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Abstract. In this paper, we consider supervised learning under the as-
sumption that the available memory is small compared to the dataset
size. This general framework is relevant in the context of big data, dis-
tributed databases and embedded systems. We investigate a very simple,
yet effective, ensemble framework that builds each individual model of
the ensemble from a random patch of data obtained by drawing ran-
dom subsets of both instances and features from the whole dataset. We
carry out an extensive and systematic evaluation of this method on 29
datasets, using decision tree-based estimators. With respect to popular
ensemble methods, these experiments show that the proposed method
provides on par performance in terms of accuracy while simultaneously
lowering the memory needs, and attains significantly better performance
when memory is severely constrained.

1 Motivation

Within the past few years, big data has become a popular trend among many
scientific fields. In life sciences, computer vision, Internet search or finance, to
cite a few, quantities of data have grown so large that it is increasingly difficult
to process, analyze or visualize. In many cases, single computers are no longer
fit for big data and distributed environments need to be considered to handle it.
Although research is very active in this area, machine learning is no exception
to this new paradigm. Much still needs to be done and methods and algorithms
have to be reinvented to take this constraint into account.

In this context, we consider supervised learning problems for which the dataset
is so large that it cannot be loaded into memory. In [1], Breiman proposed the
Pasting method to tackle this problem by learning an ensemble of estimators
individually built on random subsets of the training examples, hence alleviating
the memory requirements since the base estimators would be built on only small
parts of the whole dataset. Earlier, Ho proposed in [2] to learn an ensemble of
estimators individually built on random subspaces (i.e., on random subsets of
the features). While the first motivation of the Random Subspace method was
to increase the diversity within the estimators of the ensemble, it can actually
also be seen as way to reduce the memory requirements of building individual
models. In this work, we propose to combine and leverage both approaches at
the same time: learn an ensemble of estimators on random patches, i.e., on ran-
dom subsets of the samples and of the features. Through an extensive empirical
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study, we show that this approach (1) improves or preserves comparable accu-
racy with respect to other ensemble approaches which build base estimators on
the whole dataset while (2) drastically lowering the memory requirements and
hence allowing an equivalent reduction of the global computing time.

The rest of this paper is organized as follows. Section 2 describes and then
compares the Random Patches method with popular ensemble algorithms. In
Section 3, we investigate experimentally the performance of the method on an
extensive list of datasets and then draw some first conclusions. We then study
in Section 4 the benefits of our algorithm under memory constraints and show
that, in that context, it appears to be significantly better than other ensemble
methods. We conclude and discuss future work directions in Section 5.

2 Random Patches

In this section, we formally describe our method, briefly introduce standard
base estimators that have been considered in this work, and then discuss how
our algorithm relates with popular ensemble methods.

2.1 Description

The Random Patches algorithm proposed in this work (further referred to as
RP) is a wrapper ensemble method that can be described in the following terms.
Let R(ps, pf , D) be the set of all random patches of size psNs×pfNf than can be
drawn from the dataset D, where Ns (resp. Nf ) is the number of samples in D
(resp. the number of features in D) and where ps ∈ [0, 1] (resp. pf ) is an hyper-
parameter that controls the number of samples in a patch (resp. the number of
features). That is, R(ps, pf , D) is the set of all possible subsets containing psNs

samples (among Ns) with pfNf features (among Nf ). The method then works
as follows:

1. Draw a patch r ∼ U(R(ps, pf , D)) uniformly at random.
2. Build an estimator on the selected patch r.
3. Repeat 1-2 for a preassigned number T of estimators.
4. Aggregate the predictions by voting (in case of classifiers) or averaging (in

case of regressors) the predictions of the T estimators.

2.2 Tree-Based Methods

While the RP algorithm can exploit any kind of base estimators, we consider in
this work only tree-based estimators.We first describe standard classification and
regression trees and ensemble methods and then the two specific base learners
we have considered in our experiments.

Classification and Regression Trees. A standard classification/regression
tree [3] is an input-output model represented by a tree. Internal nodes of the
tree are labeled with a (usually binary) test based on one input feature. Leaves
are labeled with a value of the output (discrete or continuous). The predicted
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output for a new instance is determined as the output associated to the leaf
reached by the instance when it is propagated through the tree. A decision
tree is built using a recursive procedure which identifies at each node the test
that leads to a split of the node sample into two subsamples that are as pure
as possible in terms of their output values, as measured by a so-called score
measure. The construction of the tree then stops when some stopping criterion
is met.

Ensemble of Randomized Trees. Single decision trees typically suffer from
high variance, which makes them not competitive in terms of accuracy. A very
efficient and simple way to address this flaw is to use them in the context of
randomization-based ensemble methods. Specifically, the core principle is to in-
troduce random perturbations into the learning procedure in order to produce
several different decision trees from a single learning set. For example, in Bag-
ging [4], trees are built on randomly drawn bootstrap copies of the original data,
hence producing different decision trees. In Random Forests [5] (RF), Bagging
is extended and combined with a randomization of the input features that are
used when considering candidates to split internal nodes. In particular, instead
of looking for the best split among all features, the algorithm selects, at each
node, a random subset of K features and then determines the best test over
these features only. In Extremely Randomized Trees [6] (ET), randomization
goes even one step further: discretization threholds are also drawn at random
and the best test is chosen among the K randomly drawn cut-points. Unlike in
RF though, the trees in ET are not built on bootstrap copies of the input data.

Base Estimators. We consider and evaluate two base estimators within the
RP algorithm: standard classification trees and (single) extremely randomized
trees. Unless otherwise stated, trees are unpruned and grown using Gini entropy
as the main scoring criterion for node splitting. The parameter K of extremely
randomized trees within RP is set to its maximum value K = pfNf (i.e., corre-
sponding to no further random selection of features).

2.3 Related Work

The first benefit of RP is that it generalizes both the PastingRvotes (P)method [1]
(and its extensions [7,8]) and the Random Subspace (RS) algorithm [2]. Both are
indeed merely particular cases of RP: setting ps = 1.0 yields RS while setting
pf = 1.0 yields P. As such, it is expected that when both hyper-parameters ps
and pf are tuned, RP should be at least as good as the best of the two methods,
provided there is no overfitting associated with this tuning.

When the base estimators are standard decision trees (resp. extremely ran-
domized trees with K = pfNf ), interesting parallels can also be drawn between
RP and the RF algorithm (resp. ET). For ps = 1.0, the value of pfNf is indeed
nearly equivalent to the number K of features randomly considered when split-
ting a node. A major difference remains though. In RP, the subset of features
is selected globally once and for all, prior to the construction of the tree. By
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contrast, in RF (resp. in ET) subsets of features are drawn locally at each node.
Clearly, the former approach already appears to be more attractive when dealing
with large databases. Non-selected features indeed do not need to be considered
at all, hence lowering the memory requirements for building a single tree. An-
other interesting parallel can be made when bootstrap samples are used like in
RF: it nearly amounts to set ps = 0.632, i.e. the average proportion of unique
samples in a bootstrap sample. Differences are that in a bootstrap sample, the
number of unique training samples varies from one to another (while it would
be fixed to 0.632Ns in RP), and that samples are not all equally weighted.

In addition, RP also closely relates to the SubBag algorithm [9] which com-
bines Bagging and RS for constructing ensembles. Using Ns bootstrapped sam-
ples (i.e., nearly equivalent to ps = 0.632) and setting pf = 0.75, Panov et al
showed that SubBag has comparable performance to that of RF. An added ad-
vantage of SubBag, and hence of RP, is that it is applicable to any base estimator
without the need to randomize the latter.

3 On Accuracy

Our validation of the RP algorithm is carried out in two steps. In this section,
we first investigate how RP compares with other popular tree-based ensemble
methods in terms of accuracy. In the next section, we then focus on its memory
requirements for achieving optimal accuracy and its capability to handle strong
memory constraints, again in comparison with other ensemble methods.

Considering accuracy only, our main objective is to investigate whether the
additional degrees of freedom brought by ps and pf significantly improve, or
degrade, the performance of RP. Additionally, our goal is also to see whether
sampling features once globally, instead of locally at each node, impairs perfor-
mance, as this is the main difference between RP and state-of-the-art methods
such as RF or ET.

3.1 Protocol

We compare our method with P and RS, as well as with RF and ET. For RP,
P and RS, two variants have been considered, one using standard decision trees
(suffixed below with ’-DT’) as base estimators, and the other using extremely
randomized trees (suffixed below with ’-ET’) as base estimators. Overall, 8 meth-
ods are compared: RP-DT, RP-ET, P-DT, P-ET, RS-DT, RS-ET, RF and ET.

We evaluate the accuracy of the methods on an extensive list of both artifi-
cial and real classification problems. For each dataset, three random partitions
were drawn: the first and larger (50% of the original dataset) to be used as the
training set, the second (25%) as validation set and the third (25%) as test set.
For all methods, the hyper-parameters ps and pf were tuned on the validation
set with a grid-search procedure, using the grid {0.01, 0.1, ..., 0.9, 1.0} for both
ps and pf . All other hyper-parameters were set to default values. In RF and
ET, the number K of features randomly selected at each node was tuned us-
ing the grid pfNf . For all ensembles, 250 fully developed trees were generated
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and the generalization accuracy was estimated on the test set. Unless otherwise
mentioned, for all methods and for all datasets, that procedure was repeated 50
times, using the same 50 random partitions between all methods, and all scores
reported below are averages over those 50 runs. All algorithms and experiments
have been implemented in Python, using Scikit-Learn [10] as base framework.

3.2 Small Datasets

Before diving into heavily computational experiments, we first wanted to validate
our approach on small to medium datasets. To that end, experiments were carried
out on a sample1 of 16 well-known and publicly available datasets (see Table 1)
from the UCI machine learning repository [11]. Overall, these datasets cover a
wide range of conditions, with the sample sizes ranging from 208 to 20000 and
the number of features varying from 6 to 168. Detailed average performances of
the 8 methods for all 16 datasets using the protocol described above are reported
in Table 1 of the supplementary materials2. Below, we analyze general trends by
performing various statistical tests.

Following recommendations in [12], we first performed a Friedman test that
rejected the hypothesis that all algorithms are equivalent at a significance level
α = 0.05. We then proceeded with a post-hoc Nemenyi test for a pairwise com-
parison of the average ranks of all 8 methods. According to this test, the per-
formance of two classifiers is significantly different (at α = 0.05) if their average
ranks differ by at least the critical difference CD = 2.6249 (See [12] for further
details). The diagram of Figure 1 summarizes these comparisons. The top line
in the diagram is the axis along which the average rank Rm of each method m is
plotted, from the highest ranks (worst methods) on the left to the lowest ranks
(best methods) on the right. Groups of methods that are not statistically differ-
ent from each other are connected. The critical difference CD is shown above the
graph. To further support these rank comparisons, we also compare the 50 accu-
racy values obtained over each dataset split for each pair of methods by using a
paired t-test (with α = 0.01). The results of these comparisons are summarized
in Table 2 in terms of “Win-Draw-Loss” statuses of all pairs of methods; the
three values at the intersection of row i and column j of this table respectively
indicate on how many datasets method i is significantly better/not significantly
different/significantly worse than method j.

Since all methods are variants of ensembles of decision trees, average accura-
cies are not strikingly different from one method to another (see Table 1 of the
supplementary materials). Yet, significant trends appear when looking at Figure
1 and Table 2. First, all ET-based methods are ranked before DT-based meth-
ods, including the popular Random Forest algorithm. Overall, the original ET
algorithm is ranked first (RET = 2.125), then come RS-ET and RP-ET at close
positions (RRS−ET = 2.8125 and RRP−ET = 2.9375) while P-ET is a bit behind
(RP−ET = 3.75). According to Figure 1, only ET is ranked significantly higher
than all DT-based method but looking at Table 2, the worse ET-based variant

1 These datasets were chosen a priori and independently of the results obtained.
2 http://www.montefiore.ulg.ac.be/~glouppe/pdf/ecml12-suppl.pdf

http://www.montefiore.ulg.ac.be/~glouppe/pdf/ecml12-suppl.pdf
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Table 1. Small datasets

Dataset Ns Nf

diabetes 768 8
dig44 18000 16
ionosphere 351 34
pendigits 10992 16
letter 20000 16
liver 345 6
musk2 6598 168
ring-norm 10000 20
satellite 6435 36
segment 2310 19
sonar 208 60
spambase 4601 57
two-norm 9999 20
vehicle 1692 18
vowel 990 10
waveform 5000 21
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RS-DT

RF

RP-DT

Fig. 1. Average ranks of all methods

Table 2. Pairwise t-test comparisons

RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET
RF — 1/2/13 12/4/0 1/7/8 4/7/5 2/2/12 1/10/5 0/4/12
ET 13/2/1 — 14/1/1 10/5/1 13/3/0 4/11/1 12/2/2 5/10/1
P-DT 0/4/12 1/1/14 — 0/4/12 2/3/11 2/1/13 0/4/12 0/4/12
P-ET 8/7/1 1/5/10 12/4/0 — 9/6/1 2/6/8 9/6/1 0/11/5
RS-DT 5/7/4 0/3/13 11/3/2 1/6/9 — 0/2/14 1/11/4 0/4/12
RS-ET 12/2/2 1/11/4 13/1/2 8/6/2 14/2/0 — 11/4/1 1/13/2
RP-DT 5/10/1 2/2/12 12/4/0 1/6/9 4/11/1 1/4/11 — 0/6/10
RP-ET 12/4/0 1/10/5 12/4/0 5/11/0 12/4/0 2/13/1 10/6/0 —

(P-ET) is still 9 times significantly better (w.r.t. the 50 runs over each set) and
only 1 times significantly worse than the best DT-based variant (RP-DT). The
separation between these two families of algorithm thus appears quite significant.
This observation clearly suggests that using random split thresholds, instead of
optimized ones like in decision trees, pays off in terms of generalization.

Among ET-based methods, RP-ET is better than P-ET but it is superseded
by ET and RS-ET in terms of average rank. Since RS-ET is a particular case of
RP-ET, this suggests that we are slightly overfitting when tuning the additional
parameter ps. And indeed RP-ET is better ranked than RS-ET in average on
the validation set (results not shown). Table 2 however indicates otherwise and
makes RP-ET appear as slightly better than RS-ET (2/13/1). Regarding ET
over RP-ET, the better performance of the former (5/10/1) is probably due to
the fact that in ET subsets of features are redrawn locally at each node when
building trees and not once and for all prior to their construction. This gives less
chances to generate improper trees because of a bad initial choice of features
and thus leads to a lower bias and a better accuracy.

Among DT-based methods, RP-DT now comes first (mean rank of 5.3125),
then RF (RRF = 5.875), RS-DT (RRS−DT = 6.125) and then P-DT in last
(RP−DT = 7.0625). RP is only significantly worse than another DT-based vari-
ant on 1 dataset. The extra-randomization brought by the random choices of
both samples and features seems to be beneficial with decision trees that do
not benefit from the randomization of discretization thresholds. The fact that
RF samples features locally does not appear here anymore as an advantage over
RP (RF is significantly worse on 5 problems and better on only one), probably
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Table 3. Large datasets

Dataset Ns Nf

cifar10* 60000 3072
mnist3vs8 13966 784
mnist4vs9 13782 784
mnist* 70000 784
isolet 7797 617
arcene 900 10000
breast2 295 24496
madelon 4400 500
marti0 500 1024
reged0 500 999
secom 1567 591
tis 13375 927
sido0* 12678 4932

CD
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ET
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P-DT

RF
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RP-DT

Fig. 2. Average ranks of all methods

Table 4. Pairwise t-test comparisons

RF ET P-DT P-ET RS-DT RS-ET RP-DT RP-ET
RF — 1/5/7 8/3/2 2/6/5 0/6/7 0/5/8 0/6/7 0/6/7
ET 7/5/1 — 9/2/2 7/6/0 3/7/3 0/9/4 5/6/2 1/11/1
P-DT 2/3/8 2/2/9 — 1/5/7 0/3/10 0/3/10 1/3/9 0/4/9
P-ET 5/6/2 0/6/7 7/5/1 — 0/6/7 0/5/8 2/5/6 1/5/7
RS-DT 7/6/0 3/7/3 10/3/0 7/6/0 — 1/8/4 2/11/0 1/10/2
RS-ET 8/5/0 4/9/0 10/3/0 8/5/0 4/8/1 — 4/8/1 0/13/0
RP-DT 7/6/0 2/6/5 9/3/1 6/5/2 0/11/2 1/8/4 — 1/9/3
RP-ET 7/6/0 1/11/1 9/4/0 7/5/1 2/10/1 0/13/0 3/9/1 —

because the decrease of bias that it provides does not exceed the increase of
variance with respect to global feature selection.

3.3 Larger Datasets

While the former experiments revealed promising results, it is fair to ask whether
the conclusions that have been drawn would hold on and generalize to larger
problems, for example when dealing with a few relevant features buried into
hundreds or thousands of not important features (e.g., in genomic data), or
when dealing with many correlated features (e.g., in images). To investigate this
question, a second bench of experiments was carried out on 13 larger datasets (see
Table 3). All but madelon are real data. In terms of dimensions, these datasets
are far bigger, ranging from a few hundreds of samples and thousands of features,
to thousands of samples but hundreds of features. As such, the complexity of the
problems is expected to be greater. We adopted the exact same protocol as for
smaller datasets. However, to lower computing times, for datasets marked with ∗,
the methods were run using 100 trees instead of 250 and the minimum number of
samples required in an internal node was set to 10 in order to control complexity.
Detailed results are provided in Table 2 of the supplementary materials and
are summarized in Figure 2 and Table 4, respectively in terms of average rank
(the critical difference at α = 0.05 is now 2.9120) and Win/Draw/Loss statuses
obtained with paired t-tests. A Friedman test (at α = 0.05) still indicates that
some methods are significantly different from the others.

As it may be observed from Figure 2, the average ranks of the methods are
closer to each other than in the previous experiments, now ranging from 2.38
to 6.61, while they were previously ranging from 2.12 to 7. Methods are more
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connected by critical difference bars. This suggests that overall they behave more
similarly to each other than before. General trends are nevertheless comparable
to what we observed earlier. ET-based methods still seem to be the front-runners.
From Figure 2, RS-ET, ET and RP-ET are in the top 4, while P-DT, RF and
RP-DT remain in the second half of the ranking. Surprisingly however, RS-
DT now comes right after RS-ET and ET and just before RP-ET whereas it
ranked penultimate on the smaller datasets. Table 4 however suggests that RS-
DT performs actually a little worse against RP-ET (1/10/2). All in all, it thus
still seems beneficial to randomize split thresholds on the larger datasets.

Comparing ET-based variants, ET is no longer the best method on average,
but RS-ET is (with 4/9/0 for RS-ET versus ET). This suggests than on larger
datasets, picking features globally at random prior to the construction of the
trees is as good, or even beat picking them locally at each node. Due to the
quantitatively larger number of samples in a patch, and also to the larger num-
ber of redundant features expected in some large datasets (e.g., in cifar10 or
mnist), it is indeed less likely to build improper trees with strong biases. As
a result, variance can be further decreased by sampling globally. In support of
this claim, on a few problems such as arcene, breast2, or madelon that
contain many irrelevant features, ET remains the best method. In that case, it
is indeed more likely to sample globally improper random patches, and hence
to build improper trees. The average rank of RP-ET suggests that it performs
worse than RS-ET and thus that there is some potential overfitting when tuning
ps in addition to pf . This difference is however not confirmed in Table 4 where
the accuracies of these two methods are shown to be never significantly different
(0/13/0). RP-ET is also on a perfect par with ET (1/11/1). Among DT-based
variants, RP-DT, which was the best performer on small datasets, is still ranked
above RF and P-DT, but it is now ranked below RS-DT with a win/draw/loss
of 0/11/2. This is again due to some overfitting.

While less conclusive than before, the results on larger datasets are consistent
with what we observed earlier. In particular, they indicate that the Random
Patches method (with ET) remains competitive with the best performers.

3.4 Conclusions

Overall, this extensive experimental study reveals many interesting results. The
first and foremost result is that ensembles of randomized trees nearly always
beat ensembles of standard decision trees. As off-the-shelf methods, we advocate
that ensembles of such trees should be preferred to ensembles of decision trees.
In particular, these results show that the well-known Random Forest algorithm
does not compete with the best performers. Far more important to our concern
though, this study validates our RP approach. Building ensembles (of ET) on
random patches of data is competitive in terms of accuracy. Overall, there is no
strong statistical evidence that the method performs less well, but there is also no
conclusive evidence that it significantly improves performance. Yet, results show
that RP is often as good as the very best methods. Regarding the shape of the
random patches, the strategy behind Pasting (i.e., ps free and pf = 1.0) proved
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to be (very) ineffective on many datasets while the Random Subspace algorithm
(i.e., ps = 1.0 and pf free) always ranked among the very best performers. On
average, RS indeed came in second on the small datasets and in first on the larger
datasets, which tends to indicate that sampling features is crucial in terms of
accuracy. As for patches of freely adjustable size (i.e., using RP), they showed
to be slightly sensitive to overfitting but proved to remain closely competitive
with the very best methods. In addition, these results also suggest that sampling
features globally, once and for all, prior to the construction of a (randomized)
decision tree, does not actually impair performance. For instance, RS-ET or
RP-ET are indeed not strongly worse, nor better, than ET, in which candidates
features are re-sampled locally at each node.

4 On Memory

Section 3 reveals that building an ensemble of base estimators on random patches,
instead of the whole data, is a competitive strategy. In the context of big data,
that is when the size of the dataset is far bigger than the available memory, this
suggests that using random parts of the data of the appropriate size to build
each base estimator would likely result in an ensemble which is actually as good
as if the whole data could have been loaded and used.

Formally, we assume a general framework where the number of data units
that can be loaded at once into memory is constrained to be lower than a given
threshold Mmax. Not considering on-line algorithms within the scope of this
study, Mmax can hence be viewed as the total units of data allowed to be used to
build a single base estimator. In the context of our sampling methods, the amount
of memory required for a patch is given by (psNs)(pfNf ) and thus constraining
memory by Mmax is equivalent to constraining the relative patch size pspf to be
lower than M ′

max = Mmax/(NsNf ). While simplistic3, this framework has the
advantage of clearly addressing one of the main difficulties behind big data, that
is the lack of fast memory. Yet, it is also relevant in other contexts, for example
when data is costly to access (e.g., on remote locations) or when algorithms are
run on embedded systems with strong memory constraints.

In Section 4.1, we first study the effects of ps and pf on the accuracy of the
resulting ensemble and show that it is problem and base estimator dependent.
Second, we show that the memory requirements, i.e., the relative size pspf of the
random patches, can often be drastically reduced without significantly degrading
the performance of the ensemble (Section 4.2). Third, because the sensitivity of
the ensemble to ps and pf is problem and base estimator specific, we show that
under very strong memory constraints adjusting both parameters at the same
time, as RP does, is no longer merely as good but actually significantly better
than other ensemble methods (Section 4.3).

3 e.g., the quantity of memory used by the estimator itself is not taken into account.
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4.1 Sensitivity to ps and pf

Let us first consider and analyze the sets {(ps, pf , AccD(ps, pf))|∀ps, pf} for var-
ious problems, where AccD(ps, pf ) is the average test accuracy of an ensemble
built on random patches of size pspf (using the same protocol as previously) on
the dataset D.

As Figure 3 illustrates for six datasets, the surfaces defined by these sets
vary significantly from one problem to another. We observed four main trends.
In Figures 3a, and 3b (resp. 3c), accuracy increases with ps (resp. pf ) while
adjusting pf (resp. ps) has no or limited impact. In Figure 3d, the best strategy
is to increase both ps and pf . Finally, in Figures 3e and 3f, the surface features
plateaus, which means that beyond some threshold, increasing ps or pf does
not yield any significant improvement. Interestingly, in most of the cases, the
optimum corresponds to a value pspf much smaller than 1.

The choice of the base estimators does not have a strong impact on the aspect
of the curves (compare the 1st and 3rd rows of sub-figures in Figure 3 with those
in the 2nd and 4th rows). The only difference is the decrease of the accuracy
of RP-DT when ps and pf grow towards 1.0. Indeed, since the only source of
randomization in RP-DT is patch selection, it yields in this case ensembles of
identical trees and therefore amounts to build a single tree on the whole dataset.
By contrast, because of the extra-randomization of the split thresholds in ET,
there is typically no drop of accuracy for RP-ET when ps and pf grow to 1.0.

Overall, this analysis suggests that not only the best pair pspf depends on the
problem, but also that the sensitivity of the ensemble to changes to the size of
a random patch is both problem and base estimator specific. As a result, these
observations advocate for a method that could favor ps, pf or both, and do so
appropriately given the base estimator.

4.2 Memory Reduction, without Significant Loss

We proceed to study in this section the actual size of the random patches when
the values of ps and pf are tuned using an independent validation set. Our re-
sults are summarized in Figure 4a. Each ellipse corresponds to one of the 29
datasets of our benchmark, whose center is located at (ps, pf ) (i.e., the average
parameter values over the 50 runs) and whose semi-axes correspond to the stan-
dard deviations of ps and pf . Any point in the plot corresponds to a pair (ps, pf)
and thus to a relative consumption M ′ = pspf of memory. To ease readability,
level curves are plotted for M ′ = 0.01, 0.1, ..., 0.9. In the right part of the fig-
ure, the histogram counts the number of datasets such that ps · pf falls in the
corresponding level set.

Figure 4a corroborates our previous discussion. On some datasets, it is better
to favor ps while on some other increasing pf is a better strategy. The various
sizes of the ellipses also confirm that the sensitivity to variations of ps and pf
is indeed problem-specific. The figure also clearly highlights the fact that, even
under no memory constraint, the optimal patches rarely consume the whole
memory. A majority of ellipses indeed lie below the level set M ′ = 0.5 and only
a couple of them are above M ′ = 0.75. With respect to ET or RF for which the
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(a) arcene (RP-ET) (b) cifar10 (RP-ET) (c) tis (RP-ET)

(a) arcene (RP-DT) (b) cifar10 (RP-DT) (c) tis (RP-DT)

(d) madelon (RP-ET) (e) isolet (RP-ET) (f) mnist3vs8 (RP-ET)

(d) madelon (RP-DT) (e) isolet (RP-DT) (f) mnist3vs8 (RP-DT)

Fig. 3. Learning surfaces

base estimators are all built on the whole dataset, this means that ensembles of
patches are not only as competitive but also less memory greedy. In addition, the
figure also points out the difference between RP-ET and RP-DT as discussed in
the previous section. To ensure diversity, RP-DT is constrained to use smaller
patches than RP-ET, hence explaining why the ellipses in red are on average
below those in blue. While RP-DT proved to be a bit less competitive in terms
of accuracy, this indicates on the other hand that RP-DT may actually be more
interesting from a memory consumption point of view.

In Section 4.1, we observed plateaus or very gentle slopes around the opti-
mal pair (ps, pf ). From a memory point of view, this suggests that the random
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(a) Original patches (b) Reduced patches

Fig. 4. Optimal sizes of the random patches on our benchmark

patches are likely to be reducible without actually degrading the accuracy of the
resulting ensemble. Put otherwise, our interest is to find the smallest size pspf
such that the accuracy of the resulting ensemble is not significantly worse than
an ensemble built without such constraint. To that end, we study the extent at
which the constraint pspf < M ′

max can be strengthened without any significant
drop in accuracy. If M ′

max can be reduced significantly then it would indeed
mean that even when only small parts of the data are actually used to build
single base estimators, competitive performance can still be achieved.

Figure 4b summarizes our results. For all datasets,M ′
max was set to the lowest

value such that it cannot be statistically detected that the average accuracy of
the resulting ensemble is different from the average accuracy of an ensemble built
with no memory constraint (at α = 0.05). With regard to Figure 4a, the shift of
most ellipses to lower memory level sets confirm our first intuition. In many cases,
the size of the random patches can indeed be reduced, often drastically, without
significant decrease of accuracy. For more than half of the datasets, memory
can indeed be decreased to M ′ = 0.1 or M ′ = 0.2. In other words, building
trees on small parts of the data (i.e., 10% or 20% of the original dataset) is,
for more than half of the datasets, enough to reach competitive accuracy. Also,
the sensitivity to ps and pf is now even more patent. Some ensembles use very
few samples (ps < 0.1) but with many features, while other uses many samples
with few features (pf < 0.1). Again, from a memory point of view, RP-DT
appears to be more interesting than RP-ET. The memory reduction is larger,
as the histogram indicates. Optimized splits in the decision trees may indeed
lead to a better exploitation of the data, hence to a potentially larger reduction
of memory. In conclusion, while not detecting significant differences in accuracy
does not allow to conclude that the performances are truly similar, these figures
at least illustrate that memory requirements can be drastically reduced without
apparent loss in accuracy.
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4.3 Memory Reduction, with Loss

The previous section has shown that the memory consumption can be reduced
up to some threshold M ′

max with no significant loss in accuracy. In this section
we now look at the accuracy of the resulting ensemble when M ′

max is further
decreased. We argue that with severe constraints, and because datasets have all
a different sensitivity, it is even more crucial to better exploit data and thus to
find the right trade-off between both ps and pf , as only RP can.

To illustrate our point, Figure 5 compares for 6 representative datasets the
accuracy of the methods with respect to the memory constraint pspf < M ′

max.
A plain line indicates that the generalization error of the best resulting ensemble
under memory constraint M ′

max is significantly (at α = 0.05) worse on the test
sets than when there is no constraint (i.e., M ′

max = 1). A dotted line indicates
that on average, on the test set, the ensemble is not significantly less accurate.

As the figure shows, when M ′
max is low, RP-based ensembles often achieve the

best accuracy. Only on arcene (Figure 5a), RS seems to be a better strategy,
suggesting some overfitting in setting ps in RP. On all 5 other example datasets,
RP is equivalent or better than RS and P for low values ofM ′

max, with the largest
gaps appearing on isolet (Figure 5e) and mnist3vs8 (Figure 5f). As already
observed in the previous section, although RP-DT is not the best strategy when
memory is unconstrained, its curve dominates the curve of RP-ET for small
values of M ′

max in Figures 5b, 5c, and 5d. Because split thresholds are not
randomized in RP-DT, this method is more resistant than RP-ET to the strong
randomization induced by a very low M ′

max threshold.
For comparison, Figure 5 also features the learning curves of both ET and

RF (with K optimized on the validation set), in which the trees have all been
built on the same training sample of M ′

maxNs instances, with all features.
These results are representative of the use of a straightforward sub-sampling
of the instances to handle the memory constraint. On all datasets, this set-
ting yields very poor performance when M ′

max is low. Building base estimators
on re-sampled random patches thus brings a clear advantage to RP, RS and
P and hence confirms the conclusions of Basilico et al who showed in [8] that
using more data indeed produces more accurate models than learning from a
single subsample. This latter experiment furthermore shows that the good per-
formances of RP cannot be trivially attributed to the fact that our datasets
contain so many instances that only processing a subsample of them would be
enough. On most problems, the slopes of the learning curves of RF and ET
indeed suggest that convergence has not yet been reached on these datasets.
Yet, important improvement are gained by sub-sampling random patches. Over-
all, these results thus indicate that building an ensemble on random patches
is not only a good strategy when data is abundant and redundant but also
that it works even for scarce datasets with limited information regarding the
problem.
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(a) arcene (b) cifar10

(c) tis (d) madelon

(e) isolet (f) mnist3vs8

Fig. 5. Accuracy under memory constraint
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4.4 Conclusion

We have shown in this section that the memory requirements of sampling-based
ensembles are intrinsically low. Better, we have shown that they can often be
drastically decreased without significant loss in accuracy. When the size of the
dataset is far bigger than the available memory, we have also demonstrated that
sampling data along both samples and features, as RP does, not only competes
with other ensemble algorithms but also significantly improves the accuracy of
the resulting ensemble. It also brings a significant improvement over a straight-
forward sub-sampling of the instances.

5 Conclusions and Future Work

The main contribution of this paper is to explore a new framework for supervised
learning in the context of very strong memory constraints or, equivalently, very
large datasets. To address such problems, we proposed the Random Patches en-
semble method that builds each individual model of the ensemble from a random
patch of the dataset obtained by drawing random subsets of both samples and
features from the whole dataset. Through extensive experiments with tree-based
estimators, we have shown that this strategy works as well as other popular
randomization schemes in terms of accuracy (Section 3), at the same time re-
duces very significantly the memory requirements to build each individual model
(Section 4.2), and, given its flexibility, attains significantly better accuracy than
other methods when memory is severely constrained (Section 4.3). Since all mod-
els are built independently of each other, the approach is furthermore trivial to
parallelize. All in all, we believe that the paradigm of our method highlights a
very promising direction of research to address supervised learning on big data.

There remain several open questions and limitations to our approach that we
would like to address in the future. First, this study motivates our interest in
experimenting with truly large-scale problems (of giga-scale and higher). Since
RP already appears advantageous for small to medium datasets, the potential
benefits on very large-scale data indeed look very promising.

Second, the conclusions drawn in sections 3 and 4 are all based on the optimal
values of the parameters ps and pf tuned through an exhaustive grid search
on the validation set. Our analyses did not account for the memory and time
required for tuning these two parameters. In practice, hyper-parameter tuning
can not be avoided as we have shown that the optimal trade-off between pf
and ps was problem dependent. It would therefore be interesting to design an
efficient strategy to automatically find and adjust the values of ps and pf , taking
into account the global memory constraint. Our simplistic framework also only
accounts for the memory required to store the training set in memory and not
for the total memory required to actually build the ensemble.

We have only explored uniform sampling of patches of fixed size in our exper-
iments. In the context of the Pasting approach, Breiman proposed an iterative
instance weighting scheme that proved to be more efficient than uniform sam-
pling [1]. It would be interesting to extend this approach when sampling both



Ensembles on Random Patches 361

instances and features. Yet, parallelization would not be trivial anymore, al-
though probably still possible in the line of the work in [7].

Finally, our analysis of RP is mostly empirical. In the future, we would like
to strengthen these results with a more theoretical analysis. A starting point
could be the work in [13] that studies a scheme similar to the Pasting method
applied to linear models trained through parallel stochastic gradient descent. The
extension of this work to non parametric tree-based estimators does not appear
trivial however, since these latter are not well characterized theoretically.
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