

Music Project 2016 Report

Eduardo Ogasawara http://eic.cefet-rj.br/~eogasawara

- Time series express phenomenon of interest
- Identifying motifs (unknown patterns) in time series brings knowledge and enables predictions

 Similar studies are also being made by sequence mining researchers aiming to find patterns in time series

- Some phenomenon are modeled as set of time series, each one with a particular position
- Although many research is being made in motifs/patterns identification, few work is being made in spatial-time series
 - From motifs researchers (no other work)
 - From sequence mining researches (very few)
- Opens space for new approaches, algorithms and method trying to address motifs is spatial-time series

Seismic Traces Analysis (Netherlands dataset)

Time

Crossline: 100 (951 time series with 462 observations)

Definition 1. A time series t is an ordered sequence of values in time [1], where each t_i is a value, |t| = m is the number of elements in t, and t_m is the most recent value in t.

 $t = \langle t_1, t_2, \ldots, t_m \rangle, t_i \in \mathbb{R}$

Definition 2. The *p*-th sub sequence [2] of size *n* in a time series *t*, represented as $t^{p,n}$, is an ordered sequence of values $\langle t_p, t_{p+1}, \ldots, t_{p+n-1} \rangle$, where $|t^{p,n}| = n$ and $1 \le p \le |t| - n$.

 $t^{p,n} = subseq(t, p, n)$

Motif in Time Series

Definition 5 Let $q = \langle q_1, q_2, ..., q_n \rangle$ and $t = \langle t_1, t_2, ..., t_m \rangle$ be two time series, such that |q| = n, |t| = m, and m > n. q is **included** in t (q < t) if and only if 9 w_i 2 W such that $w_i = q$.

Definition 6 Given two time series q and t, q is a **motif** [Mueen, 2014] with support σ , if and only if q is included in t at least σ times. Formally, given time series q and t such that W = sw(t, |q|), motif (q, t, σ) \$ 9 R \checkmark W, such that 8w_i 2 R, w_i = q^ |R| $\ge \sigma$.

Intuition of limitations of current approaches in spatial-time series

Spatial Time Motif

Definition 8 Let σ and κ be two support values such that $\sigma \geq \kappa$. A subsequence q is a **spatial**time motif iff q is included at least σ times in D and q occurs in at least κ different spatial-time series.

Figure V.4: Toy dataset partitioned into blocks

Combined time series

Combined Spatial-Time Series

Figure V.5: Motif Discovery Algorithm to Combined Series

Combined Series Algorithm

- 1: function STMOTIF($D, w, a, sslice, tslice, \sigma, \kappa, rf$)
- **2**: $D_s \leftarrow norm_sax(D, a)$
- 3: $b \leftarrow partition(D_s, sslice, tslice)$
- 4: for each $b_i \in b$ do
- 5: $t \leftarrow combine(b_i)$
- **6**: $motifs \leftarrow identify(t, w) \cup motifs$
- 7: end for
- 8: $cand_motifs = aggregate(motifs)$
- 9: $st_motifs = evaluate(cand_motifs, \sigma, \kappa)$
- 10: $topst_motifs = rank(st_motifs, rf)$
- 11: return *topst_motifs*
- 12: end function

Evaluation Using Seismic Datasets

Figure VI.5: Combined series experiment result

Summary of research

- Spatial-Time Motif Identification
 - Master Student: Murillo Dutra (defended on July 2016)
 - New spatial-time motif algorithm
 - Experimental evaluation: seismic dataset
 - Expected Target: Find seismic horizons
 - Current goals:
 - Write paper
- Spatial Sequence Mining
 - Master Student: Riccardo Campisano (defense on March 2017)
 - First paper submitted to SBBD 2016
 - Experimental evaluation: seismic dataset
 - Expected target: Find seismic faults
 - Current Goal: Develop new algorithm to find tight patterns

- One Master Degree Murillo Dutra (July 2016)
 - Co-advised by Fabio Porto
- SBBD Paper: Spatial Sequential Pattern Mining for Seismic Data
 - Riccardo Campisano, Fabio Porto, Esther Pacitti, Florent Masseglia, Eduardo Ogasawara

Next Steps: Research Proposal for Urban Mobility

- Spatial-Time Motif Identification for Urban Mobility (IoT)
 - Trajectory data using Buses of Rio de Janeiro
 - All buses send its position every minute

Buses positions in Rio in one day

Urban Mobility: Steps Already done

- Data Collection and Cleaning
 - Each day, we collect approximately 600.000 observations
 - After cleaning and outlier removal we maintain approximately 450.000 observations

Proposal for Urban Mobility

- Explore spatial-time motif identification in *trajectory data*
 - Goal: Find relevant patterns of moving objects
 - Expected to develop new trajectory motif algorithm
- Explore spatial-time motif identification in buses stations aggregated data
 - Apply spatial-temporal aggregation to convert buses trajectory data into permanent (fixed position) spatial-time series placed on buses stations
 - Goal: Find relevant relevant patterns in different regions
 - Expected to develop new spatial-time motif algorithm

Proposal for Urban Mobility

- Spatial-Time Motif Identification for Urban Mobility (IoT)
 - Spatial-temporal aggregation
 - Aggregate trajectory data into buses stations
 - New spatial-time motif algorithm
 - Find relevant patterns

New Students

- Ana Beatriz Cruz
 - Master Degree Student
 - ETL on Trajectory Data
 - Spatial-Temporal Aggregation
 - Initial implementation of spatial-time motifs
- Heraldo Borges
 - PhD Student
 - Study in more depth Spatial-Time Motifs
 - Possibility to work with Esther and Florent one year at Montpellier
 - Propose new algorithms
 - First Goal: Aid Murillo in submitting his paper