

Evaluating Data Preprocessing Methods for Machine Learning Models for Flight Delays

Leonardo Moreira, Christofer Dantas, Leonardo Oliveira, Jorge Soares, Eduardo Ogasawara **CEFET/RJ - Federal Center for Technological Education of Rio de Janeiro**

Introduction

- Flight delays cause various inconveniences for airlines, airports, and passengers.
- According to the Brazilian National Civil Aviation Agency (ANAC), between 2009 and 2015, 22% Brazilian flights were delayed by more than 15 minutes.
- Airlines, airports, and users may be more interested in when delays are likely to occur (sensitivity) than the correct prediction of an absence of delays (accuracy).

Data Reduction

- ✤ The data reduction activity aims to create a reduced representation of the dataset (either by filtering attributes or tuples) to improve performance during analytical result. Many approaches exist for attribute selection, such as (i) Absolute Minimum Shrinkage and LASSO, (ii) Information Gain, (iii) Attribute Selection based on Correlation (CFS), (iv) Principal Component Analysis (PCA).
- Suilding machine learning models under such unbalanced distribution is challenging.
- Few works explore different preprocessing methods for the development of machine-learning flight delay classification models.

Problem Statement

- Which preprocessing methods may aid in solving the sensitivity while preserving good accuracy under such unbalanced distribution.
- This paper focuses on the unbalanced distribution of the classes of delay (presence and absence) by performing an experimental evaluation of several preprocessing methods for the development of machine-learning flight delay classification models.

Data Balancing

Sampling is a direct approach to the problem of class balancing in a dataset. From the use of balancing methods, it is possible to change the distribution of classes aiming at obtaining a more balanced distribution of the data and improve the performance of the data classification models. The data balancing strategies used in this study are Random Sub-Sampling (RS) and the Synthetic Minority Oversampling Technique (SMOTE).

Preliminary experimental evaluation

Choosing machine learning methods (using LASSO):

TABLE III: Analysis of Machine Learning Methods

Method	Accuracy (MSE)	Elapsed time (hours)	Parameter combinations
NN	78.02	00:02	28
RF	77.94	00:01	28
SVM _{rbf}	77.99	05:01	14
SVM _{tanh}	77.99	03:09	14
NB	74.81	00:03	-
kNN	67.80	00:23	28

Exploring data balancing methods:

TABLE	IV:	Balancing	Results
-------	-----	-----------	---------

Balancing	Nu	umber of Records	
Method -	With Delay	Without Delay	Total

Data integration & Transformation

This work builds a dataset that integrates a database containing flight operations data provided by the Brazilian National Civil Aviation Agency (ANAC) (http://www.anac.gov.br) and airport weather data provided by Weather Underground (http://www.wunderground.com).

101011000	with Denay	minioar isotay	roun
None	184.094	52.156	236.250
RS	52.156	52.156	104.312
SMOTE	104.312	104.312	208.624
	None RS SMOTE	None 184.094 RS 52.156 SMOTE 104.312	None 184.094 52.156 RS 52.156 52.156 SMOTE 104.312 104.312

Evaluation of preprocessing methods (using Neural Networks):

TABLE VII: Accuracy (in %) for NN according to the method of selection of attributes and balancing

Selection Method	Balanci RS	ng Method SMOTE
None	61.44	73.81
LASSO	59.14	59.04
CFS	60.20	60.32
INFOGAIN	60.23	64.65
PCA	60.52	67.24

TABLE VI: Sensitivity (in %) for NN according to the method of selection of attributes and balancing

Selection	Balancing Method			
Method	None	RS	SMOTE	
None	5.93	58.41	26.03	
LASSO	1.81	58.75	58.89	
CFS	1.88	56.46	56.08	
INFOGAIN	3.57	58.47	49.10	
PCA	5.17	60.13	43.47	

Conclusions

Meteorological	Humidity (%)	4-100	Humidity	Low: 4–64 Medium: 65–81 High: 82–100	Binning
Meteorological	Wind speed (km/h)	0-213	Wind speed	Calm: 0–1.852 Light air: 1.853–5.556 Light breeze: 5.557–11.112 Gentle breeze: 11.113–18.520 Moderate breeze: 18.521–29.632 Fresh breeze: 29.633–38.892 Strong breeze: 38.893–50.004 Near gale: 50.005–61.116 Gale: 61.117–74.080 Strong gale: 74.081–87.044 Stom: 87.045–101.860 Violent storm: 101.861–116.676 Hurricane: 116.677–213	Concept hierarchy
Meteorological	Wind direction (degrees)	0-360	Wind direction	N: 0-11 or 349-360, NNE: 12-33 NE: 34-56, ENE: 57-78 E: 79-101, ESE: 102-123 SE: 124-146, SSE: 147-168 S: 169-191, SSW: 192-213 SW: 214-236, WSW: 237-258 W: 259-281, WNW: 282-303 NW: 304-326, NNW: 327-348	Concept hierarchy
Meteorological	Visibility (km)	0-28	Visibility	IFR: 0-4.82 VFR: 4.83-28	Concept hierarchy
State of the system	Percentage of delays	0-100%	Delay level	Low: 0–11.76% Medium: 11.77–30.00% High: 30.00–100%	Temporal aggregation and binning

- ✤ An experimental evaluation using different data preprocessing and machine learning models was carried out over a Brazilian national commercial flight dataset with the objective of building a classification model with higher sensitivity to the occurrences of flight delays.
- ✤ A broader spectrum analysis of different data preprocessing methods was evaluated when compared to the literature review, with a particular focus on the unbalanced distribution of the classes of delay.
- ✤ Future work will focus on a more in-depth exploratory analysis of the data, and an extensive combining of data preprocessing methods with machine learning methods, particularly the deep-learning ones. Finally, a clustering analysis is also intended to analyze data mining process effectiveness and the quality of prediction, to improve the results obtained by the classifier.

