

Jornada de Ciência de Dados

Motifs identifications in Spatial-Time Series

Eduardo Ogasawara http://eic.cefet-rj.br/~eogasawara

CEFET/RJ: Murillo Dutra, Riccardo Campisano (MSc.students) LNCC: Fabio Porto INRIA: Florent Masseglia, Esther Pacitti

- Time series express phenomenon of interest
- Identifying motifs (patterns) in time series brings knowledge and enables predictions

Seismic Traces Analysis

Analysis of Delays in Airports

Analysis of delays in airports according to time

Buses Stops Analysis

Buses are sensors: Trajectory Data Spatial-time aggregation of buses according to buses stops Buses Stops becomes Spatial-Time derived sensors

Motifs in Spatial-Time Series

 Motifs identification and analysis in time series is being studied during last decade

Absence of studies of motifs identification and analysis in spatial-time series **Definition 1.** A *time series* t is an ordered sequence of values in time [1], where each t_i is a value, |t| = m is the number of elements in t, and t_m is the most recent value in t.

$$t = \langle t_1, t_2, \ldots, t_m \rangle, t_i \in \mathbb{R}$$

Definition 2. The *p*-th sub sequence [2] of size *n* in a time series *t*, represented as $t^{p,n}$, is an ordered sequence of values $\langle t_p, t_{p+1}, \ldots, t_{p+n-1} \rangle$, where $|t^{p,n}| = n$ and $1 \le p \le |t| - n$.

 $t^{p,n} = subseq(t, p, n)$

Definition 3. A sliding window [3] is a function sw(t,n) with arguments t and n that produces a matrix W of size (|t| - n + 1) by n that contains all sub sequences of size n of time series t. Each line in W is a sub sequence of t of size n. Given W = sw(t,n), $\forall w_i \in W$, $w_i = t^{i,n}$.

Definition 4. Let $q = \langle q_1, q_2, ..., q_n \rangle$ and $t = \langle t_1, t_2, ..., t_m \rangle$ be two time series, such that |q| = n, |t| = m, and m > n. q is **included** in t (q < t) iff $\exists w_i \in W, W = sw(t, n) | q = w_i$.

Definition 5. Given two time series q and t, q is a **motif** [4] with support σ , iff q is included in t at least σ times. Formally, given time series q and t such that W = sw(t, |q|), $motif(q, t, \sigma) \leftrightarrow \exists R \subseteq W$, such that $\forall w_i \in R, w_i = q \land |R| \ge \sigma$.

Spatial-Time Series

Definition 6. A spatial-time series *s* is an abstraction for a time series with an associated position in space. Formally, a spatial-time series *s* is a time series composed of coordinates *x* and *y* and time series $t = < t_1, t_2, ..., t_m >$. s.x and s.y are coordinates of *s*, and s.t is time series for *s*.

Definition 7. A spatial-time series dataset (for short, dataset) S is a set of spatial time series $\{s_z\}$. We define $t_{max}(S)$ as the maximum number of observations for all spatial series s_z inside dataset S. Formally, $t_{max}(S) = max(\{|s_z.t|\}), \forall s_z \in S$.

Assuming that spatial-time series inside a dataset are uniformly distributed in space, it is possible to define a bounding-box for them $BB(x_{min}(S), y_{min}(S), x_{max}(S), y_{max}(S))$. Through simple coordinates translation, we can assume that $x_{min}(S) = y_{min}(S) = 0$ and $x_{max}(S) = sw$ and $y_{max}(S) = sh$. In this way, we have a bounding-box BB(0, 0, sw, sh) with size $sw \times sh$ for dataset S.

Spatial-Time Series Example

Bounding Box

Spatial-Time Motif

Definition 10. Let σ and κ be two support values such that $\sigma \geq \kappa$. A time series q is a **spatial-time motif** in a parallelepiped $pt_{i,j}^{k,n} \in S$ iff q is included at least σ times in $pt_{i,j}^{k,n}$ and $\forall s_z.t^{kn,n} \in \overline{pt}_{i,j}^{k,n}$, q is included in $s_z.t^{kn,n}$, $\overline{pt}_{i,j}^{k,n} \subseteq pt_{i,j}^{k,n}$ and $|\overline{pt}_{i,j}^{k,n}| \geq \kappa$.

Combined Spatial-Time Series

Motifs in Combined Spatial-Time Series

SAX Indexing

Identified Motifs in Original Spatial-Time Series

Spatial-Time Motif Ranking

Rank identified spatial-time motifs

Motif	Word	σ	к	Spatial-Time Motif
Motif 1	bccdeedcee	7	5	Yes
Motif 2	cbceeceadc	4	4	No

 σ : total motif occurrences in block

 κ : number of series that occurs the identified motif

Restriction Parameters:

Algorithm

1:	function STMotif(b, sw, w, a, bs, bt)
2:	$b_i \leftarrow partition(b, bs, bt)$
3:	for each $b_i \in b$ do
4:	$t \leftarrow combine(b_i)$
5:	$CSTM \leftarrow identify(t)$
6:	$STM \leftarrow STM \cup constraintST(CSTM)$
7:	end for
8:	rankSTM = aggregate(STM)
9:	return rankSTM

10: end function

Jornada de Ciência de Dados

Motifs identifications in Spatial-Time Series

Eduardo Ogasawara http://eic.cefet-rj.br/~eogasawara