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The Random Subspace Method for
Constructing Decision Forests

Tin Kam Ho, Member, IEEE

Abstract—Much of previous attention on decision trees focuses on the splitting criteria and optimization of tree sizes. The dilemma
between overfitting and achieving maximum accuracy is seldom resolved. A method to construct a decision tree based classifier is
proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The
classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature
vector, that is, trees constructed in randomly chosen subspaces. The subspace method is compared to single-tree classifiers and
other forest construction methods by experiments on publicly available datasets, where the method’s superiority is demonstrated. We
also discuss independence between trees in a forest and relate that to the combined classification accuracy.

Index Terms—Pattern recognition, decision tree, decision forest, stochastic discrimination, decision combination, classifier
combination, multiple-classifier system, bootstrapping.
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1 INTRODUCTION

persistent problem in using decision trees for classifi-
cation is how to avoid overfitting a set of training data

while achieving maximum accuracy. Some previous studies
attempt to prune back a fully-split tree even at the expense
of the accuracy on the training data. Other probabilistic
methods allow descent through multiple branches with
different confidence measures. However, their effect on
optimizing generalization accuracy is far from clear and
consistent.

In [11], I first proposed that combining multiple trees
constructed in randomly selected subspaces can achieve
nearly monotonic increase in generalization accuracy
while preserving perfect accuracy on training data, pro-
vided that the features are sufficient to distinguish all
samples belonging to different classes, or that there is no
intrinsic ambiguity in the datasets. This offers a better
way to overcome the apparent dilemma of accuracy opti-
mization and over-adaptation. In [11], I showed with em-
pirical results that the method works well with binary
trees that at each internal node split the data to two sides
of an oblique hyperplane.

The validity of the method does not depend on the par-
ticulars of tree construction algorithms. Other types of
splitting functions, including single-feature splits, such as
the C4.5 algorithm [26], supervised or unsupervised clus-
tering, distribution map matching [13], and support vector
machines [33] can be readily applied. In this paper, I will
investigate a number of alternative splitting functions.

For simplicity, in this paper I assume that the classification
problems are in real-valued feature spaces, though the sam-

ples may have only binary or integer feature values. Cate-
gorical variables are assumed to be numerically encoded.

2 METHODS FOR CONSTRUCTING A DECISION TREE

Many methods have been proposed for constructing a deci-
sion tree using a collection of training samples. The major-
ity of tree construction methods use linear splits at each
internal node. I will focus on linear splits throughout our
discussions.

A typical method selects a hyperplane or multiple hy-
perplanes at each internal node, and samples are assigned
to branches representing different regions of the feature
space bounded by such hyperplanes. The methods differ by
the number and orientations of the hyperplanes and how
the hyperplanes are chosen. I can categorize such methods
by the types of splits they produce that are determined by
the number and orientation of the hyperplanes (Fig. 1):

1)�axis-parallel linear splits: A threshold is chosen on the
values at a particular feature dimension, and samples
are assigned to the branches according to whether the
corresponding feature values exceed the threshold.
Multiple thresholds can be chosen for assignment to
multiple branches. Another generalization is to use
Boolean combinations of the comparisons against
thresholds on multiple features. These trees can be
very deep but their execution is extremely fast.

2)�oblique linear splits: Samples are assigned to the
branches according to which side of a hyperplane or
which region bounded by multiple hyperplanes they
fall in, but the hyperplanes are not necessarily parallel
to any axis of the feature space. A generalization is to
use hyperplanes in a transformed space, where each
feature dimension can be an arbitrary function of se-
lected input features. The decision regions of these
trees can be finely tailored to the class distributions,
and the trees can be small. The speed of execution de-
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pends on the complexity of the hyperplanes or the
transformation functions.

3)�piecewise linear splits: Branches represent a Voronoi tes-
sellation of the feature space. Samples are assigned
based on nearest-neighbor matching to chosen anchor
points. The anchor points can be selected among
training samples, class centroids, or derived cluster
centers. These trees can have a large number of
branches and can be very shallow.

Within each category, the splitting functions can be ob-
tained in many ways. For instance, single-feature splits can
be chosen by Sethi and Sarvarayudu’s average mutual in-
formation [28], the Gini index proposed by Breiman et al.
[3], Quinlan’s information gain ratio [25], or Mingers’s G
statistic [20], [21], etc. Oblique hyperplanes can be obtained
by Tomek links [23], simulated annealing [7], [8], or per-
ceptron training [11]. Hyperplanes in transformed spaces
can be chosen using the support vector machine method
[33]. Piecewise linear or nearest-neighbor splits can be ob-
tained by numerous ways of supervised or unsupervised
clustering. There are also many variations of each popular
method, and I do not intend to provide a complete taxon-
omy. Interested readers are referred to a survey by Datta-
treya and Kanal [5].

An important issue often addressed in previous litera-
ture is the stopping criterion for tree construction. Certain
types of splits can be produced until the feature space is
partitioned into regions containing only samples of a single
class (given that there are no intrinsic ambiguities among
classes), other types of splits have inherent stopping rules
that would not allow such a complete partitioning. A stop-
ping criterion can also be introduced artificially on any type
of splits, for instance, by limiting the number of levels of
the tree. Another approach is to build a fully split tree and
then prune back certain leaves that are considered overly
specific. An alternative to these top-down construction
methods is a recently proposed approach that determines
the structure of the tree first, and then determines all the
splits simultaneously by optimizing a global criterion [29].

Each splitting function defines a model for projecting
classification from the training samples to unclassified
points in the space. From this point of view, it is not sur-
prising to see that, no method could be universally best
for an arbitrary, finite training set. The advantage of each
splitting function depends on the distribution of available
training samples and the difference of that from the true
distributions. On the other hand, if the training samples

are sufficiently dense, any one of the functions, if used to
generate fully-split trees, yields similar partitions and
classification accuracy. Their only differences will be in the
sizes of the trees and training and execution speed. There-
fore, I do not emphasize the advantages and disadvan-
tages of each splitting function, and I will leave these to
empirical judgment.

3 SYSTEMATIC CONSTRUCTION OF A FOREST

My method is another example of improving accuracy
through combining the power of multiple classifiers [15].
Here, each classifier is a decision tree, and I call the com-
bined classifier a decision forest.

Some previous attempts to construct multiple trees rely on
certain heuristic procedures or manual intervention [19], [30],
[31]. The number of different trees they can obtain is often
severely limited. I emphasize that arbitrarily introduced dif-
ferences between trees, such as using randomized initial
conditions or perturbations in the search procedures [9], do
not guarantee good combination performance. Here, good
combination performance is defined as 100 percent correct
rate on training data and a monotonic decrease in generali-
zation error as the forest grows in the number of trees, pro-
vided that the data do not have any intrinsic ambiguity. Also,
it is important to have a systematic procedure that can pro-
duce a large number of sufficiently different trees.

My method relies on an autonomous, pseudorandom
procedure to select a small number of dimensions from a
given feature space. In each pass, such a selection is made
and a subspace is fixed where all points have a constant
value (say, zero) in the unselected dimensions. All samples
are projected to this subspace, and a decision tree is con-
structed using the projected training samples. In classifica-
tion a sample of an unknown class is projected to the same
subspace and classified using the corresponding tree.

For a given feature space of n dimensions, there are 2n

such selections that can be made, and with each selection a
decision tree can be constructed. More different trees can be
constructed if the subspace changes within the trees, that is,
if different feature dimensions are selected at each split. The
use of randomization in selecting the dimensions is merely
a convenient way to explore the possibilities.

The trees constructed in each selected subspace are fully
split using all training data. They are, hence, perfectly cor-
rect on the training set by construction assuming no intrin-
sic ambiguities in the samples. When two samples cannot
be distinguished by the selected features, there will be am-
biguities, but if no decision is forced in such cases, this does
not introduce errors.

For each tree, the classification is invariant for points that
are different from the training points only in the unselected
dimensions. Thus, each tree generalizes its classification in
a different way. The vast number of subspaces in high-
dimensional feature spaces provides more choices than
needed in practice. Hence, while most other classification
methods suffer from the curse of dimensionality, this method
can take advantage of high dimensionality. And contrary to
the Occam’s Razor, our classifier improves on generaliza-
tion accuracy as it grows in complexity.

    
                 (a)                                (b)                                 (c)

Fig. 1. Types of linear splits. (a) Axis-parallel linear splits. (b) Oblique
linear splits. (c) Piecewise linear splits.
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This method of forest building leads to many interest-
ing theoretical questions. For instance, how many of the
subspaces must be used before a certain accuracy with the
combined classification can be achieved? What will hap-
pen if we use all the possible subspaces? How do the re-
sults differ if we restrict ourselves to subspaces with cer-
tain properties?

Some of these questions are addressed in the theory of
stochastic discrimination (SD), where the combination of
various ways to partition the feature spaces is studied [17],
[18]. In the SD theory, classifiers are constructed by com-
bining many components that have weak discriminative
power but can generalize very well. Classification accura-
cies are related to the statistical properties of the combina-
tion function, and it is shown that very high accuracies can
be achieved far before all the possible weak classifiers are
used. The ability to build classifiers of arbitrary complexity
while increasing generalization accuracy is shared by all
methods derived from the SD theory. Decision forest is one
of such methods. While other SD methods start with highly
projectable classifiers with minimum enrichment and seek
optimization on uniformity [16], with decision forests, one
starts with guaranteed enrichment and uniformity, and
seeks optimization on projectability.

Another previously explored idea to build multiple
classifiers originates from the method of cross-
validation. There, random subsets are selected from the
training set, and a classifier is trained using each subset.
Such methods are also useful since overfitting can be
avoided to some extent by withholding part of the
training data. Two training set subsampling methods
have been proposed: bootstrapping [4] and boosting [6]. In
bootstrapping, subsets of the raw training samples are
independently and randomly selected, with replacement,
according to a uniform probability distribution. In
boosting, the creation of each subset is dependent on
previous classification results, and a probability distri-
bution is introduced to prefer those samples on which
previous classifiers are incorrect. In boosting, weights are
also used in final decision combination, and the weights
are determined by accuracies of individual classifiers.
Both these methods have been known to produce forests
superior to single C4.5 trees [27]. In these experiments, I
will compare accuracies of forests built by my subspace
method to those built by such training set subsampling
methods.

The random subspace method is a parallel learning al-
gorithm, that is, the generation of each decision tree is
independent. This makes it suitable for parallel imple-
mentation for fast learning that is desirable in some
practical applications. Moreover, since there is no hill-
climbing, there is no danger of being trapped in local
optima.

4 THE COMBINATION FUNCTION

The decisions of nt individual trees are combined by aver-
aging the conditional probability of each class at the leaves.
For a point x, let vj(x) be the terminal node that x falls into
when it descends down tree Tj (j = 1, 2, ..., nt). Given this, let

the probability that x belongs to class c (c = 1, 2,..., nc) be
denoted by P(c|vj(x)).
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can be estimated by the fraction of class c points over all
points that are assigned to vj(x) (in the training set). Notice
that in this context, since the trees are fully split, most ter-
minal nodes contain only a single class (except for abnor-
mal stops that may occur in some tree construction algo-
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and the decision rule is to assign x to class c for which gc(x)
is the maximum. For fully split trees, the decision obtained
using this rule is equivalent to a plurality vote among the
classes decided by each tree.

It is obvious that the discriminant preserves 100 percent
accuracy on the training set, provided that there is no am-
biguity in the chosen subspaces. However, it is possible
that, two samples that are distinguishable in the original
feature space become ambiguous in a chosen subspace, es-
pecially if there is a large reduction in dimensionality. So,
caution has to be taken in applying this method to very
low-dimensional data, and the choice of number of features
to select could have a strong impact on accuracy. These will
be further illustrated in the experiments.

For an unseen point, g(x) averages over the posterior
probabilities that are conditioned on reaching a particular
terminal node. Geometrically, each terminal node defines a
neighborhood around the points assigned to that node in
the chosen subspace. By averaging over the posterior prob-
abilities in these neighborhoods (decision regions), the dis-
criminant approximates the posterior probability for a
given x in the original feature space. This is similar to other
kernel-based techniques for estimating posterior probabili-
ties, except that here the kernels are of irregular shapes and
sizes and do not necessarily nest.

Because of this, the discriminant is applicable to any al-
gorithm that partitions the feature space into regions con-
taining only or mostly points of one class, for instance, the
method of learning vector quantization [10]. The analytical
properties of the function and its several variants have been
studied extensively by Berlind [2]. Essentially, accuracy of
the function is shown to be asymptotically perfect (as the
number of component classifiers increases) provided that a
number of conditions on enrichment, uniformity, symmetry,
and projectability are satisfied.

5 INDEPENDENCE BETWEEN TREES

For a forest to achieve better accuracy than individual
trees, it is critical that there should be sufficient inde-
pendence or dissimilarity between the trees. There have
been few known measures for correlation between deci-
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sion trees. The difference in combined accuracy of the
forest from those of individual trees gives strong but in-
direct evidence on their mutual independence.

A simple measure of similarity between two decision
trees can be the amount that their decision regions overlap
[32]. On fully split trees, each leaf represents a region la-
beled with a particular class. On trees that are not fully split
the regions can be labeled with the dominating class (ties
broken arbitrarily). Given that, regardless of the structure of
the trees, we can consider trees yielding the same decision
regions equivalent (Fig. 2). The similarity of two trees can
then be measured by the total volume of the regions labeled
with the same class by both trees.

Given two trees ti and tj, let their class decisions for a
point x be ci(x) and cj(x), respectively, I define tree agreement
si,j to be

s p x dxi j
R

, = 0 5 ,

where R = {x|ci(x) = cj(x)}, and p(x) is the probability density
function of x.

Given two decision trees, the volume of the overlapping
decision regions is determined and, in theory, can be calcu-
lated exactly. However, depending on the form of the split-
ting function and the dimensionality of the space, the cal-
culation could be difficult to carry out. Alternatively, one
may get an approximation by Monte-Carlo integration, i.e.,
generating pseudorandom points to a sufficient density in
the feature space and measure the agreement of their classi-
fication by the trees.

Assuming that the testing samples are representative for
the given problems, I will use them to measure the tree
agreement. This makes the estimation more computation-
ally feasible and allows us to limit the concern within the
neighborhood of the given samples.

It should be noted that severe bias could result if the
samples for estimation are not chosen carefully. For in-
stance, if the training samples are used in this context, since
the trees are fully split and tailored to these samples, by
construction, the estimate of tree agreement will always be
one, and this will most likely be an overestimate. On the
contrary, since the decision boundaries can be arbitrary in
regions where there is no representative sample, if one uses
pseudorandomly generated points distributed over regions
far outside those occupied by the given samples, one could
risk severely underestimating the tree agreement that is
relevant to the problem.

Using a set of n fixed samples and assuming equal
weights, the estimate $ ,si j  can be written as
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6 COMPARISON OF RESULTS OF TREE AND FOREST
CLASSIFIERS

A series of experiments were carried out using publicly
available data sets provided by the Project Statlog [24]. I
used all the four datasets that have separate training and
testing data (“dna,” “letter,” “satimage,” and “shuttle”). In
each of these datasets, both training and testing samples are
represented by feature vectors with integer components.
Though some of the feature components are not necessarily
numerical by nature (say, the features in the “dna” set are
binary codings of a four-element alphabet), the samples are
still treated as points in real-valued spaces. There are no
missing values of any features in all four datasets. Table 1
lists the sizes of the training and testing sets provided in
each collection.

I compared the accuracies of the following classifiers:

1)�Decision forests constructed using the subspace
method versus single decision trees.

2)�Decision forests constructed using the subspace
method versus those constructed using training set
subsampling methods.

3)�Decision forests constructed using the subspace
method with different splitting functions.

4)�Decision forests constructed using the subspace
method with different numbers of randomly selected
features.

6.1 Forest Built on Subspaces Versus a Single
Decision Tree

I first compared the accuracies of the forests constructed
using my method against the accuracy of using a single
decision tree constructed using all features and all training
samples. For easy repetition of results by others, I chose to
use the C4.5 algorithm [26] (Release 8) to construct the trees
in either case.

In the experiments, the C4.5 algorithm was essentially
untouched. The forest construction procedure was imple-

Fig. 2. Two trees yielding the same decision regions in a 2-dim feature
space (Ci(x) = j  if tree i decides that x is in class j).

TABLE 1
SPECIFICATIONS OF DATA SETS USED IN THE EXPERIMENTS

name of
data set

no. of
classes

no. of
feature
dimen-
sions

no. of
training
samples

no. of
testing

samples

dna 3 180 2,000 1,186
letter 26 16 15,000 5,000
satimage 6 36 4,435 2000
shuttle 7 9 43,500 14,500
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mented external to the C4.5 algorithm. That means the
features were randomly selected before the data were input
to the algorithm. Decision combination, in this case ap-
proximated by simple plurality voting, was done using the
class decisions extracted from the output of the algorithm.
Along with the use of publicly available data, this experi-
ment can be easily duplicated.

In each run, I first used the original C4.5 algorithm to
build an unpruned tree using all the features, and applied
the tree to the testing set. Then I repeated the procedure
with a pruned tree (using default confidence levels). I then
constructed a decision forest, using the same C4.5 algo-
rithm, but for each tree using only a half of the features that
were randomly selected. Each tree was added to the forest
and the accuracy of the forest on the testing set was meas-
ured. I continued until 100 trees were obtained in each for-
est. Fig. 3 compares the testing set accuracies of the forests
against those obtained using a single C4.5 tree with the full
feature vectors. It is apparent that the forests yield superior
testing set accuracies for these four datasets.

It should be noted that in some of these datasets the
number of features is not very large (dna: 180; letter: 16;

satimage: 36; shuttle: nine). But the method still works well
with such relatively low-dimensional spaces. The only ex-
ception is that with the “shuttle” data, there are so few
features to choose from that the forest does not display a
great advantage over the single-tree classifier. To apply the
method to very low-dimensional data, I suggest first ex-
panding the feature vectors by using certain functions of
the original features. In many cases, I found that the inclu-
sion of pairwise sums, differences, products, or Boolean
combinations (for binary and categorical features) of the
raw features served as a good expansion. I will discuss this
further in a later experiment with more data sets with very
few feature dimensions.

6.2 Comparison to Forests Constructed by Training
Set Subsampling

In this experiment, I compared our method of forest build-
ing to other methods where each tree was constructed us-
ing a randomly selected subset of the training data with all
the features. I experimented with both bootstrapping and
boosting methods that are of this category. In bootstrap-
ping, subsets of the same size as the original training set

  

  

Fig. 3. Comparison of test set accuracies: a single C4.5 tree, forests built by the random subspace method, and forests built by bootstrapping and
boosting (for the “shuttle” data, accuracies of bootstrapping and the single-tree methods are essentially the same).
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were created by sampling with replacement in uniform
probability. A tree was constructed with each subset.
Boosting was done following the AdaBoost.M1 procedure
described in [6].

Again, all trees were constructed by the C4.5 algorithm
as in the previous experiment, and the sample selection
procedures were implemented externally. Fig. 3 shows the
accuracies of all the three forests building methods. It can
be seen that although the individual trees (say, the first
tree in each forests) built by training set subsampling are
sometimes more accurate, with more trees, the combined
accuracies of the random subspace forests are superior.
The results suggest that there is much redundancy in the
feature components in these datasets, but the samples are
relatively sparse. Interestingly, the results also indicate
that the bootstrapping and boosting methods are very
similar in performance.

6.2.1 Tree Agreement
The differences in tree agreement in forests built using the
subspace method and those built using the other two
methods can be shown by our measure $ ,si j  estimated us-

ing the testing data. Table 2 lists the estimated tree agree-
ment for each forest. Each estimate is averaged over all
4,950 (100 × 99/2) pairs among 100 trees. For the “dna” and
“letter” data, the subspace method yielded very dissimilar
trees compared to the other methods. For the other two
datasets, the differences are not as obvious. Again, differ-
ences between the bootstrapping and boosting methods are
insignificant.

6.3 Comparison Among Different
Splitting Functions

In this experiment, I compared the effects of different
splitting functions. Eight splitting functions were imple-
mented. Some functions can produce multibranch splits,
but for comparison across different functions, only binary
splits were used. For an internal node to be split into n
branches, the eight functions assign the points in the fol-
lowing ways:

1)�single feature split with best gain ratio: Points are as-
signed to different branches by comparing the value of
a single feature against a sequence of n − 1 thresholds.
The feature and thresholds are chosen to maximize
Quinlan’s information gain ratio [25].

2)�distribution mapping: Points are projected onto a line
drawn between the centroids of two largest classes.
Their distances to one centroid are sorted and a set of
thresholds are selected so that there are the same
number of points between each pair of successive

thresholds. Points between a pair of thresholds are as-
signed to a branch at the next level [14].

3)�class centroids: Centroids of the n − 1 largest classes and
that of the remaining points are computed. A point is
assigned to a branch if it is closest to the correspond-
ing centroid by Euclidean distance.

4)�unsupervised clustering: n clusters are obtained by com-
plete-linkage clustering using Euclidean distance.
Points are matched by Euclidean distance to the cen-
troids of each cluster and assigned to the branch corre-
sponding to the closest. If there are more points than a
preset limit so that clustering is prohibitively expen-
sive, points are sorted by the sum of feature values
and divided evenly into n groups.

5)�supervised clustering: n anchors are initialized using one
point from each of the first n classes. The remaining
points are matched to the closest anchor by Euclidean
distance. The anchors are then updated as the centroids
of matched points. The process is repeated for a number
of passes and the resulting centroids are used to repre-
sent the branches. Points are assigned to the branch cor-
responding to the nearest centroid.

6)�central axis projection: First, we find the two classes
whose means are farthest apart by Euclidean dis-
tance. The other classes are matched to these two by
proximity of the means. The centroids of the two
groups thus obtained are then computed and a line
(the central axis) is drawn passing through both
centroids. All data points are then projected onto
this line. Hyperplanes that are perpendicular to this
line are evaluated, and the one that best divides the
two groups (causing minimum error) is chosen.
Points are then assigned to two sides of the chosen
hyperplane as two branches. This method permits
only binary splits.

7)�perceptron: Again the data points are divided into two
groups by proximity of the class means. A hyperplane
is then derived using the fixed-increment perceptron
training algorithm [22]. Points are then assigned to
two sides of the derived hyperplane. This method also
permits only binary splits.

8)�support vector machine: n − 1 largest classes are chosen
and the rest are grouped as one class. Points are trans-
formed to a higher-dimensional space by a polynomial
kernel of a chosen degree. Hyperplanes that maximize
margins in the transformed space are chosen. Each
hyperplane divides one class from the others. Points
are compared to all chosen hyperplanes and assigned
to the branch corresponding to the one it matches with
the largest margin [33].

Fig. 4 shows the accuracies of the forests that use these
eight functions. There are 50 trees in each forest. In each
forest, the subspace changes at each split. As expected, the
effects of splitting functions are data-dependent, and there
is no universal optimum. Nevertheless, the improvements
in the forest accuracy with increases in number of trees fol-
low a similar pattern across different functions and differ-
ent datasets. This demonstrates the validity of the forest
construction method and its independence of the splitting
functions.

TABLE 2
AVERAGE TREE AGREEMENT OF FORESTS

CONSTRUCTED BY EACH METHOD

data setconstruction
method dna letter satimage shuttle
random
subspaces

0.7540 0.6595 0.8228 0.9928

bootstrapping 0.9081 0.8197 0.8294 0.9998
boosting 0.8969 0.7985 0.8205 0.9996
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6.3.1 Tree Agreement
Table 3 shows the average tree agreement (averaged over all
1,225 (50 × 49/2) pairs of 50 trees) for the eight splitting
functions and the four datasets, estimated using the testing
samples. The absolute magnitude of the measure is data de-
pendent. But the relative magnitudes for the same dataset
reveal an interesting pattern. Namely, weaker agreement is
observed for forests built with unsupervised clustering, and
stronger agreement is observed for the forests built with
maximum gain ratio (except for the “satimage” data). The
forests built with support vector machines are found to have
both the strongest and weakest agreement depending on the
data set. There are significant data-dependent differences in
the relative order among the estimates given by different
splitting functions. Once again, this suggests there are no
universally optimal splitting functions.

6.4 Comparison Among Different Numbers of
Random Features

In using the subspace method, one important parameter to
be determined is how many features should be selected in

each split. When the splitting function uses a single feature,
the evaluation of possible splits is constrained within only
the selected features. In other cases, the hyperplanes are
functions of the selected features, so that the number of
random features used could affect the results significantly.

  

  

Fig. 4. Comparison of test set accuracies with different splitting functions.

TABLE 3
AVERAGE TREE AGREEMENT WITH
DIFFERENT SPLITTING FUNCTIONS

splitting data set

function dna letter satimage shuttle
gain ratio 0.8804 0.7378 0.7980 0.9975
dist. mapping 0.7728 0.5861 0.8188 0.9864
centroid 0.7143 0.6593 0.8310 0.9975
unsup.
clustering

0.5337 0.5701 0.8110 0.9885

sup.
clustering

0.6137 0.6320 0.8378 0.9812

c. axis
projection

0.8368 0.6481 0.8440 0.9911

perceptron 0.7913 0.5758 0.8200 0.9950
support
vectors

0.7907 0.4827 0.9205 0.8720
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Fig. 5. Comparison of “dna” test set accuracies with different numbers of random features: 90 (1/2 of all), 45 (1/4), 23 (1/8), 12 (1/16), and 135 (3/4).
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I compared the effects of different numbers of features
using the “dna” dataset that has 180 features. Each of the
same eight splitting functions was used to construct a
forest of 50 trees. Again, in each forest the subspace
changes at each split. The results show that the effects
are stronger on some splitting functions than others (Fig. 5).
In particular, the split by maximum gain ratio is less sen-
sitive to the subspace dimensionality. Nevertheless, it
appears that using half of the features resulted in the
best or very close to the best combined accuracies with
all splitting functions.

6.4.1 Tree Agreement
Table 4 shows the average tree agreement for the eight
splitting functions and different numbers of random fea-
tures, estimated using the testing set (“dna” data). Again,
each estimate is averaged over all 1,225 (50 × 49/2) pairs of
50 trees. The agreement generally increases with the num-
ber of random features, and the relative ordering among
different splitting functions is in good consistency. Trees
built with maximum gain ratio are the most similar to each
other, and those built with unsupervised clustering are least
similar.

It is important to note that forest accuracy is affected by
both the individual tree accuracy and the agreement be-
tween the trees. This means optimizing on either factor
alone does not necessarily result in the best forest accuracy.
For instance, for the “dna” data, although the clustering
methods give trees with weakest agreement, their individ-
ual accuracies and thus the forest accuracies are not as good
as those obtained by, say, splits by maximum gain ratio. But
recall also that although the training set subsampling meth-
ods produce better individual trees, they are so similar to
each other that the forest accuracies are not as good as those
obtained by the subspace method. Ideally, one should look
for the best individual trees with lowest similarity. But ex-
actly how this dual optimization can be done with an algo-
rithm remains unclear.

The tree agreement measure can be used to order the
trees in the forest, so that the most dissimilar trees are
evaluated first. This could be useful in practice to obtain
better speed/accuracy tradeoff, that is, to use the least
number of trees to achieve a certain accuracy. Fig. 6 com-
pares the accuracy gains obtained when the trees are sorted
by increasing agreement and when they are unsorted. The
forest was constructed for the “dna” data using random

halves of the features and the maximum gain ratio as the
splitting function.

7 EXPLOITING REDUNDANCY IN DATA

The Statlog datasets I have used in previous experiments
either have a large number of features or a large number of
training samples. For some problems, this may not be true.
In this section, I discuss the behavior of the subspace
method on a collection of datasets that have a larger variety
in size and feature dimensionality. I chose to use datasets
from the University of California at Irvine machine learning
database that have at least 500 samples and have no miss-
ing values. I again used the C4.5 package to construct all
the trees.

Since there is no separate training and testing sets for
each problem, I employed a two-fold cross-validation pro-
cedure. For each problem, I split the dataset randomly
into two disjoint halves, constructed a forest with one half
and tested it on the other half. Then the training and test-
ing sets were swapped and the run repeated. I performed
this procedure for ten times for each dataset. In reporting
the test set accuracies, I deleted the outliers, i.e., the runs
with the highest and lowest accuracies, and reported the
average of the remaining eight runs. This is done to avoid
misleading results due to occasional bad sampling on
some very small datasets, such as missing an entire class
in training or testing.

TABLE 4
TREE AGREEMENT FOR DIFFERENT NUMBERS OF RANDOM FEATURES (“DNA” DATA)

number of random featuressplitting
function 12 23 45 90 135
gain ratio 0.7070 0.7773 0.8498 0.8804 0.8849
dist. mapping 0.5855 0.6555 0.7216 0.7728 0.7530
centroid 0.6168 0.6385 0.6717 0.7143 0.6567
unsup. clustering 0.4618 0.4723 0.4862 0.5337 0.5451
sup. clustering 0.5089 0.5253 0.5507 0.6137 0.5571
c. axis projection 0.6412 0.7082 0.7714 0.8368 0.8224
Perceptron 0.6174 0.6811 0.7313 0.7913 0.7968
support vectors 0.4985 0.5198 0.6281 0.7907 0.8144

Fig. 6. Comparison of test set accuracies between forests with sorted
and unsorted trees.
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Fig. 7. Comparison of test set accuracies of forests and single-trees.
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Among these datasets, the “letter” and “splice” data also
belong to the Statlog collection, but instead of being split
into fixed and separated training and testing sets, they were
used in the same way with the others in the cross-
validation procedure. For those datasets that have categori-
cal variables, have very few samples, or have very few
feature dimensions, I included the cross-products of all
pairs of features in random subspace selection. Table 5
shows the number of samples, classes, and features as well
as the data types for each dataset.

Fig. 7 shows the test set accuracies of decision forests
constructed by the random subspace method, bootstrap-
ping, and boosting, together with those of single C4.5
tree (both pruned and unpruned) classifiers. From these
plots, a few observations can be made:

1)�For all datasets, the decision forests are more accurate
than both pruned and unpruned single-tree classifiers,
and, in most cases, there are large differences.

2)�While all forests are similar in their behavior,
namely, accuracies increase with number of trees,
those built by bootstrapping or boosting tend to be
in closer competition, while in some cases, those
built by the random subspace method follow a dif-
ferent trend.

3)�The subspace method is better in some cases, about the
same in other cases, or worse in yet other cases when
compared to the other two forest-building methods.

4)�The effect of data types, i.e., whether the features are
numeric, categorical, or mixed, is not apparent.

     

     

     

Fig. 7. Continued.
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To obtain some hints on when the subspace method is
better, in Table 5, I have arranged the entries in the same
order with the plots in Fig. 7. For the datasets near the be-
ginning of the table, the subspace method performs the best
among the three forest-building methods. For those toward
the end of the table, the subspace method does not have an
advantage over the other two methods. From this arrange-
ment and the plots, it should be apparent that the subspace
method is best when the dataset has a large number of
features and samples, and that it is not good when the da-
taset has very few features coupled with a very small num-
ber of samples (like the datasets “pima,” “tic-tac-toe,” or
“yeast”) or a large number of classes (“abalone”).

For most other datasets, the three methods are in close
neighborhood of one another. Therefore, I expect that the
subspace method is good when there is certain redun-
dancy in the dataset, especially in the collection of fea-
tures. This makes the method especially valuable for
tasks involving low-level features, such as in image rec-
ognition (e.g., [1]) and in other domains of signal proc-
essing. For the method to work on other tasks, redun-
dancy needs to be introduced artificially using simple
functions of the features.

8 CONCLUSIONS

I described a method for systematic construction of a
decision forest. The method relies on a pseudorandom
procedure to select components of a feature vector, and
decision trees are generated using only the selected fea-
ture components. Each tree generalizes classification to
unseen points in different ways by invariances in the
unselected feature dimensions. Decisions of the trees are
combined by averaging the estimates of posterior prob-
abilities at the leaves.

Experiments were conducted using a collection of
publicly available datasets. Accuracies were compared to
those of single trees constructed using the same tree con-
struction algorithm but with all the samples and full

feature vectors. Significant improvements in accuracy
were obtained using our method. Furthermore, it is clear
that as the forests grow in complexity (measured in the
number of trees), their generalization accuracy does not
decrease, while maximum accuracies on the training sets
are preserved. The forest construction method can be
used with any splitting function. Eight splitting func-
tions were implemented and tested. Though there are
data dependent differences of accuracies, the improve-
ments in accuracy with increases in the number of trees
follow the same trend. The effects of the number of ran-
dom features to be used were also investigated. It was
shown that in the chosen example using half of the fea-
ture components yielded the best accuracy. Finally, when
compared to two training set subsampling methods for
forest building on fourteen datasets, the subspace
method was shown to perform better when the dataset
has a large number of features and not too few samples.
The method is expected to be good for recognition tasks
involving many redundant features.
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