrences of 𝑠 in 𝑏: |𝑜𝑐𝑐𝑢𝑟(𝑠, 𝑏)|
▪ Given a user’s minimum threshold 𝛿 ∈]0. . 1], a sequence 𝑠 is said to

be frequent in a block 𝑏 if 𝑓𝑟𝑒𝑞(𝑠, 𝑏) ≥ 𝛿.

▪ A blocked sequence 𝑠𝑏 is a triple (𝑠, 𝑏, 𝑓𝑟) where 𝑠 is a
sequence, 𝑏 is a block, and 𝑓𝑟 is the frequency of 𝑠 over 𝑏:
𝑓𝑟 = 𝑓𝑟𝑒𝑞(𝑠, 𝑏)
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Problem statement

▪ Considering an STS dataset D, the problem we address is
to find sequences in D that are frequent in constrained
spatial range and time interval

▪ The goal is to discover these ranges and intervals and the
frequent sequences they contain

▪ In the following definitions, we introduce the notions of
solid-ranged sequence and solid-blocked sequence that
are fundamental for STSM algorithm

▪ Their intuition is to respectively support the
identification of spatial range and time-space blocks
where a pattern is frequent
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Spatial-Temporal Sequence Miner - STSM

▪ STSM is the algorithm to address the problem definition

▪ We introduce the notions of solid-ranged sequence and
solid-blocked sequence

▪ Their intuition is to respectively support the
identification of spatial range and time-space blocks
where a pattern is frequent
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Solid-Ranged Sequence

▪ Let 𝑠𝑟 be a ranged sequence of range 𝑟, sequence 𝑠, and 
frequency 𝑓𝑟. Then, 𝑠𝑟 is called a solid-ranged sequence
iff the following conditions hold:
1) 𝑓𝑟 ≥ 𝛾

2) ∀𝑟2 ∈ 𝑃𝑅 | 𝑟 ⊆ 𝑟2, we have either a) or b) or both:
a) 𝑓𝑟𝑒𝑞(𝑠, 𝑟2) < 𝛾
b) 𝑠𝑢𝑝(𝑠, 𝑟2) = 𝑠𝑢𝑝(𝑠, 𝑟)

3) ∀𝑟2 ∈ 𝑃𝑅 such that 𝑟2 ⊂ 𝑟, 𝑠𝑢𝑝(𝑠, 𝑟2) < 𝑠𝑢𝑝(𝑠, 𝑟)

▪ The first condition ensures that 𝑠𝑟 represents a 
sequence that is frequent over its associated range

▪ The second condition ensures that the size of 𝑟 is 
maximal 

▪ The third condition ensures that the size of 𝑟 is minimal
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Solid-Ranged Block

▪ Let 𝑠𝑏 be a blocked sequence with a block 𝑏, sequence 𝑠, and frequency 
𝑖𝑓𝑟. Then, 𝑠𝑏 is called a solid-blocked sequence iff the following 
conditions hold:
1) ∃ 𝑠𝑟 ∈ 𝐒𝐑|𝐬| | 𝑏. 𝑟 ⊆ 𝑠𝑟. 𝑟 𝑎𝑛𝑑 𝑠 = 𝑠𝑟. 𝑠

2) 𝑓𝑟 ≥ 𝛿
3) ∀𝑏2 ∈ 𝑃𝐵(𝑟) | 𝑏 ⊆ 𝑏2, we have either a) or b) or both:

a) 𝑓𝑟𝑒𝑞(𝑠, 𝑏2) < 𝛿
b) 𝑠𝑢𝑝 𝑠, 𝑏2 = 𝑠𝑢𝑝 𝑠, 𝑏

4) ∀𝑏2 ∈ 𝑃𝐵(𝑟) | 𝑏2 ⊂ 𝑏, 𝑠𝑢𝑝 𝑠, 𝑏2 < 𝑠𝑢𝑝 𝑠, 𝑏
5) 𝑠𝑢𝑝(𝑠, 𝑏) > 1

▪ The first condition ensures that the range of 𝑠𝑏 is within the range of a 
solid-ranged sequence 𝑠𝑟

▪ The second condition ensures that 𝑠 corresponds to a sequence that is 
frequent in 𝑏

▪ The third condition ensures that the size of 𝑏 is maximal
▪ The fourth condition ensures that the size of 𝑏 is minimal
▪ The fifth condition avoids trivial solid-blocked sequences that contain 

only a single occurrence of 𝑠 in 𝑏
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General Principle

▪ 𝑆𝑇𝑆𝑀(𝐷, 𝛾, 𝛿)

▪ 𝐶1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐷, 𝑛𝑖𝑙)

▪ 𝑘 ← 0

▪ Repeat

▪ 𝑘 ← 𝑘 + 1

▪ 𝑆𝑅𝑘 ← 𝑠𝑜𝑙𝑖𝑑𝑅𝑎𝑛𝑔𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝐷, 𝐶𝑘 , 𝛾)

▪ 𝑆𝐵𝑘 ← 𝑠𝑜𝑙𝑖𝑑𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝐷, 𝑆𝑅𝑘 , 𝛿)

▪ 𝐶𝑘+1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝐷, 𝑆𝐵𝑘)

▪ Until 𝐶𝑘+1 ≠ ∅

▪ return {𝑆𝐵1, ⋯ , 𝑆𝐵𝑘}
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Toy example

▪ 10 Spatial-TSS (𝑑1, 𝑑2, . . . , 𝑑10)

▪ Each Spatial-TSS has 6 observations (𝑣1 to 𝑣6)

▪ Consider a frequency threshold 𝛾 =
1

2
for 𝐷

▪ <a> (frequent in 5 of the 10 TSS)

     D

t
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

v1 a b c d t q i g a h

v2 k l m n p q u s t v

v3 w e e x y m a r d a

v4 h o o g e i e i c b

v5 i j k l o z n u z p

v6 u a r s t µ c d f a
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     D

t
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

v1 a b c d t q i g a h

v2 k l m n p q u s t v

v3 w e e x y m a r d a

v4 h o o g e i e i c b

v5 i j k l o z n u z p

v6 u a r s t µ c d f a

Example of Spatial-Temporal Series

▪ Consider a frequency threshold 𝛾 =
1

2
for 𝑆𝑅

▪ <a> (100% 𝑠𝑟1), <a> (75% 𝑠𝑟2),

▪ <e>,<o>,<e,o> (75% 𝑠𝑟3), <i>,<u>,<i,u> (100% 𝑠𝑟4)

(sr3) (sr4)
(sr1) (sr2)
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     D

t
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

v1 a b c d t q i g a h

v2 k l m n p q u s t v

v3 w e e x y m a r d a

v4 h o o g e i e i c b

v5 i j k l o z n u z p

v6 u a r s t µ c d f a

Example of Spatial-Temporal Series

▪ Consider a frequency threshold 𝛿 =
3

4
for 𝑆𝐵

▪ <e>,<e,o> (75% blue block from 𝑠𝑟3)

(sr3) (sr4)
(sr1) (sr2)
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Experimental Analysis

Seismic Dataset

▪ The algorithm proposed in this work allows for users to
set solid range threshold 𝛾 and solid block threshold 𝛿
constraints.

▪ Finding adequate values for these thresholds depends
on the characteristics of input dataset/application.
▪ Lower values for such constraints can lead to the identification

of a large number of non-useful frequent sequences

▪ Higher values for these thresholds can result in the detection
of a small number of frequent sequences that may become
too small to be interesting

▪ We explored the combination of solid range threshold 𝛾
(60%, 70%, 80%, 90%, and 100%) with solid block
threshold 𝛿 (10%, 20%, 30%, 40%, and 50%)
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Experimental Evaluation: STSM Parameters

▪ Calibration of thresholds γ = 80% and δ = 20% for
sequence <a, a, a> produce finer grained blocks with a
more complete overlap of the horizon
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Experimental Evaluation: Best ranked patterns

▪ High number of patterns detected

▪ Ranked to prioritize best results using a simple density criteria
(mean block size of all solid-blocked sequences for 𝑠)

▪ The best patterns follow potential horizons
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Experimental Evaluation: bright-spots

▪ Some of the high ranked discovered patterns follow
previously knowns potential bright-spots for this dataset

▪ Bright spots are rare patterns that occur when there is an
inversion of the wave phase
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Experimental Evaluation: STSM and GSTSM

▪ Identified occurrences by STSM (marked as red)
correspond to seismic horizons

▪ Many occurrences from GSTSM (marked as black)
correspond to noise



Comparison
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Comparisons between Motifs and Sequence Mining

(according to the observations)

▪ Motif identification

▪ Can work directly with time series (exact match motif)

▪ Univariate/ Multi-variate time series

▪ No item-set support

▪ Sequence-pattern mining

▪ Indexed time-series only

▪ Item-set support

▪ May find multi-variate patterns among different dimensions
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Comparisons between Motifs and Sequence Mining

(according to space-time dimensions)

▪ Motif identification

▪ 𝑆 ∙ 𝑇

▪ 𝑆 ∙ 𝑆 ∙ 𝑇

▪ 𝑆 ∙ 𝑆 ∙ 𝑇 ∙ 𝑇 (challenge)

▪ Sequence-pattern mining

▪ 𝑆 ∙ 𝑇

▪ 𝑆 ∙ 𝑆 ∙ 𝑇 (challenge)

▪ 𝑆 ∙ 𝑆 ∙ 𝑇 ∙ 𝑇 (challenge)
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Comparisons between Motifs and Sequence Mining

(according to performance)

▪ Motif identification

▪ Limited for small-sequences (without random-projection)

▪ Sequence-pattern mining

▪ Seems to scale up better

▪ Our approach needs to guarantee antimonotonicity
property of Aprori



Challenges
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Spatial  order in higher dimensions

(2D Space and 1D time)
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Seasonal patterns

Hyndman, 2011 - https://robjhyndman.com/hyndsight/cyclicts/
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Non-stationarity

R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, e E. Ogasawara, “Nonstationary time series transformation methods: An experimental review”, 
Knowledge-Based Systems, nov. 2018.
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Parameter-free methods

▪ General

▪ SAX indexing alphabet

▪ Motifs

▪ Word size

▪ Block size (time x space)

▪ Temporal and Spatial thresholds

▪ Spatial-temporal sequence-mining

▪ Temporal and Spatial thresholds
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Complex patterns
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New domains

Climate Data (sea surface temperature, wind) [1] New York Taxis [2]

Urban mobility [3]

[1] Nasa, 2018 - https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L2P-v2.4

[2] J. A. Deri, F. Franchetti, e J. M. F. Moura, “Big data computation of taxi movement in New York City”, in 2016 IEEE International Conference on 
Big Data (Big Data), 2016, p. 2616–2625.
[3] A. B. Cruz et al., “Detecção de anomalias frequentes no transporte rodoviário urbano”, in Proceedings of the 33nd Brazilian Symposium on 
Databases (SBBD), 2018.

https://podaac.jpl.nasa.gov/dataset/VIIRS_NPP-OSPO-L2P-v2.4
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Results

▪ Papers
▪ [1]R. Campisano, F. Porto, E. Pacitti, F. Masseglia, e E. Ogasawara, “Spatial

Sequential Pattern Mining for Seismic Data”, in XXXI Brazilian Symposium
on Databases, Salvador, BA, 2016

▪ [2]R. Campisano et al., “Discovering Tight Space-Time Sequences”, in
DaWak 2018, 2018

▪ R Packages
▪ [3] H. Borges, A. Bazaz, e E. Ogasawara, “STMotif: Discovery of Motifs in 

Spatial-Time Series”, The Comprehensive R Archive Network, 2018. 
https://cran.r-project.org/web/packages/STMotif/index.html

▪ Master degree defense
▪ M. Dutra, Discovering Motifs in Spatial-Time Series Seismic Datasets, 2016, 

co-advised with Fabio Porto
▪ R. Campisano, Sequence Mining In Spatial-Time Series, 2017 co-advised 

with Florent Masseglia

▪ Ph.D. on going
▪ H. Borges, Researching on Motifs and Spatial-Temporal Sequence Mining, 

co-advised with Esther Pacitti

https://cran.r-project.org/web/packages/STMotif/index.html
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