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Motifs in Time Series

▪ Time series express phenomenon of interest

▪ Identifying motifs (unknown patterns) in time series
brings knowledge and enables predictions

▪ Similar studies are also being made by sequence mining
researchers aiming to find patterns in time series
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Spatial-Time Series

▪ Some phenomenon are modeled as set of time series,
each one with a particular position

▪ Although many research is being made in
motifs/patterns identification, few work is being made in
spatial-time series

▪ From motifs researchers (no other work)

▪ From sequence mining researches (very few)

▪ Opens space for new approaches, algorithms and
method trying to address motifs is spatial-time series
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Seismic Traces Analysis

(Netherlands dataset)

Crossline: 100 ( 951 time series with 462 observations)
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Time Series and Sequences
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Motif in Time Series
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(a) Time Series (b) Uniform partitioning

(c) Maximum entropy partitining (d) SAX (Symbolic Aggregation Approximation)

Figure III.2: Symbolic Indexing methods

In figure III.2d, SAX transformation divides the time series plot area in three regions. The

number of regions is defined as input. Based on data distribution, the range of each region are

defined and tagged with a letter that will represent any value in such range.

III.7 Motif

In time series context, a motif can be described as a subsequence that occurs a determined

number of times in a time series in different time windows [Mueen, 2014]. An important property

regarding motifs is that the repeated subsequence is not previously known and is identified by

means of scanning the entire data. It can be discovered by making comparison between subse-

quences that are obtained using sliding windows [Lonardi and Patel, 2002]. Such process requires

some data preprocessing such as normalization and indexing prior the running of motif discovery

algorithms to increase the performance and precision of results [Mueen, 2014]. Formally:

Definition 5 Let q = < q1, q2, . . . , qn > and t = < t1, t2, . . . , tm > be two time series, such that

|q| = n, |t| = m, and m > n. q is included in t (q≺ t) if and only if 9 wi 2 W such that wi = q.

Definition 6 Given two time series q and t, q is a motif [Mueen, 2014] with support σ, if and only

if q is included in t at least σ times. Formally, given time series q and t such that W = sw(t, |q|),

moti f (q, t,σ) $ 9 R ✓ W , such that 8wi 2 R, wi = q ^ |R| ≥ σ.

According to Definition 6, a motif is a set of similar subsequences that occur in time series.

Many methods proposed in literature to discover motifs in time series are computational inten-

sive [Patel et al., 2002]. Due to that, many methods aim to improve the effectiveness in motif

identification and reduce the computational resources needed.

To make comparison between subsequences, a common approach is to compute dissimilar-

ity between them. Approaches are commonly grouped into: (i) Shaped-based, which compares
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Intuition of limitations of current approaches 

in spatial-time series
22

Figure V.1: Traditional motif discovery algorithm applied in spatial-time series dataset. (i) red

trapeziums and green triangles are identified motifs; (ii) blue trapeziums are not identified and not

linked with red ones; (iii) blue triangles are not identified and not linked with green ones; (iv) purple

shapes are not identified motifs.

Depending on the data set, such shape similarities in neighboring time series can correspond

to some relevant information. Identifying and grouping motifs in spatial-time series datasets can

address some real-world problems, such as in seismic analysis. Such scenario was not studied

in previous works as discussed in Chapter IV. The problem formalization for this new scenario is

presented as follows.

Definition 7 A spatial-time series dataset (for short, dataset) S is a set of spatial-time series

{ sz} . We define tmax (S) as the maximum number of observations for all spatial series sz inside

dataset S. Formally, tmax (S) = max({ |sz.t |} ), 8sz 2 S.

Definition 8 Let σ and be two support values such that σ ≥ . A subsequence q is a spatial-

time motif if and only if q is included at least σ times in D and q occurs in at least different

spatial-time series.

From the aforementioned definitions, the problem is to discover spatial-time motifs in spatial

time series dataset.
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Spatial Time Motif

22

Figure V.1: Traditional motif discovery algorithm applied in spatial-time series dataset. (i) red

trapeziums and green triangles are identified motifs; (ii) blue trapeziums are not identified and not

linked with red ones; (iii) blue triangles are not identified and not linked with green ones; (iv) purple

shapes are not identified motifs.

Depending on the data set, such shape similarities in neighboring time series can correspond

to some relevant information. Identifying and grouping motifs in spatial-time series datasets can

address some real-world problems, such as in seismic analysis. Such scenario was not studied

in previous works as discussed in Chapter IV. The problem formalization for this new scenario is

presented as follows.

Definition 7 A spatial-time series dataset (for short, dataset) S is a set of spatial-time series

{ sz} . We define tmax (S) as the maximum number of observations for all spatial series sz inside

dataset S. Formally, tmax (S) = max({ |sz.t |} ), 8sz 2 S.

Definition 8 Let σ and be two support values such that σ ≥ . A subsequence q is a spatial-

time motif iff q is included at least σ times in D and q occurs in at least different spatial-time

series.

From the aforementioned definitions, the problem is to discover spatial-time motifs in spatial

time series dataset.
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V.2.2 Partition of Spatial-Time Series and Motif Discovery Algorithm

The second step is to partition the spatial-time series dataset into blocks. Blocks are created

based on ssl i ce (spatial slice) tsl i ce (time slice). ssl i ce is the number of neighbors series inside

each block and tsl i ce is length of subsequences of the spatial time series. In this way, each block

contains ssl i ce · tsl i ce observations.

Considering our toy example, Figure V.4 depicts the partition of the dataset, where each blue

box corresponds to a block. In this example, the input threshold sslice is 4 and tslice is 10. Since

the dataset has 12 columns and 20 rows, the dataset is divided into 6 blocks.

Figure V.4: Toy dataset partitioned into blocks

Once the partitioning of the data has been applied, each block is used for motif discovery

algorithm. This is an important step in Combined Series Approach to identify motifs in spatial-

time series since it combines observations with different space and time. This partitioning groups

spatial-time series in different positions according to a fixed time window. Another important char-

acteristics of this procedure is to reduce the computational complexity when processing large

datasets.

In each block, we concatenate the spatial-time subsequences into a single time series t. Con-

catenation starts from top-to-bottom and then left-to-right inside the block. After concatenation,

the problem becomes a traditional motif discovery problem. It is possible to directly apply the ran-

dom projection algorithm to identify time series motifs. Once at least one motif is found, the step

returns a list of motifs and their occurrences that includes the word that represent the motif and a

vector of initial positions where the motif is found.

Figure V.5 shows CSA applied to our toy dataset. Considering a ssl i ce and tsl i ce of 4 and 10,

respectively, we obtain 6 combined series, each one with 40 observations. According to Figure

Combined time series
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Combined Spatial-Time Series
26

V.5, the combined series is represented as blue line. After applying the motif discovery algorithm,

we obtain the motifs identified with line colors red, green, and purple.

Figure V.5: Motif Discovery Algorithm to Combined Series

Analyzing the output of Figure V.5, some occurrences of motifs found using CSA were not

found when we simply apply traditional motif discovery algorithm in each spatial time series. Fig-

ure V.5 also presents the shape of motifs found in the example data considering the combined

series, their SAX representation (word), the number of occurrences and the initial positions of

each occurrence.

Another main difference between traditional and combined series approach is in the number

of occurrences observed. In combined series we obtained a representative higher number of

occurrences than in traditional method. Table V.1 presents the comparison of number occurrences

observed in both methods. This is due to the advantage of combining different spatial-time series.
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Combined Series Algorithm
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Evaluation Using Seismic Datasets

35

4 and alpha = 5. According to Table VI.5, as we increase the wor d and alpha parameters, the

computed rank also increases. When these parameters imposes more restrictive constraints, the

algorithm may even not find any motif.

We were expecting that with the increase of alpha value, the precision of the results would

have increased. From our observations, it occurred the opposite behavior. We have analyzed that

such behavior was due to the way in which we have configured random projection algorithm. We

have set it to not explore overlapping sliding windows. In other words, all subsequences were

completely independent. This decreased the chances of finding candidate motifs.

The graphical representation of the best ranked motif is presented in the Figure VI.5a. In

such Figure, the colored points represents the motif with its observations clustered in four groups.

The colored dashed lines are the polynomial regression of each cluster. The continuous colored

lines are the ground truth horizons which are used to evaluate the accuracy of CSA. Analyzing

the results, the black dashed line is very close to horizon with blue line. Half of dashed line also

identified a horizon represented by black line. The green and blue dashed lines are not close to

the ground truth mapped horizons, but according to a seismic specialist, they also correspond to

seismic horizons. This becomes more clear in Figure VI.5b, as it superpose the identified motifs

over the seismic shot. Additionally, both lines does not cover the entire space. This can bring a

deeper discussion regarding to the presence of seismic faults.

(a) Result - Best ranked motif (b) Result over seismic picture

Figure VI.5: Combined series experiment result

Finally, the presented results obtained by CSA are satisfactory specially considering the graph-

ical analysis of the best ranked identified motif. It was able to identify some seismic horizons and

also show other potential horizons not previously mapped in the ground-truth survey.
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Summary of research

▪ Spatial-Time Motif Identification

▪ Master Student: Murillo Dutra (defended on July 2016)

▪ New spatial-time motif algorithm

▪ Experimental evaluation: seismic dataset

▪ Expected Target: Find seismic horizons

▪ Current goals:

▪ Write paper

▪ Spatial Sequence Mining

▪ Master Student: Riccardo Campisano (defense on March 2017)

▪ First paper submitted to SBBD 2016

▪ Experimental evaluation: seismic dataset

▪ Expected target: Find seismic faults

▪ Current Goal: Develop new algorithm to find tight patterns
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Current Results

▪ One Master Degree Murillo Dutra (July 2016)

▪ Co-advised by Fabio Porto

▪ SBBD Paper: Spatial Sequential Pattern Mining for Seismic Data

▪ Riccardo Campisano, Fabio Porto, Esther Pacitti, 
Florent Masseglia, Eduardo Ogasawara



15

Next Steps: Research Proposal for Urban Mobility

▪ Spatial-Time Motif Identification for Urban Mobility (IoT)

▪ Trajectory data using Buses of Rio de Janeiro

▪ All buses send its position every minute

Plot posições dos ônibus

Buses positions in Rio in one day
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Urban Mobility: Steps Already done

▪ Data Collection and Cleaning

▪ Each day, we collect approximately 600.000 observations

▪ After cleaning and outlier removal we maintain approximately
450.000 observations

Download

Remoção de 
observações 

fora do Rio de 
Janeiro

Identificação e 
remoção de 
outliers

Carga
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Plot posições dos ônibusPlot posições dos ônibus
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Proposal for Urban Mobility

▪ Explore spatial-time motif identification in trajectory data

▪ Goal: Find relevant patterns of moving objects

▪ Expected to develop new trajectory motif algorithm

▪ Explore spatial-time motif identification in buses stations
aggregated data

▪ Apply spatial-temporal aggregation to convert buses trajectory
data into permanent (fixed position) spatial-time series placed
on buses stations

▪ Goal: Find relevant relevant patterns in different regions

▪ Expected to develop new spatial-time motif algorithm
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Proposal for Urban Mobility

▪ Spatial-Time Motif Identification for Urban Mobility (IoT)

▪ Spatial-temporal aggregation

▪ Aggregate trajectory data into buses stations

▪ New spatial-time motif algorithm

▪ Find relevant patterns
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New Students

▪ Ana Beatriz Cruz

▪ Master Degree Student

▪ ETL on Trajectory Data

▪ Spatial-Temporal Aggregation

▪ Initial implementation of spatial-time motifs

▪ Heraldo Borges

▪ PhD Student

▪ Study in more depth Spatial-Time Motifs

▪ Possibility to work with Esther and Florent one year at
Montpellier

▪ Propose new algorithms

▪ First Goal: Aid Murillo in submitting his paper


