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 The Annals of Statistics
 2001, Vol. 29, No. 5, 1189-1232

 1999 REITZ LECTURE

 GREEDY FUNCTION APPROXIMATION:
 A GRADIENT BOOSTING MACHINE'

 BY JEROME H. FRIEDMAN

 Stanford University

 Function estimation/approximation is viewed from the perspective of
 numerical optimization in function space, rather than parameter space. A
 connection is made between stagewise additive expansions and steepest-
 descent minimization. A general gradient descent "boosting" paradigm is
 developed for additive expansions based on any fitting criterion. Specific
 algorithms are presented for least-squares, least absolute deviation, and
 Huber-M loss functions for regression, and multiclass logistic likelihood
 for classification. Special enhancements are derived for the particular case
 where the individual additive components are regression trees, and tools
 for interpreting such "TreeBoost" models are presented. Gradient boost-
 ing of regression trees produces competitive, highly robust, interpretable
 procedures for both regression and classification, especially appropriate for
 mining less than clean data. Connections between this approach and the
 boosting methods of Freund and Shapire and Friedman, Hastie and Tib-
 shirani are discussed.

 1. Function estimation. In the function estimation or "predictive learn-
 ing" problem, one has a system consisting of a random "output" or "response"
 variable y and a set of random "input" or "explanatory" variables x = x1, ....

 xn}. Using a "training" sample {yi, Xi}N of known (y, x)-values, the goal is to
 obtain an estimate or approximation F(x), of the function F*(x) mapping
 x to y, that minimizes the expected value of some specified loss function
 L(y, F(x)) over the joint distribution of all (y, x)-values,

 (1) F* = argmin Ey xL(y, F(x)) = argminEx[Ey(L(y, F(x))) I x].
 F F

 Frequently employed loss functions L(y, F) include squared-error (y - F)2

 and absolute error ly - Fl for y E R' (regression) and negative binomial log-
 likelihood, log(1 + e-2YF), when y E {-1, 1} (classification).

 A common procedure is to restrict F(x) to be a member of a parameterized
 class of functions F(x; P), where P = {P1, P2, .. .} is a finite set of parameters
 whose joint values identify individual class members. In this article we focus
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 1190 J. H. FRIEDMAN

 on "additive" expansions of the form

 M

 (2) F(x;{fP3m, am}m) = E 3mh(X; am)
 m=l

 The (generic) function h(x; a) in (2) is usually a simple parameterized func-

 tion of the input variables x, characterized by parameters a = {a1, a2, . . .}.
 The individual terms differ in the joint values am chosen for these parameters.
 Such expansions (2) are at the heart of many function approximation meth-
 ods such as neural networks [Rumelhart, Hinton, and Williams (1986)], radial
 basis functions [Powell (1987)], MARS [Friedman (1991)], wavelets [Donoho
 (1993)] and support vector machines [Vapnik (1995)]. Of special interest here
 is the case where each of the functions h(x; am) is a small regression tree,
 such as those produced by CART TM [Breiman, Friedman, Olshen and Stone
 (1983)]. For a regression tree the parameters am are the splitting variables,
 split locations and the terminal node means of the individual trees.

 1.1. Numerical optimization. In general, choosing a parameterized model
 F(x; P) changes the function optimization problem to one of parameter opti-
 mization,

 (3) P* = arg min 4>(P),
 P

 where

 4?(P) = Ey XL(y, F(x; P))

 and then

 F* (x) = F(x; P*).

 For most F(x; P) and L, numerical optimization methods must be applied to
 solve (3). This often involves expressing the solution for the parameters in the
 form

 M

 (4) P* E Pm,
 m=O

 where po is an initial guess and {pm}m are successive increments ("steps" or
 "boosts"), each based on the sequence of preceding steps. The prescription for
 computing each step Pm is defined by the optimization method.

 1.2. Steepest-descent. Steepest-descent is one of the simplest of the frequ-
 ently used numerical minimization methods. It defines the increments {pm}lm
 (4) as follows. First the current gradient gm is computed:

 gm = {gjm} = [ dPj =_p1 }
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 GREEDY FUNCTION APPROXIMATION 1191

 where

 m-1

 Pm-l = E Pi
 i=O

 The step is taken to be

 Pm = Pmgm,

 where

 (5) Pm = arg min 4(Pm_1 - pgm).
 p

 The negative gradient -gm is said to define the "steepest-descent" direction
 and (5) is called the "line search" along that direction.

 2. Numerical optimization in function space. Here we take a "non-
 parametric" approach and apply numerical optimization in function space.
 That is, we consider F(x) evaluated at each point x to be a "parameter" and
 seek to minimize

 @'(F) = Ey xL(y, F(x)) = Ex[Ey(L(y, F(x))) I x],

 or equivalently,

 4(F(x)) = Ey[L(y, F(x)) I x]

 at each individual x, directly with respect to F(x). In function space there are
 an infinite number of such parameters, but in data sets (discussed below) only

 a finite number {F(xj)}N are involved. Following the numerical optimization
 paradigm we take the solution to be

 M

 F*(x) = E fm(x),
 m==O

 where fo(x) is an initial guess, and {fm(X)}jM are incremental functions
 ("steps" or "boosts") defined by the optimization method.

 For steepest-descent,

 (6) f m (x) = -Pm gm (x)

 with

 (X d0g(F(x))_ _ dEY[L(y, F(x)) x]-
 gm(x - dFx -dF X grn(x)-mJiF(x)=F.j(X) = E[Y x)) F(x)=F,-l (x)

 and

 m-1

 Fmil(X) E fi(x).
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 1192 J. H. FRIEDMAN

 Assuming sufficient regularity that one can interchange differentiation and
 integration, this becomes

 (7) g() =E dL(y, F(x)) I x
 dL F(x) F(x)=:Fm,(x)

 The multiplier Pm in (6) is given by the line search

 (8) Pm = argmin Ey XL(y, Fml(x) -pgm(x)).
 p

 3. Finite data. This nonparametric approach breaks down when the joint

 distribution of (y, x) is estimated by a finite data sample {Yi, Xi}IN. In this
 case EY[. I x] cannot be estimated accurately by its data value at each xi, and
 even if it could, one would like to estimate F*(x) at x values other than the
 training sample points. Strength must be borrowed from nearby data points
 by imposing smoothness on the solution. One way to do this is to assume a
 parameterized form such as (2) and do parameter optimization as discussed in
 Section 1.1 to minimize the corresponding data based estimate of expected loss,

 M

 1 m s am I = arg min L Yi, E mh(Xi; am)j
 W,n, a/} i=l m=l {13a? =arg 7 m'}~ Ifif m=1

 In situations where this is infeasible one can try a "greedy stagewise"

 approach. For m = 1, 2, ..., Ml
 N

 (9) (fm am) = argmin E L(yi, Fm I(xi) + /3h(xi; a))
 f3,a i=l

 and then

 (10) Fm(x) = Fmi,(x) + pmh(x; am).

 Note that this stagewise strategy is different from stepwise approaches that
 readjust previously entered terms when new ones are added.

 In signal processing this stagewise strategy is called "matching pursuit"
 [Mallat and Zhang (1993)] where L(y, F) is squared-error loss and the
 { h(x; am)}M are called basis functions, usually taken from an overcomplete
 waveletlike dictionary. In machine learning, (9), (10) is called "boosting" where
 y E {-1, 1} and L(y, F) is either an exponential loss criterion e-YF [Freund
 and Schapire (1996), Schapire and Singer (1998)] or negative binomial log-
 likelihood [Friedman, Hastie and Tibshirani (2000) (here after reffered to as
 FHT00)]. The function h(x; a) is called a "weak learner" or "base learner" and
 is usually a classification tree.

 Suppose that for a particular loss L(y, F) and/or base learner h(x; a) the

 solution to (9) is difficult to obtain. Given any approximator Fmi,(x), the
 function 83mh(x; am) (9), (10) can be viewed as the best greedy step toward
 the data-based estimate of F*(x) (1), under the constraint that the step "direc-
 tion" h(x; am) be a member of the parameterized class of functions h(x; a). It
 can thus be regarded as a steepest descent step (6) under that constraint. By

This content downloaded from 
������������200.20.225.244 on Fri, 25 Sep 2020 11:07:43 UTC������������� 

All use subject to https://about.jstor.org/terms



 GREEDY FUNCTION APPROXIMATION 1193

 construction, the data-based analogue of the unconstrained negative gradi-
 ent (7),

 -gm (i ) -[ dF(Xi ) - F(x)=F,,,-_ (x)

 gives the best steepest-descent step direction -gm = {-gm(xi)}1 in the N-
 dimensional data space at Fmi(x). However, this gradient is defined only at
 the data points {Xi N and cannot be generalized to other x-values. One possi-
 bility for generalization is to choose that member of the parameterized class

 h(x; am) that produces hm = {h(xi; am)}IN most parallel to -gm E RN. This is
 the h(x; a) most highly correlated with -gm(x) over the data distribution. It
 can be obtained from the solution

 N

 (11) am = argmin [-gm(xi) -,8h(xi;a)]2.
 a,f *i=

 This constrained negative gradient h(x; am) is used in place of the uncon-
 strained one -gm(x) (7) in the steepest-descent strategy. Specifically, the line
 search (8) is performed

 N

 (12) Pm = argmin E( L(yx, Fm1(Xi) + ph(xi; am))
 Pi=

 and the approximation updated,

 Fm(x) = Fmi,(x) + Pmh(X; am).

 Basically, instead of obtaining the solution under a smoothness constraint
 (9), the constraint is applied to the unconstrained (rough) solution by fit-

 ting h(x; a) to the "pseudoresponses" {K = -gm(xi)}IN1 (7). This permits the
 replacement of the difficult function minimization problem (9) by least-squares
 function minimization (11), followed by only a single parameter optimization
 based on the original criterion (12). Thus, for any h(x; a) for which a feasible
 least-squares algorithm exists for solving (11), one can use this approach to
 minimize any differentiable loss L(y, F) in conjunction with forward stage-
 wise additive modeling. This leads to the following (generic) algorithm using
 steepest-descent.

 ALGORITHM 1 (Gradient-Boost).

 1. Fo(x) = arg min EN L(yi vp)
 2. For m = 1 to M do:

 3- 5d = F(x-) ]F(x)=F (x)i = 1, N
 4. am = arg mina,: Ei1[Yi-,fh(x0;a)j2
 5. Pm = argmin Ei=1 L(yi, Fmi,(xi) + ph(xi; am))

 6. Fm(x) = Fmi (x) + Pmh(X; am)
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 1194 J. H. FRIEDMAN

 7. endFor

 end Algorithm

 Note that any fitting criterion that estimates conditional expectation (given

 x) could in principle be used to estimate the (smoothed) negative gradient (7)

 at line 4 of Algorithm 1. Least-squares (11) is a natural choice owing to the
 superior computational properties of many least-squares algorithms.

 In the special case where y E {-1, 1} and the loss function L(y, F) depends

 on y and F only through their product L(y, F) = L(yF), the analogy of boost-
 ing (9), (10) to steepest-descent minimization has been noted in the machine

 learning literature [lRatsch, Onoda and Muller (1998), Breiman (1999)]. Duffy
 and Helmbold (1999) elegantly exploit this analogy to motivate their GeoLev
 and GeoArc procedures. The quantity yF is called the "margin" and the
 steepest-descent is performed in the space of margin values, rather than the
 space of function values F. The latter approach permits application to more
 general loss functions where the notion of margins is not apparent. Drucker
 (1997) employs a different strategy of casting regression into the framework of

 classification in the context of the AdaBoost algorithm [Freund and Schapire
 (1996)].

 4. Applications: additive modeling. In this section the gradient boost-
 ing strategy is applied to several popular loss criteria: least-squares (LS), least

 absolute deviation (LAD), Huber (M), and logistic binomial log-likelihood (L).
 The first serves as a "reality check", whereas the others lead to new boosting

 algorithms.

 4.1. Least-squares regression. Here L(y, F) = (y - F)2/2. The pseudore-

 sponse in line 3 of Algorithm 1 is Fi = - ,F7_(xi). Thus, line 4 simply fits
 the current residuals and the line search (line 5) produces the result Pm -

 Oam, where OBm is the minimizing /3 of line 4. Therefore, gradient boosting on
 squared-error loss produces the usual stagewise approach of iteratively fitting
 the current residuals.

 ALGORITHM 2 (LS-Boost).

 Fo(x) = Y
 For m = 1 to M do:

 Yi = Y- -Fm_x(x) i = 1, N
 (Pm' am) = arg minapNE I [4i - ph(xi; a)]2
 Fm(x) = Fm I(X) + Pmh(X; am)

 endFor

 end Algorithm

 4.2. Least absolute deviation (LAD) regression. For the loss function

 L(y, F) = ly- Fl, one has

 (13) =p[8dL(yj, F(xi))] = sign(Y - -
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 GREEDY FUNCTION APPROXIMATION 1195

 This implies that h(x; a) is fit (by least-squares) to the sign of the current
 residuals in line 4 of Algorithm 1. The line search (line 5) becomes

 N

 Pm = argmin Yi - Fm,(xi) - ph(xt;am).

 N yi -Fmi(xi)
 (14) = argmin> 3h(xi;am). h(xa;am) - P

 =medianw1yi-h( m-i(xi)1, Wi = jh(xi;al)j.

 Here medianw{.} is the weighted median with weights wi. Inserting these
 results [(13), (14)] into Algorithm 1 yields an algorithm for least absolute
 deviation boosting, using any base learner h(x; a).

 4.3. Regression trees. Here we consider the special case where each base
 learner is an J-terminal node regression tree [Breiman, Friedman, Olshen
 and Stone (1983)]. Each regression tree model itself has the additive form

 J

 ( 15) h(x; ttbi, R j}J ) =Ebj 1(x E R j
 i=l

 Here {Rj}J are disjoint regions that collectively cover the space of all joint
 values of the predictor variables x. These regions are represented by the ter-
 minal nodes of the corresponding tree. The indicator function 1(.) has the
 value 1 if its argument is true, and zero otherwise. The "parameters" of this
 base learner (15) are the coefficients {bj}j, and the quantities that define the
 boundaries of the regions {Rj}f. These are the splitting variables and the
 values of those variables that represent the splits at the nonterminal nodes of
 the tree. Because the regions are disjoint, (15) is equivalent to the prediction
 rule: if x E R1 then h(x) = bj.

 For a regression tree, the update at line 6 of Algorithm 1 becomes

 J

 (16) Fm(X) = Fm-i(X) + Pm E bjml(x e Rjm).
 j=1

 Here {Rjm}J are the regions defined by the terminal nodes of the tree at

 the mth iteration. They are constructed to predict the pseudoresponses {i}ij
 (line 3) by least-squares (line 4). The {bjm} are the corresponding least-squares
 coefficients,

 bjm = avexERjm i-

 The scaling factor Pm is the solution to the "line search" at line 5.
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 1196 J. H. FRIEDMAN

 The update (16) can be alternatively expressed as

 J

 (17) Fm(X) = Fmi-(X) + E yjml(x E Rjm)
 j=1

 with Yjm = Pmbjm. One can view (17) as adding J separate basis functions

 at each step {1(x E Rjm)}IJ, instead of a single additive one as in (16). Thus,
 in this case one can further improve the quality of the fit by using the opti-
 mal coefficients for each of these separate basis functions (17). These optimal
 coefficients are the solution to

 N J

 { Yjm}J = arg min E L (\Y Fm- (xi) + yjl(x E Rjm))
 {'YjI iTi1 j=1

 Owing to the disjoint nature of the regions produced by regression trees, this
 reduces to

 (18) yjm=argmin E L(yi,Fm_1(xi)+?y).
 X'iERjm

 This is just the optimal constant update in each terminal node region, based

 on the loss function L, given the current approximation Fmil(x).
 For the case of LAD regression (18) becomes

 Yjm = medianxi (ER J{Yi - Fm-i(Xi)},

 which is simply the median of the current residuals in the jth terminal node at
 the mth iteration. At each iteration a regression tree is built to best predict the

 sign of the current residuals y, - Fm-,(xi), based on a least-squares criterion.
 Then the approximation is updated by adding the median of the residuals in
 each of the derived terminal nodes.

 ALGORITHM 3 (LAD-TreeBoost).

 Fo(x) = median{}yi }
 For m = 1 to M do:

 Yi = sign(yi - Fmi,(xi)), i = 1, N
 {Rjm}j = J-terminal node tree({yi, xi} I)
 Yjm = medianxiERjm {yi - Fmi(Xii)}, j = 1, J
 Fm(X) = Fm-i(X) + Ej= lyjml(X E Rjm)

 endFor

 end Algorithm

 This algorithm is highly robust. The trees use only order information on

 the individual input variables xj, and the pseudoresponses 5i (13) have only
 two values, Yi E {-1, 1}. The terminal node updates are based on medians.
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 GREEDY FUNCTION APPROXIMATION 1197

 An alternative approach would be to build a tree to directly minimize the loss

 criterion,

 N

 treem(x) = arg min - Fmil(xi) - tree(xi)l J-node tree i=1

 Fm(x) = Fm- (xi) + treem(x).

 However, Algorithm 3 is much faster since it uses least-squares to induce the
 trees. Squared-error loss is much more rapidly updated than mean absolute
 deviation when searching for splits during the tree building process.

 4.4. M-Regression. M-regression techniques attempt resistance to long-
 tailed error distributions and outliers while maintaining high efficiency for
 normally distributed errors. We consider the Huber loss function [Huber
 (1964)]

 (19) L(y, F) =|2(YF vIY- ,
 5ly (I-Fl - /2) lY -Fl > 5.

 Here the pseudoresponse is

 = dL(yi, F(xi)) 1

 d 8F(xi) I F(x)=F._1(x)

 _ - Fm.-(Xi), IYi - Fm-(xi)l < &
 - { 3 sign(yi - Fm-i(Xi)), IYi - Fm-(xi)l > an

 and the line search becomes

 N

 (20) Pm = arg min L(yi, Fm-1(xi) + ph(xi; am))
 P i=1

 with L given by (19). The solution to (19), (20) can be obtained by standard
 iterative methods [see Huber (1964)].

 The value of the transition point 3 defines those residual values that are
 considered to be "outliers," subject to absolute rather than squared-error loss.
 An optimal value will depend on the distribution of y - F*(x), where F* is
 the true target function (1). A common practice is to choose the value of 3 to

 be the ae-quantile of the distribution of I y - F* (x)1, where (1 - ae) controls the
 breakdown point of the procedure. The "breakdown point" is the fraction of
 observations that can be arbitrarily modified without seriously degrading the
 quality of the result. Since F*(x) is unknown one uses the current estimate

 Fmil(x) as an approximation at the mth iteration. The distribution of y -
 Fmil(x)l is estimated by the current residuals, leading to

 am = quantile{ I yj - Fm -1(xi)}1N

 With regression trees as base learners we use the strategy of Section 4.3,
 that is, a separate update (18) in each terminal node R jm* For the Huber loss
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 1198 J. H. FRIEDMAN

 (19) the solution to (18) can be approximated by a single step of the standard
 iterative procedure [Huber (1964)] starting at the median

 rim = medianxiERj.{rm_l(xi)},

 where {rm_i(xi)}N are the current residuals

 rmil(xi) = yi-Fmi,(xi).

 The approximation is

 'Yjm= rjm? N+ m E sign(rm -(x)-rym).min(8m,abs(rm (xj)-r jm)),
 im XiERjm

 where Njm is the number of observations in the jth terminal node. This gives
 the following algorithm for boosting regression trees based on Huber loss (19).

 ALGORITHM 4 M-TreeBoost.

 FO(x) = median{yi}I
 For m = 1 to M do:

 rmil(xi) = yi-Fmi(xi) i = 1, N
 5m =quantile,jjrm_(xi)Ijl

 = rml(xi), rm-i(xi)I < am i- 1, N
 Y 8m sign(rm-1(xi)), Irm-i(xi)l > 8m

 {Rjml}J = J-terminal node tree({Yi, xi }N)
 rjm = medianxiERm {rmij(xi)}, j = 1, J

 Yjm = rjm + I ExiERjmSign (rmi,(xi) - rjm) min(8m, abs(rm_i(xi) - )
 j=1, J

 Fm (x) = Fmil(x) ? EfJ=1 'Yjm1(x E Rjm )

 endFor

 end Algorithm

 According to the motivations underlying robust regression, this algorithm
 should have properties similar to that of least-squares boosting (Algorithm 2)
 for normally distributed errors, and similar to that of least absolute deviation
 regression (Algorithm 3) with very long-tailed distributions. For error distri-
 butions with only moderately long tails it can have performance superior to
 both (see Section 6.2).

 4.5. Two-class logistic regression and classification. Here the loss function
 is negative binomial log-likelihood (FHTOO)

 L(y, F) = log(l + exp(-2yF)), y E {-1, 1},

 where

 (21) F(x) = 2logF Pr(y--1 x)
 2 LPr(y = -lIx)_j
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 GREEDY FUNCTION APPROXIMATION 1199

 The pseudoresponse is

 (22) - [ F(x)) 1 - 2yi/(l + exp(2yjFFm i (xj))).
 L dcF(x1) IF(x)=Fmi,(x)

 The line search becomes

 N

 Pm = arg min E log(l + exp(-2yi(Fmi_ (xi) + ph(xi; am)))).

 With regression trees as base learners we again use the strategy (Section 4.3)

 of separate updates in each terminal node Rjm:

 (23) Yjm argmin E log(l +exp(-2yi(Fmi(Xi) ? y)))
 'Yxi ER jm

 There is no closed-form solution to (23). Following FHTOO, we approximate it

 by a single Newton-Raphson step. This turns out to be

 Yjm = E i/E IJiJ(2 IYij)
 xi ERjm xi ERjm

 with 5j given by (22). This gives the following algorithm for likelihood gradient
 boosting with regression trees.

 ALGORITHM 5 (LK-TreeBoost).
 1?5-

 FO(x) = 1 log Y
 For m = 1 to M do:

 Yi = 2yi/(l + exp(2yiFm_i(xi))), i = 1, N
 {Rjm}J = J-terminal node tree({51, Xi}N)
 Yjm = EXijERjm Yi/ ExiERjm IJY(2 - IYj), i = 1, J
 Fm(x) = Fm-i(X) + EJ I Yjml(X E Rjm)

 endFor

 end Algorithm

 The final approximation FM(x) is related to log-odds through (21). This can

 be inverted to yield probability estimates

 p+(x) = Pr(y = 1 I x) = 1/(1 + e-2FM(x))

 p_(x) = Pr(y = -1 I x) = 1/(1 + e2FM(x))

 These in turn can be used for classification,

 A(x) = 2 1[c(-1, 1)p+(x) > c(l, -1)p_(x)] - 1,

 where c(y, y) is the cost associated with predicting - when the truth is y.
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 1200 J. H. FRIEDMAN

 4.5.1. Influence trimming. The empirical loss function for the two-class
 logistic regression problem at the mth iteration is

 N

 (24) km(P, a)= log[l1+ exp(-2yiF1_1(x )) exp(-2yiph(xi; a))].
 i=l1

 If yiFm-1(xi) is very large, then (24) has almost no dependence on ph(xi; a)
 for small to moderate values near zero. This implies that the ith observation

 (yi, xi) has almost no influence on the loss function, and therefore on its
 solution

 (Pm, am) = argmin Om(P, a).
 p, a

 This suggests that all observations (yi, xi) for which yiFmi,(xi) is relatively
 very large can be deleted from all computations of the mth iteration without
 having a substantial effect on the result. Thus,

 (25) wi = exp(-2YiFmi,(xi))

 can be viewed as a measure of the "influence" or weight of the ith observation

 on the estimate pmh(x; am).
 More generally, from the nonparametric function space perspective of

 Section 2, the parameters are the observation function values {F(xi )}N. The
 influence on an estimate to changes in a "parameter" value F(xi) (holding all
 the other parameters fixed) can be gauged by the second derivative of the loss
 function with respect to that parameter. Here this second derivative at the

 mth iteration is Ii 1(2 - I5iJ) with 5i given by (22). Thus, another measure of
 the influence or "weight" of the ith observation on the estimate pmh(x; am) at
 the mth iteration is

 (26) wi = 1?J(2 - Iij).

 Influence trimming deletes all observations with wi-values less than wl(,),
 where l(a) is the solution to

 l(a) N

 (27) E w(i) = a wi.
 i=1 i=l

 Here {W(i)}N are the weights {Wi}lN arranged in ascending order. Typical
 values are a E [0.05, 0.2]. Note that influence trimming based on (25), (27)
 is identical to the "weight trimming" strategy employed with Real AdaBoost,

 whereas (26), (27) is equivalent to that used with LogitBoost, in FHTOO. There
 it was seen that 90% to 95% of the observations were often deleted without

 sacrificing accuracy of the estimates, using either influence measure. This
 results in a corresponding reduction in computation by factors of 10 to 20.
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 GREEDY FUNCTION APPROXIMATION 1201

 4.6. Multiclass logistic regression and classification. Here we develop a
 gradient-descent boosting algorithm for the K-class problem. The loss func-

 tion is

 K

 (28) L({yk, Fk(x)} ) =K - yklogpk(x),
 k=i

 where Yk = l(class = k) E {0, 1}, and Pk(X) = Pr(yk = 1 x). Following
 FHTOO, we use the symmetric multiple logistic transform

 (29) Fk(X) = log Pk(X) - K 0log p(X)

 or equivalently

 K

 (30) Pk(X) = exp(Fk(x))/ E exp(FI(x)).
 k1=

 Substituting (30) into (28) and taking first derivatives one has

 (31) Sik = j==L({Yi } Yk - Pk,m mp (xi),
 d8 F(XJ) - {F(x)=Fj, ",_i(X)}K

 where Pk, m_i(X) is derived from Fk, mi(X) through (30). Thus, K-trees are
 induced at each iteration m to predict the corresponding current residuals for

 each class on the probability scale. Each of these trees has J-terminal nodes,

 with corresponding regions {Rjkm}J1= The model updates yjkm corresponding
 to these regions are the solution to

 NK KJ

 {1Yjkm} = argmin} E E, Yik, Fk,m-l(Xi) jk1(Xi ERjm))
 {'Yjk} i=I k=I =I

 where O(Yk, Fk) = -Yk log Pk from (28), with Fk related to Pk through (30).
 This has no closed form solution. Moreover, the regions corresponding to the

 different class trees overlap, so that the solution does not reduce to a separate
 calculation within each region of each tree in analogy with (18). Following
 FHTOO, we approximate the solution with a single Newton-Raphson step,

 using a diagonal approximation to the Hessian. This decomposes the problem
 into a separate calculation for each terminal node of each tree. The result is

 (32) Yk K-i xeRjkm Yik

 This leads to the following algorithm for K-class logistic gradient boosting.

 ALGORITHM 6 (LK-TreeBoost).
 Fko(x) = 0, k = 1, K
 For m = 1 to M do:

 pk(X) = exp(Fk(x))/ I[S11 exp(FI(x)), k = 1, K
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 1202 J. H. FRIEDMAN

 For k = 1 to K do:

 Yik = Yik -Pk(XA), i = 1, N
 {Rjkm}=l = J-terminal node tree({5ik, xI} )

 Nk K-1 ExRjkm(l YI) = 1 Tik

 YJkm - K ExicRjkm~ IYikl('--IYikI) 1, Jl
 Fkm(X) = Fk, m-l(X) + ,iA lYjkm 1(X c Rjjkm)

 endFor

 endFor

 end Algorithm

 The final estimates {FkM(X)}K can be used to obtain corresponding prob-
 ability estimates {PkM(X)}1 through (30). These in turn can be used for
 classification

 K

 k(x) = arg mm E c(k, k')PkIM(x),
 1<k<K k=

 where c(k, k') is the cost associated with predicting the kth class when the
 truth is k'. Note that for K = 2, Algorithm 6 is equivalent to Algorithm 5.

 Algorithm 6 bears a close similarity to the K-class LogitBoost procedure

 of FHTOO, which is based on Newton-Raphson rather than gradient descent
 in function space. In that algorithm K trees were induced, each using corre-
 sponding pseudoresponses

 (33) ~ ~ YK - KI Yik -Pk(Xi)
 K pk(Xi)(1 - Pk(Xi))

 and a weight

 (34) Wk(Xi) = Pk(Xi)(1 - Pk(xi))

 applied to each observation (Yik, xi). The terminal node updates were

 Exi ERjkm Wk(Xi)Yik

 'Yjkm = ExR jkm Wk(Xi)

 which is equivalent to (32). The difference between the two algorithms is the
 splitting criterion used to induce the trees and thereby the terminal regions

 {Rjkm }l*
 The least-squares improvement criterion used to evaluate potential splits

 of a currently terminal region R into two subregions (RI, Rr) is

 3(W,R WlWr_ - )2
 Rr) = WI ? Wr (5? - r

 where -1, Yr are the left and right daughter response means respectively,
 and wl, Wr are the corresponding sums of the weights. For a given split,
 using (31) with unit weights, or (33) with weights (34), give the same val-

 ues for -1, Yr. However, the weight sums wl, Wr are different. Unit weights
 (LK TeeBoost) favor splits that are symmetric in the number of observations in
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 GREEDY FUNCTION APPROXIMATION 1203

 each daughter node, whereas (34) (LogitBoost) favors splits for which the sums
 of the currently estimated response variances var(Yik) = P-(Xi)( -Pk(Xi))
 are more equal.

 LK-TreeBoost has an implementation advantage in numerical stability.
 LogitBoost becomes numerically unstable whenever the value of (34) is close
 to zero for any observation xi, which happens quite frequently. This is a con-
 sequence of the difficulty that Newton-Raphson has with vanishing second
 derivatives. Its performance is strongly affected by the way this problem is
 handled (see FHTOO, page 352). LK-TreeBoost has such difficulties only when
 (34) is close to zero for all observations in a terminal node. This happens much
 less frequently and is easier to deal with when it does happen.

 Influence trimming for the multiclass procedure is implemented in the
 same way as that for the two-class case outlined in Section 4.5.1. Associated

 with each "observation" (Yik, Xi) is an influence Wik = IYikl(I - IYik ) which is
 used for deleting observations (27) when inducing the kth tree at the current
 iteration m.

 5. Regularization. In prediction problems, fitting the training data too
 closely can be counterproductive. Reducing the expected loss on the training
 data beyond some point causes the population-expected loss to stop decreas-
 ing and often to start increasing. Regularization methods attempt to prevent
 such "overfitting" by constraining the fitting procedure. For additive expan-
 sions (2) a natural regularization parameter is the number of components M.
 This is analogous to stepwise regression where the {h(x; am)}M are consid-
 ered explanatory variables that are sequentially entered. Controlling the value
 of M regulates the degree to which expected loss on the training data can be
 minimized. The best value for M can be estimated by some model selection
 method, such as using an independent "test" set, or cross-validation.

 Regularizing by controlling the number of terms in the expansion places an
 implicit prior belief that "sparse" approximations involving fewer terms are
 likely to provide better prediction. However, it has often been found that reg-
 ularization through shrinkage provides superior results to that obtained by
 restricting the number of components [Copas (1983)]. In the context of addi-
 tive models (2) constructed in a forward stagewise manner (9), (10), a simple
 shrinkage strategy is to replace line 6 of the generic algorithm (Algorithm 1)
 with

 (36) Fm(x) = Fm_(x) + v. pmh(x; am), 0 < v < 1,

 and making the corresponding equivalent changes in all of the specific algo-
 rithms (Algorithms 2-6). Each update is simply scaled by the value of the
 "learning rate" parameter v.

 Introducing shrinkage into gradient boosting (36) in this manner provides
 two regularization parameters, the learning rate v and the number of com-
 ponents M. Each one can control the degree of fit and thus affect the best
 value for the other one. Decreasing the value of v increases the best value
 for M. Ideally one should estimate optimal values for both by minimizing a
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 1204 J. H. FRIEDMAN

 model selection criterion jointly with respect to the values of the two param-
 eters. There are also computational considerations; increasing the size of M
 produces a proportionate increase in computation.

 We illustrate this V-M trade-off through a simulation study. The training

 sample consists of 5000 observations {yi, xi} with

 Yi = F*(xi) + ?i-

 The target function F*(x), x E R10, is randomly generated as described in
 Section 6.1. The noise 8 was generated from a normal distribution with zero
 mean, and variance adjusted so that

 E1? = EXI F* (x) - medianx F* (x)

 giving a signal-to-noise ratio of 2/1. For this illustration the base learner
 h(x; a) is taken to be an l1-terminal node regression tree induced in a best-
 first manner (FHTOO). A general discussion of tree size choice appears in
 Section 7.

 Figure 1 shows the lack of fit (LOF) of LS-TreeBoost, LAD TreeBoost, and
 L2-TreeBoost as a function of number of terms (iterations) M, for several
 values of the shrinkage parameter v E {1.0, 0.25, 0.125, 0.06}. For the first
 two methods, LOF is measured by the average absolute error of the estimate

 FM(x) relative to that of the optimal constant solution

 ExIF*(x) -FM(x)I
 (37) A(FM(x)) -_ EX I F* (x) - medianx F* (x) I

 For logistic regression the y-values were obtained by thresholding at the

 median of F*(x) over the distribution of x-values; F*(xi) values greater than
 the median were assigned yi = 1; those below the median were assigned
 Yi = -1. The Bayes error rate is thus zero, but the decision boundary is
 fairly complicated. There are two LOF measures for L2-TreeBoost; minus

 twice log-likelihood ("deviance") and the misclassification error rate EX[1(y 7
 sign(FM(x)))]. The values of all LOF measures were computed by using an
 independent validation data set of 10,000 observations.

 As seen in Figure 1, smaller values of the shrinkage parameter v (more
 shrinkage) are seen to result in better performance, although there is a dimin-
 ishing return for the smallest values. For the larger values, behavior charac-
 teristic of overfitting is observed; performance reaches an optimum at some
 value of M and thereafter diminishes as M increases beyond that point. This
 effect is much less pronounced with LADRTreeBoost, and with the error rate
 criterion of L2 TreeBoost. For smaller values of v there is less overfitting, as
 would be expected.

 Although difficult to see except for v = 1, the misclassification error rate
 (lower right panel) continues to decrease well after the logistic likelihood has
 reached its optimum (lower left panel). Thus, degrading the likelihood by
 overfitting actually improves misclassification error rate. Although perhaps
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 FIG. 1. Performance of three gradient boosting algorithms as a function of number of iterations

 M. The four curves correspond to shrinkage parameter values of v E {1.0, 0.25, 0.125, 0.06} and
 are in that order (top to bottom) at the extreme right of each plot.

 counterintuitive, this is not a contradiction; likelihood and error rate measure

 different aspects of fit quality. Error rate depends only on the sign of FM(X)
 whereas likelihood is affected by both its sign and magnitude. Apparently,
 overfitting degrades the quality of the magnitude estimate without affecting

 (and sometimes improving) the sign. Thus, misclassification error is much less
 sensitive to overfitting.

 Table 1 summarizes the simulation results for several values of v including

 those shown in Figure 1. Shown for each v-value (row) are the iteration number
 at which the minimum LOF was achieved and the corresponding minimizing
 value (pairs of columns).
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 TABLE 1

 Iteration number giving the best fit and the best fit value for several shrinkage parameter
 v-values, with three boosting methods

 v LS: A(FM(x)) LAD: A(FM(x)) L2: -2log (like) L2: error rate

 1.0 15 0.48 19 0.57 20 0.60 436 0.111

 0.5 43 0.40 19 0.44 80 0.50 371 0.106

 0.25 77 0.34 84 0.38 310 0.46 967 0.099

 0.125 146 0.32 307 0.35 570 0.45 580 0.098

 0.06 326 0.32 509 0.35 1000 0.44 994 0.094

 0.03 855 0.32 937 0.35 1000 0.45 979 0.097

 The v-M trade-off is clearly evident; smaller values of v give rise to larger
 optimal M-values. They also provide higher accuracy, with a diminishing
 return for v < 0.125. The misclassification error rate is very flat for M > 200,
 so that optimal M-values for it are unstable.

 Although illustrated here for just one target function and base learner (11-
 terminal node tree), the qualitative nature of these results is fairly universal.
 Other target functions and tree sizes (not shown) give rise to the same behav-
 ior. This suggests that the best value for v depends on the number of iterations
 M. The latter should be made as large as is computationally convenient or
 feasible. The value of v should then be adjusted so that LOF achieves its min-
 imum close to the value chosen for M. If LOF is still decreasing at the last

 iteration, the value of v or the number of iterations M should be increased,
 preferably the latter. Given the sequential nature of the algorithm, it can eas-
 ily be restarted where it finished previously, so that no computation need be
 repeated. LOF as a function of iteration number is most conveniently esti-

 mated using a left-out test sample.
 As illustrated here, decreasing the learning rate clearly improves perfor-

 mance, usually dramatically. The reason for this is less clear. Shrinking the
 model update (36) at each iteration produces a more complex effect than direct
 proportional shrinkage of the entire model

 (38) FV(X) = - + V (FM(X)-

 where FM(X) is the model induced without shrinkage. The update pmh(x; am)
 at each iteration depends on the specific sequence of updates at the previous
 iterations. Incremental shrinkage (36) produces very different models than
 global shrinkage (38). Empirical evidence (not shown) indicates that global
 shrinkage (38) provides at best marginal improvement over no shrinkage, far
 from the dramatic effect of incremental shrinkage. The mystery underlying
 the success of incremental shrinkage is currently under investigation.

 6. Simulation studies. The performance of any function estimation
 method depends on the particular problem to which it is applied. Important
 characteristics of problems that affect performance include training sample
 size N, true underlying "target" function F*(x) (1), and the distribution of
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 GREEDY FUNCTION APPROXIMATION 1207

 the departures, E, of y I x from F*(x). For any given problem, N is always
 known and sometimes the distribution of E is also known, for example when y
 is binary (Bernoulli). When y is a general real-valued variable the distribution

 of 8 is seldom known. In nearly all cases, the nature of F*(x) is unknown.
 In order to gauge the value of any estimation method it is necessary to accu-

 rately evaluate its performance over many different situations. This is most

 conveniently accomplished through Monte Carlo simulation where data can
 be generated according to a wide variety of prescriptions and resulting perfor-
 mance accurately calculated. In this section several such studies are presented
 in an attempt to understand the properties of the various GradientLTreeBoost
 procedures developed in the previous sections. Although such a study is far

 more thorough than evaluating the methods on just a few selected examples,
 real or simulated, the results of even a large study can only be regarded as
 suggestive.

 6.1. Random function generator. One of the most important character-
 istics of any problem affecting performance is the true underlying target
 function F*(x) (1). Every method has particular targets for which it is most
 appropriate and others for which it is not. Since the nature of the target func-
 tion can vary greatly over different problems, and is seldom known, we com-
 pare the merits of regression tree gradient boosting algorithms on a variety
 of different randomly generated targets. Each one takes the form

 20

 (39) F*(x) a,ag1(zl).

 The coefficients {al}20 are randomly generated from a uniform distribution
 a, - Ut-1, 1]. Each gl(zl) is a function of a randomly selected subset, of size nl,
 of the n-input variables x. Specifically,

 Z, {Xp=1j)}Jj1,

 where each P1 is a separate random permutation of the integers {1, 2, .. ., n}.

 The size of each subset n, is itself taken to be random, n1 = L1.5 + r], with
 r being drawn from an exponential distribution with mean A = 2. Thus, the

 expected number of input variables for each gl(zl) is between three and four.
 However, most often there will be fewer than that, and somewhat less often,
 more. This reflects a bias against strong very high-order interaction effects.
 However, for any realized F* (x) there is a good chance that at least a few

 of the 20 functions gl(zl) will involve higher-order interactions. In any case,
 F*(x) will be a function of all, or nearly all, of the input variables.

 Each gl(zl) is an nl-dimensional Gaussian function

 (40) gl(zl) = exp-((zI- )V1(z1 - ))

 where each of the mean vectors {_t}120 is randomly generated from the same
 distribution as that of the input variables x. The n, x n, covariance matrix V,
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 1208 J. H. FRIEDMAN

 is also randomly generated. Specifically,

 VI = UID1U[,

 where U1 is a random orthonormal matrix (uniform on Haar measure) and

 D, = diag {d,, ... dn,11} The square roots of the eigenvalues are randomly gen-

 erated from a uniform distribution Vd jl U[a, b], where the limits a, b depend
 on the distribution of the input variables x.

 For all of the studies presented here, the number of input variables was

 taken to be n = 10, and their joint distribution was taken to be standard nor-
 mal x - N(0, I). The eigenvalue limits were a - 0.1 and b = 2.0. Although the
 tails of the normal distribution are often shorter than that of data encountered
 in practice, they are still more realistic than uniformly distributed inputs often
 used in simulation studies. Also, regression trees are immune to the effects of

 long-tailed input variable distributions, so shorter tails gives a relative advan-
 tage to competitors in the comparisons.

 In the simulation studies below, 100 target functions F*(x) were randomly
 generated according to the above prescription (39), (40). Performance is evalu-
 ated in terms of the distribution of approximation inaccuracy [relative approx-
 imation error (37) or misclassification risk] over these different targets. This

 approach allows a wide variety of quite different target functions to be gen-
 erated in terms of the shapes of their contours in the ten-dimensional input
 space. Although lower order interactions are favored, these functions are not

 especially well suited to additive regression trees. Decision trees produce ten-

 sor product basis functions, and the components gl(zl) of the targets F*(x)
 are not tensor product functions. Using the techniques described in Section 8,
 visualizations of the dependencies of the first randomly generated function on
 some of its more important arguments are shown in Section 8.3.

 Although there are only ten input variables, each target is a function of
 all of them. In many data mining applications there are many more than ten
 inputs. However, the relevant dimensionalities are the intrinsic dimensional-
 ity of the input space, and the number of inputs that actually influence the
 output response variable y. In problems with many input variables there are
 usually high degrees of collinearity among many of them, and the number of
 roughly independent variables (approximate intrinsic dimensionality) is much
 smaller. Also, target functions often strongly depend only on a small subset of
 all of the inputs.

 6.2. Error distribution. In this section, LS TreeBoost, LADRTreeBoost,
 and M-TreeBoost are compared in terms of their performance over the 100
 target functions for two different error distributions. Best-first regression trees
 with 11 terminal nodes were used with all algorithms. The breakdown param-
 eter for the M-TreeBoost was set to its default value a = 0.9. The learning
 rate parameter (36) was set to v = 0.1 for all TreeBoost procedures in all of
 the simulation studies.
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 GREEDY FUNCTION APPROXIMATION 1209

 One hundred data sets {yi, Xi}N were generated according to

 yi= F*(xi) + i,

 where F*(x) represents each of the 100 target functions randomly generated

 as described in Section 6.1. For the first study, the errors 8i were generated
 from a normal distribution with zero mean, and variance adjusted so that

 (41) EI1I = ExIF*(x) - medianxF*(x) ,

 giving a 1/1 signal-to-noise ratio. For the second study the errors were gen-

 erated from a "slash" distribution, 8i = s. (u/v), where u - N(O, 1) and v
 U[0, 1]. The scale factor s is adjusted to give a 1/1 signal-to-noise ratio (41).
 The slash distribution has very thick tails and is often used as an extreme to

 test robustness. The training sample size was taken to be N = 7500, with 5000

 used for training, and 2500 left out as a test sample to estimate the optimal
 number of components M. For each of the 100 trials an additional validation
 sample of 5000 observations was generated (without error) to evaluate the
 approximation inaccuracy (37) for that trial.

 The left panels of Figure 2 show boxplots of the distribution of approxima-
 tion inaccuracy (37) over the 100 targets for the two error distributions for each

 of the three methods. The shaded area of each boxplot shows the interquar-
 tile range of the distribution with the enclosed white bar being the median.

 Normal Normal

 LS LAD M LS LAD M

 Slash Slash

 L1j

 -= -

 LS LAD M LS LAD M

 FIG. 2. Distribution of absolute approximation error (left panels) and error relative to the best

 (right panels) for LSJTheeBoost, LAD_TheeBoost and M_TreeBoost for normal and slash error dis-
 tributions. LSJTreeBoost, performs best with the normal error distribution. LADJTreeBoost and
 M_TreeBoost both perform well with slash errors. M_TreeBoost is very close to the best for both
 error distributions. Note the use of logarithmic scale in the lower right panel.
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 1210 J. H. FRIEDMAN

 The outer hinges represent the points closest to (plus/minus) 1.5 interquar-
 tile range units from the (upper/lower) quartiles. The isolated bars represent
 individual points outside this range (outliers).

 These plots allow the comparison of the overall distributions, but give no
 information concerning relative performance for individual target functions.
 The right two panels of Figure 2 attempt to provide such a summary. They
 show distributions of error ratios, rather than the errors themselves. For each
 target function and method, the error for the method on that target is divided
 by the smallest error obtained on that target, over all of the methods (here
 three) being compared. Thus, for each of the 100 trials, the best method
 receives a value of 1.0 and the others receive a larger value. If a particu-
 lar method was best (smallest error) for all 100 target functions, its resulting
 distribution (boxplot) would be a point mass at the value 1.0. Note that the
 logarithm of this ratio is plotted in the lower right panel.

 From the left panels of Figure 2 one sees that the 100 targets represent a
 fairly wide spectrum of difficulty for all three methods; approximation errors
 vary by over a factor of two. For normally distributed errors LS-TreeBoost
 is the superior performer, as might be expected. It had the smallest error
 in 73 of the trials, with M-TreeBoost best the other 27 times. On average
 LS-TreeBoost was 0.2% worse than the best, M_TreeBoost 0.9% worse, and
 LAD-TreeBoost was 7.4% worse than the best.

 With slash-distributed errors, things are reversed. On average the approxi-
 mation error for LS-TreeBoost was 0.95, thereby explaining only 5% target
 variation. On individual trials however, it could be much better or much
 worse. The performance of both LAD-TreeBoost and M-TreeBoost was much
 better and comparable to each other. LAD-TreeBoost was best 32 times and
 M-TreeBoost 68 times. On average LADfTreeBoost was 4.1% worse than the
 best, M_TreeBoost 1.0% worse, and LS-TreeBoost was 364.6% worse that the
 best, over the 100 targets.

 The results suggest that of these three, M_TreeBoost is the method of
 choice. In both the extreme cases of very well-behaved (normal) and very
 badly behaved (slash) errors, its performance was very close to that of the
 best. By comparison, LAD-TreeBoost suffered somewhat with normal errors,
 and LS-TreeBoost was disastrous with slash errors.

 6.3. LSJTheeBoost versus MARS. All GradientLTreeBoost algorithms pro-
 duce piecewise constant approximations. Although the number of such pieces
 is generally much larger than that produced by a single tree, this aspect of the

 approximating function FM(X) might be expected to represent a disadvantage
 with respect to methods that provide continuous approximations, especially
 when the true underlying target F*(x) (1) is continuous and fairly smooth.
 All of the randomly generated target functions (39), (40) are continuous and
 very smooth. In this section we investigate the extent of the piecewise constant
 disadvantage by comparing the accuracy of GradientLTreeBoost with that of
 MARS [Friedman (1991)] over these 100 targets. Like TreeBoost, MARS pro-
 duces a tensor product based approximation. However, it uses continuous func-
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 GREEDY FUNCTION APPROXIMATION 1211

 tions as the product factors, thereby producing a continuous approximation.
 It also uses a more involved (stepwise) strategy to induce the tensor products.

 Since MARS is based on least-squares fitting, we compare it to LS-Tree-
 Boost using normally distributed errors, again with a 1/1 signal-to-noise ratio

 (41). The experimental setup is the same as that in Section 6.2. It is interesting
 to note that here the performance of MARS was considerably enhanced by

 using the 2500 observation test set for model selection, rather than its default

 generalized cross-validation (GCV) criterion [Friedman (1991)].
 The top left panel of Figure 3 compares the distribution of MARS average

 absolute approximation errors, over the 100 randomly generated target func-
 tions (39), (40), to that of LS-TreeBoost from Figure 2. The MARS distribution
 is seen to be much broader, varying by almost a factor of three. There were

 many targets for which MARS did considerably better than LS-TreeBoost,
 and many for which it was substantially worse. This further illustrates the
 fact that the nature of the target function strongly influences the relative
 performance of different methods. The top right panel of Figure 3 shows the
 distribution of errors, relative to the best for each target. The two methods
 exhibit similar performance based on average absolute error. There were a
 number of targets where each one substantially outperformed the other.

 The bottom two panels of Figure 3 show corresponding plots based on root
 mean squared error. This gives proportionally more weight to larger errors
 in assessing lack of performance. For LS-TreeBoost the two error measures
 have close to the same values for all of the 100 targets. However with MARS,
 root mean squared error is typically 30% higher than average absolute error.

 This indicates that MARS predictions tend to be either very close to, or far
 from, the target. The errors from LS-TreeBoost are more evenly distributed.
 It tends to have fewer very large errors or very small errors. The latter may

 be a consequence of the piecewise constant nature of the approximation which
 makes it difficult to get arbitrarily close to very smoothly varying targets with
 approximations of finite size. As Figure 3 illustrates, relative performance can
 be quite sensitive to the criterion used to measure it.

 These results indicate that the piecewise constant aspect of TreeBoost
 approximations is not a serious disadvantage. In the rather pristine environ-
 ment of normal errors and normal input variable distributions, it is competi-

 tive with MARS. The advantage of the piecewise constant approach is robust-
 ness; specifically, it provides immunity to the adverse effects of wide tails and
 outliers in the distribution of the input variables x. Methods that produce

 continuous approximations, such as MARS, can be extremely sensitive to such
 problems. Also, as shown in Section 6.2, M-TreeBoost (Algorithm 4) is nearly
 as accurate as LS-TreeBoost for normal errors while, in addition, being highly
 resistant to output y-outliers. Therefore in data mining applications where
 the cleanliness of the data is not assured and x- and/or y-outliers may be
 present, the relatively high accuracy, consistent performance and robustness
 of M-TreeBoost may represent a substantial advantage.
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 FIG. 3. Distribution of approximation error (left panels) and error relative to the best (right panels)
 for LSJTheeBoost and MARS. The top panels are based on average absolute error, whereas the
 bottom ones use root mean squared error. For absolute error the MARS distribution is wider,
 indicating more frequent better and worse performance than LSJTheeBoost. MARS performance as
 measured by root mean squared error is much worse, indicating that it tends to more frequently
 make both larger and smaller errors than LSJTheeBoost.

 6.4. LKifreeBoost versus K-class LogitBoost and AdaBoost.MH. In this
 section the performance of LK-TreeBoost is compared to that of K-class Log-
 itBoost (FHT00) and AdaBoost.MH [Schapire and Singer (1998)] over the 100
 randomly generated targets (Section 6.1). Here K = 5 classes are generated
 by thresholding each target at its 0.2, 0.4, 0.6 and 0.8 quantiles over the dis-
 tribution of input x-values. There are N = 7500 training observations for each
 trial (1500 per class) divided into 5000 for training and 2500 for model selec-
 tion (number of iterations, M). An independently generated validation sample
 of 5000 observations was used to estimate the error rate for each target. The
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 GREEDY FUNCTION APPROXIMATION 1213

 Bayes error rate is zero for all targets, but the induced decision boundaries can
 become quite complicated, depending on the nature of each individual target
 function F*(x). Regression trees with 11 terminal nodes were used for each
 method.

 Figure 4 shows the distribution of error rate (left panel), and its ratio to
 the smallest (right panel), over the 100 target functions, for each of the three
 methods. The error rate of all three methods is seen to vary substantially over
 these targets. LK TreeBoost is seen to be the generally superior performer. It
 had the smallest error for 78 of the trials and on average its error rate was
 0.6% higher than the best for each trial. LogitBoost was best on 21 of the
 targets and there was one tie. Its error rate was 3.5% higher than the best on
 average. AdaBoost.MH was never the best performer, and on average it was
 15% worse than the best.

 Figure 5 shows a corresponding comparison, with the LogitBoost and
 AdaBoost.MH procedures modified to incorporate incremental shrinkage (36),
 with the shrinkage parameter set to the same (default) value v = 0.1 used with
 LK-TreeBoost. Here one sees a somewhat different picture. Both LogitBoost
 and AdaBoost.MH benefit substantially from shrinkage. The performance of
 all three procedures is now nearly the same, with LogitBoost perhaps hav-
 ing a slight advantage. On average its error rate was 0.5% worse that the
 best; the corresponding values for LK-TreeBoost and AdaBoost.MH were 2.3%
 and 3.9%, respectively. These results suggest that the relative performance of
 these methods is more dependent on their aggressiveness, as parameterized
 by learning rate, than on their structural differences. LogitBoost has an addi-

 Error-rate Rel. error-rate

 LK_TreeBoost LogitBoost AdaBoost LK_TreeBoost LogltBoost AdaBoost

 FIG. 4. Distribution of error rate on a five-class problem (left panel) and error rate relative to the
 best (right panel) for LK TreeBoost, LogitBoost, and AdaBoost.MH. LK Tl'reeBoost exhibits superior
 performance.
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 Error-rate Rel. error-rate

 o i l~~~~~~~~~~~~~~~~~~~~~~t

 LK_TreeBoost LogitBoost(O. 1) AdaBoost(0.1) LK TreeBoost LogitBoost(O.1) AdaBoost(0 1)

 FIG. 5. Distribution of error rate on a five-class problem (left panel), and error rate relative to the
 best (right panel), for LK T7reeBoost, and with proportional shrinkage applied to LogitBoost and
 RealAdaBoost. Here the performance of all three methods is similar.

 tional internal shrinkage associated with stabilizing its pseudoresponse (33)
 when the denominator is close to zero (FHTOO, page 352). This may account
 for its slight superiority in this comparison. In fact, when increased shrink-
 age is applied to LKITreeBoost (v = 0.05) its performance improves, becoming
 identical to that of LogitBoost shown in Figure 5. It is likely that when the
 shrinkage parameter is carefully tuned for each of the three methods, there
 would be little performance differential between them.

 7. Tree boosting. The GradientBoost procedure (Algorithm 1) has two
 primary metaparameters, the number of iterations M and the learning rate
 parameter v (36). These are discussed in Section 5. In addition to these, there
 are the metaparameters associated with the procedure used to estimate the
 base learner h(x; a). The primary focus of this paper has been on the use of
 best-first induced regression trees with a fixed number of terminal nodes, J.
 Thus, J is the primary metaparameter of this base learner. The best choice for
 its value depends most strongly on the nature of the target function, namely
 the highest order of the dominant interactions among the variables.

 Consider an ANOVA expansion of a function

 (42) F(X) = f j(Xj) + E f jk(Xj, Xk) + E f jkl(Xj, Xk, x1) + ..
 j j,k j,k,l

 The first sum is called the "main effects" component of F(x). It consists of a
 sum of functions that each depend on only one input variable. The particular

 functions { f j(Xj)}N are those that provide the closest approximation to F(x)
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 GREEDY FUNCTION APPROXIMATION 1215

 under this additive constraint. This is sometimes referred to as an "additive"

 model because the contributions of each xj, f j(xj), add to the contributions
 of the others. This is a different and more restrictive definition of "additive"
 than (2). The second sum consists of functions of pairs of input variables.
 They are called the two-variable "interaction effects." They are chosen so that

 along with the main effects they provide the closest approximation to F(x)

 under the limitation of no more than two-variable interactions. The third sum
 represents three-variable interaction effects, and so on.

 The highest interaction order possible is limited by the number of input

 variables n. However, especially for large n, many target functions F*(x)
 encountered in practice can be closely approximated by ANOVA decomposi-
 tions of much lower order. Only the first few terms in (42) are required to
 capture the dominant variation in F*(x). In fact, considerable success is often
 achieved with the additive component alone [Hastie and Tibshirani (1990)].
 Purely additive approximations are also produced by the "naive" -Bayes

 method [Warner, Toronto, Veasey and Stephenson (1961)], which is often
 highly successful in classification. These considerations motivated the bias

 toward lower-order interactions in the randomly generated target functions
 (Section 6.1) used for the simulation studies.

 The goal of function estimation is to produce an approximation F(x) that

 closely matches the target F*(x). This usually requires that the dominant

 interaction order of F(x) be similar to that of F*(x). In boosting regression

 trees, the interaction order can be controlled by limiting the size of the indi-

 vidual trees induced at each iteration. A tree with J terminal nodes produces
 a function with interaction order at most min(J - 1, n). The boosting pro-
 cess is additive, so the interaction order of the entire approximation can be
 no larger than the largest among its individual components. Therefore, with
 any of the TreeBoost procedures, the best tree size J is governed by the effec-
 tive interaction order of the target F*(x). This is usually unknown so that
 J becomes a metaparameter of the procedure to be estimated using a model
 selection criterion such as cross-validation or on a left-out subsample not used
 in training. However, as discussed above, it is unlikely that large trees would

 ever be necessary or desirable.
 Figure 6 illustrates the effect of tree size on approximation accuracy for the

 100 randomly generated functions (Section 6.1) used in the simulation studies.
 The experimental set-up is the same as that used in Section 6.2. Shown is the
 distribution of absolute errors (37) (left panel), and errors relative to the lowest
 for each target (right panel), for J E {2, 3, 6, 11, 21}. The first value J = 2
 produces additive main effects components only; J = 3 produces additive and
 two-variable interaction terms, and so on. A J terminal node tree can produce
 interaction levels up to a maximum of min(J- 1, n), with typical values being
 less than that, especially when J - 1 < n.

 As seen in Figure 6 the smallest trees J E {2, 3} produce lower accuracy on
 average, but their distributions are considerably wider than the others. This
 means that they produce more very accurate, and even more very inaccurate,
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 Abs. error Rel. error

 2 3 6 11 ~~~21 2 3 1 21

 FIG. 6. Distribution of absolute approximation error (left panel) and error relative to the best
 (right panel) for LS-TheeBoost with different sized trees, as measured by number of terminal nodes
 J. The distribution using the smallest trees J c { 2, 3} is wider, indicating more frequent better
 and worse performance than with the larger trees, all of which have similar performance.

 approximations. The smaller trees, being restricted to low-order interactions,
 are better able to take advantage of targets that happen to be of low interaction
 level. However, they do quite badly when trying to approximate the high-
 order interaction targets. The larger trees J E {6, 11, 21} are more consistent.
 They sacrifice some accuracy on low-order interaction targets, but do much
 better on the higher-order functions. There is little performance difference
 among the larger trees, with perhaps some slight deterioration for J = 21.
 The J = 2 trees produced the most accurate approximation eight times; the
 corresponding numbers for J E { 3, 6, 11, 2 1} were 2, 30, 3 1, 29, respectively.
 On average the J = 2 trees had errors 23.2% larger than the lowest for
 each target, while the others had corresponding values of 16.4%, 2.4%, 2.2%
 and 3.7%, respectively. Higher accuracy should be obtained when the best
 tree size J is individually estimated for each target. In practice this can be
 accomplished by evaluating the use of different tree sizes with an independent
 test data set, as illustrated in Section 9.

 8. Interpretation. In many applications it is useful to be able to inter-

 pret the derived approximation F(x). This involves gaining an understanding
 of those particular input variables that are most influential in contributing to
 its variation, and the nature of the dependence of F(x) on those influential

 inputs. To the extent that F(x) at least qualitatively reflects the nature of the
 target function F*(x) (1), such tools can provide information concerning the
 underlying relationship between the inputs x and the output variable y. In
 this section, several tools are presented for interpreting TreeBoost approxima-
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 GREEDY FUNCTION APPROXIMATION 1217

 tions. Although they can be used for interpreting single decision trees, they
 tend to be more effective in the context of boosting (especially small) trees.
 These interpretative tools are illustrated on real data examples in Section 9.

 8.1. Relative importance of input variables. Among the most useful des-

 criptions of an approximation F(x) are the relative influences Ij, of the

 individual inputs xj, on the variation of F(x) over the joint input variable
 distribution. One such measure is

 (43) =i Ex x varx[xi])12

 For piecewise constant approximations produced by decision trees, (43) does
 not strictly exist and it must be approximated by a surrogate measure that
 reflects its properties. Breiman, Friedman, Olshen and Stone (1983) proposed

 J-1

 (44) I (T)= 2 d1(vt=
 t=1

 where the summation is over the nonterminal nodes t of the J-terminal node

 tree T, vt is the splitting variable associated with node t, and i is the cor-
 responding empirical improvement in squared error (35) as a result of the
 split. The right-hand side of (44) is associated with squared influence so that
 its units correspond to those of (43). Breiman, Friedman, Olshen and Stone
 (1983) used (44) directly as a measure of influence, rather than squared influ-
 ence. For a collection of decision trees {Tm}", obtained through boosting, (44)
 can be generalized by its average over all of the trees,

 IM
 (45) Ij = M (Tm)

 , n=1

 in the sequence.

 The motivation for (44), (45) is based purely on heuristic arguments. As a
 partial justification we show that it produces expected results when applied
 in the simplest context. Consider a linear target function

 n

 (46) F*(x) = aO + j xj,
 j=1

 where the covariance matrix of the inputs is a multiple of the identity

 Ex [(x - x)(x - k)T] = cl1.

 In this case the influence measure (43) produces

 (47) Ij = lajl.
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 Table 2 shows the results of a small simulation study similar to those in

 Section 6, but with F*(x) taken to be linear (46) with coefficients

 (48) aj = (-l)jn

 and a signal-to-noise ratio of 1/1 (41). Shown are the mean and standard

 deviation of the values of (44), (45) over ten random samples, all with F*(x)
 given by (46), (48). The influence of the estimated most influential variable

 xj* is arbitrarily assigned the value Ii* = 100, and the estimated values of
 the others scaled accordingly. The estimated importance ranking of the input
 variables was correct on every one of the ten trials. As can be seen in Table 2,
 the estimated relative influence values are consistent with those given by (47)
 and (48).

 In Breiman, Friedman, Olshen and Stone 1983, the influence measure (44)

 is augmented by a strategy involving surrogate splits intended to uncover the

 masking of influential variables by others highly associated with them. This
 strategy is most helpful with single decision trees where the opportunity for
 variables to participate in splitting is limited by the size J of the tree in (44). In
 the context of boosting, however, the number of splitting opportunities is vastly
 increased (45), and surrogate unmasking is correspondingly less essential.

 In K-class logistic regression and classification (Section 4.6) there are K

 (logistic) regression functions {FkM(X)}fK[l, each described by a sequence of
 M trees. In this case (45) generalizes to

 I M
 (49) IJk = M EIj (Tkm),

 where Tkm is the tree induced for the kth class at iteration m. The quantity

 Ijk can be interpreted as the relevance of predictor variable xj in separating
 class k from the other classes. The overall relevance of xi can be obtained by

 TABLE 2

 Estimated mean and standard deviation of input variable

 relative influence for a linear target function

 Variable Mean Standard

 10 100.0 0.0

 9 90.3 4.3

 8 80.0 4.1

 7 69.8 3.9

 6 62.1 2.3

 5 51.7 2.0

 4 40.3 4.2

 3 31.3 2.9

 2 22.2 2.8

 1 13.0 3.2

This content downloaded from 
������������200.20.225.244 on Fri, 25 Sep 2020 11:07:43 UTC������������� 

All use subject to https://about.jstor.org/terms



 GREEDY FUNCTION APPROXIMATION 1219

 averaging over all classes

 i K

 Ij=K k=1i

 However, the individual Ijk themselves can be quite useful. It is often the case
 that different subsets of variables are highly relevant to different subsets of
 classes. This more detailed knowledge can lead to insights not obtainable by
 examining only overall relevance.

 8.2. Partial dependence plots. Visualization is one of the most powerful

 interpretational tools. Graphical renderings of the value of F(x) as a func-
 tion of its arguments provides a comprehensive summary of its dependence
 on the joint values of the input variables. Unfortunately, such visualization is
 limited to low-dimensional arguments. Functions of a single real-valued vari-

 able x, F(x), can be plotted as a graph of the values of F(x) against each
 corresponding value of x. Functions of a single categorical variable can be
 represented by a bar plot, each bar representing one of its values, and the bar
 height the value of the function. Functions of two real-valued variables can be
 pictured using contour or perspective mesh plots. Functions of a categorical
 variable and another variable (real or categorical) are best summarized by

 a sequence of ("trellis") plots, each one showing the dependence of F(x) on
 the second variable, conditioned on the respective values of the first variable
 [Becker and Cleveland (1996)].

 Viewing functions of higher-dimensional arguments is more difficult. It is
 therefore useful to be able to view the partial dependence of the approximation

 F(x) on selected small subsets of the input variables. Although a collection of
 such plots can seldom provide a comprehensive depiction of the approximation,

 it can often produce helpful clues, especially when F(x) is dominated by low-
 order interactions (Section 7).

 Let z1 be a chosen "target" subset, of size 1, of the input variables x,

 zl = {Z1, } - -, ' Zl} c{Xl,... I Xn}'

 and z\l be the complement subset

 z\U zl = x.

 The approximation F(x) in principle depends on variables in both subsets

 F(x) = F(zl, z\l).

 If one conditions on specific values for the variables in z\1, then F(x) can be
 considered as a function only of the variables in the chosen subset zl,

 (50) FZ\l (zl) = F(z1 I z\ )
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 In general, the functional form of FZ\1 (zl) will depend on the particular values
 chosen for z\l. If, however, this dependence is not too strong then the average
 function

 (51) F1 (zl) = Ez\1 [F(x)] = f F(z ,Z\l) P\l (Z\l) dz\l

 can represent a useful summary of the partial dependence of F(x) on the

 chosen variable subset zl. Here p\1(z\,) is the marginal probability density
 of Z\l,

 (52) P\(z\)= fp(x) dzl,

 where p(x) is the joint density of all of the inputs x. This complement marginal
 density (52) can be estimated from the training data, so that (51) becomes

 1 N
 (53) Fl(zl) - Y F(zl, z-,\l).

 In the special cases where the dependence of F(x) on z1 is additive,

 (54) F(x) = Fl(zl) + F\l(z\l),

 or multiplicative,

 (55) F(x) = F1(Z1) F\l(z\6),

 the form of FZ\1 (zl) (50) does not depend on the joint values of the complement

 variables z\l. Then F1(zl) (51) provides a complete description of the nature
 of the variation of F(x) on the chosen input variable subset zl.

 An alternative way of summarizing the dependence of F(x) on a subset z1

 is to directly model F(x) as a function of z1 on the training data

 (56) Fl(zl) = EX[F(X) I Zi] = f F(x) p(z\l I zl) dz\l.

 However, averaging over the conditional density in (56), rather than the
 marginal density in (51), causes Fl(zl) to reflect not only the dependence
 of F(x) on the selected variable subset zl, but in addition, apparent depen-
 dencies induced solely by the associations between them and the complement
 variables z\1. For example, if the contribution of z1 happens to be additive
 (54) or multiplicative (55), Fl(zl) (56) would not evaluate to the correspond-
 ing term or factor Fl(zl), unless the joint density p(x) happened to be the
 product

 (57) p(x) = pl(z1). P\l(Z\l).

 Partial dependence functions (51) can be used to help interpret models pro-
 duced by any "black box" prediction method, such as neural networks, support
 vector machines, nearest neighbors, radial basis functions, etc. When there are
 a large number of predictor variables, it is very useful to have a measure of
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 GREEDY FUNCTION APPROXIMATION 1221

 relevance (Section 8.1) to reduce the potentially large number variables and
 variable combinations to be considered. Also, a pass over the data (53) is

 required to evaluate each Fl (zl) for each set of joint values z1 of its argument.
 This can be time-consuming for large data sets, although subsampling could
 help somewhat.

 For regression trees based on single-variable splits, however, the partial

 dependence of F(x) on a specified target variable subset z1 (51) is straight-
 forward to evaluate given only the tree, without reference to the data itself
 (53). For a specific set of values for the variables zl, a weighted traversal of
 the tree is performed. At the root of the tree, a weight value of 1 is assigned.
 For each nonterminal node visited, if its split variable is in the target subset

 zl, the appropriate left or right daughter node is visited and the weight is not
 modified. If the node's split variable is a member of the complement subset
 z\l, then both daughters are visited and the current weight is multiplied by
 the fraction of training observations that went left or right, respectively, at
 that node.

 Each terminal node visited during the traversal is assigned the current

 value of the weight. When the tree traversal is complete, the value of F1(zJ)
 is the corresponding weighted average of the F(x) values over those termi-
 nal nodes visited during the tree traversal. For a collection of M regression
 trees, obtained through boosting, the results for the individual trees are simply
 averaged.

 For purposes of interpretation through graphical displays, input variable
 subsets of low cardinality (I < 2) are most useful. The most informative of
 such subsets would likely be comprised of the input variables deemed to be

 among the most influential (44), (45) in contributing to the variation of F(x).
 Illustrations are provided in Sections 8.3 and 9.

 The closer the dependence of F(x) on the subset zZ is to being additive (54)
 or multiplicative (55), the more completely the partial dependence function

 Fl(zl) (51) captures the nature of the influence of the variables in z1 on the
 derived approximation F(x). Therefore, subsets z1 that group together those
 influential inputs that have complex [nonfactorable (55)] interactions between
 them will provide the most revealing partial dependence plots. As a diagnostic,

 both F, (zl) and F, (z\1) can be separately computed for candidate subsets. The
 value of the multiple correlation over the training data between F(x) and

 {Fj(zl), F\l(z\i)} and/or Fl(zl). F\l(z\l) can be used to gauge the degree of
 additivity and/or factorability of F(x) with respect to a chosen subset zl. As

 an additional diagnostic, FZ\l(zl) (50) can be computed for a small number of
 z\l-values randomly selected from the training data. The resulting functions of

 z1 can be compared to Fl(zl) to judge the variability of the partial dependence
 of F(x) on zl, with respect to changing values of z\l.

 In K-class logistic regression and classification (Section 4.6) there are K

 (logistic) regression functions {Fk(X)}KkQl= Each is logarithmically related to
 pk(X) = Pr(y = k I x) through (29). Larger values of Fk(x) imply higher
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 probability of observing class k at x. Partial dependence plots of each Fk(x)

 on variable subsets z1 most relevant to that class (49) provide information on
 how the input variables influence the respective individual class probabilities.

 8.3. Randomly generated function. In this section the interpretational
 tools described in the preceding two sections are applied to the first (of the
 100) randomly generated functions (Section 6.1) used for the Monte Carlo

 studies of Section 6.
 Figure 7 shows the estimated relative importance (44), (45) of the 10 input

 predictor variables. Some are seen to be more influential than others, but no

 small subset appears to dominate. This is consistent with the mechanism used
 to generate these functions.

 Figure 8 displays single variable (I = 1) partial dependence plots (53)
 on the six most influential variables. The hash marks at the base of each
 plot represent the deciles of the corresponding predictor variable distribution.

 The piecewise constant nature of the approximation is evident. Unlike most
 approximation methods, there is no explicit smoothness constraint imposed
 upon TreeBoost models. Arbitrarily sharp discontinuities can be accommo-
 dated. The generally smooth trends exhibited in these plots suggest that a
 smooth approximation best describes this target. This is again consistent with
 the way these functions were generated.

 Relative Variable Importance

 CD

 U

 CD

 0~

 E

 ci ~ ~ l

 a)I

 7 2 8 9 3 5 4 1 10 6

 Input variable

 FIG. 7. Relative importance of the input predictor variables for the first randomly generated
 function used in the Monte Carlo studies.
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 FIG. 8. Single-variable partial dependence plots for the six most influential predictor variables
 for the first randomly generated function used in the simulation studies.

 Figure 9 displays two-variable (I = 2) partial dependence plots on some
 of the more influential variables. Interaction effects of varying degrees are
 indicated among these variable pairs. This is in accordance with the way in
 which these target functions were actually generated (39), (40).

 Given the general complexity of these generated targets as a function of
 their arguments, it is unlikely that one would ever be able to uncover their
 complete detailed functional form through a series of such partial dependence
 plots. The goal is to obtain an understandable description of some of the impor-
 tant aspects of the functional relationship. In this example the target function
 was generated from a known prescription, so that at least qualitatively we can
 verify that this is the case here.

 9. Real data. In this section the TreeBoost regression algorithms are
 illustrated on two moderate-sized data sets. The results in Section 6.4 suggest
 that the properties of the classification algorithm LK-TreeBoost are very sim-
 ilar to those of LogitBoost, which was extensively applied to data in FHTOO.
 The first (scientific) data set consists of chemical concentration measurements
 on rock samples, and the second (demographic) is sample survey questionnaire
 data. Both data sets were partitioned into a learning sample consisting of two-
 thirds of the data, with the remaining data being used as a test sample for
 choosing the model size (number of iterations M). The shrinkage parameter
 (36) was set to v = 0.1.
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 FIG. 9. Two-variable partial dependence plots on a few of the important predictor variables for
 the first randomly generated function used in the simulation studies.

 9.1. Garnet data. This data set consists of a sample of N = 13317 garnets
 collected from around the world [Griffin, Fisher, Friedman, Ryan and O' Reilly
 (1997)]. A garnet is a complex Ca-Mg-Fe-Cr silicate that commonly occurs as
 a minor phase in rocks making up the earth's mantle. The variables associated
 with each garnet are the concentrations of various chemicals and the tectonic
 plate setting where the rock was collected:

 (TiO2, Cr203, FeO, MnO, MgO, CaO, Zn, Ga, Sr, Y, Zr, tec).

 The first eleven variables representing concentrations are real-valued. The
 last variable (tec) takes on three categorical values: "ancient stable shields,"
 "Proterozoic shield areas," and "young orogenic belts." There are no missing
 values in these data, but the distribution of many of the variables tend to be
 highly skewed toward larger values, with many outliers.

 The purpose of this exercise is to estimate the concentration of titanium
 (TiO2) as a function of the joint concentrations of the other chemicals and the
 tectonic plate index.
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 TABLE 3

 Average absolute error of LS-TreeBoost, LAD TreeBoost, and MTreeBoost on the
 garnet data for varying numbers of terminal nodes in the individual trees

 Terminal nodes LS LAD M

 2 0.58 0.57 0.57

 3 0.48 0.47 0.46

 4 0.49 0.45 0.45

 6 0.48 0.44 0.43

 11 0.47 0.44 0.43

 21 0.46 0.43 0.43

 Table 3 shows the average absolute error in predicting the output y-variable,
 relative to the optimal constant prediction,

 Ey y - F(x)
 (58) A(y, F(x)) = v

 Ey - median(y) |

 based on the test sample, for LS TreeBoost, LADLTreeBoost, and M-TreeBoost
 for several values of the size (number of terminal nodes) J of the constituent
 trees. Note that this prediction error measure (58) includes the additive irre-
 ducible error associated with the (unknown) underlying target function F*(x)
 (1). This irreducible error adds same amount to all entries in Table 3. Thus,
 differences in those entries reflect a proportionally greater improvement in
 approximation error (37) on the target function itself.

 For all three methods the additive (J = 2) approximation is distinctly infe-
 rior to that using larger trees, indicating the presence of interaction effects
 (Section 7) among the input variables. Six terminal node trees are seen to be
 adequate and using only three terminal node trees is seen to provide accuracy
 within 10% of the best. The errors of LADRTreeBoost and M-TreeBoost are
 smaller than those of LS-TreeBoost and similar to each other, with perhaps
 M-TreeBoost having a slight edge. These results are consistent with those
 obtained in the simulation studies as shown in Figures 2 and 6.

 Figure 10 shows the relative importance (44), (45) of the 11 input variables
 in predicting TiO2 concentration based on the M-TreeBoost approximation
 using six terminal node trees. Results are very similar for the other models in
 Table 3 with similar errors. Ga and Zr are seen to be the most influential with
 MnO being somewhat less important. The top three panels of Figure 11 show

 the partial dependence (51) of the approximation F(x) on these three most
 influential variables. The bottom three panels show the partial dependence

 of F(x) on the three pairings of these variables. A strong interaction effect

 between Ga and Zr is clearly evident. F(x) has very little dependence on
 either variable when the other takes on its smallest values. As the value of one

 of them is increased, the dependence of F(x) on the other is correspondingly
 amplified. A somewhat smaller interaction effect is seen between MnO and Zr.
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 Relative importance
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 FIG. 10. Relative influence of the eleven input variables on the target variation for the garnet
 data. Ga and Zr are much more influential that the others.
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 FIG. 11. Partial dependence plots for the three most influential input variables in the garnet data.
 Note the different vertical scales for each plot. There is a strong interaction effect between Zr and

 Ga, and a somewhat weaker one between Zr and MnO.
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 GREEDY FUNCTION APPROXIMATION 1227

 TABLE 4

 Variables for the demographic data

 Variable Demographic Number values Type

 1 sex 2 cat

 2 martial status 5 cat

 3 age 7 real
 4 education 6 real
 5 occupation 9 cat

 6 income 9 real
 7 years in Bay Area 5 real
 8 dual incomes 2 cat

 9 number in household 9 real
 10 number in household<18 9 real
 11 householder status 3 cat

 12 type of home 5 cat

 13 ethnic classification 8 cat
 14 language in home 3 cat

 9.2. Demographic data. This data set consists of N = 9409 questionnaires
 filled out by shopping mall customers in the San Francisco Bay Area [Impact
 Resources, Inc, Columbus, Ohio (1987)]. Here we use answers to the first 14
 questions, relating to demographics, for illustration. These questions are listed
 in Table 4. The data are seen to consist of a mixture of real and categorical
 variables, each with a small numbers of distinct values. There are many miss-
 ing values.

 We illustrate TreeBoost on these data by modeling income as a function of
 the other 13 variables. Table 5 shows the average absolute error in predicting
 income, relative to the best constant predictor (58), for the three regression
 TreeBoost algorithms.

 There is little difference in performance among the three methods. Owing
 to the highly discrete nature of these data, there are no outliers or long-tailed
 distributions among the real-valued inputs or the output y. There is also very
 little reduction in error as the constituent tree size J is increased, indicating

 TABLE 5

 Average absolute error of LS-TreeBoost, LAD_TreeBoost, and M-TreeBoost on the
 demographic data for varying numbers of terminal nodes in the individual trees

 Terminal nodes LS LAD M

 2 0.60 0.63 0.61

 3 0.60 0.62 0.59

 4 0.59 0.59 0.59

 6 0.59 0.58 0.59

 11 0.59 0.57 0.58

 21 0.59 0.58 0.58
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 Relative importance
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 FIG. 12. Relative influence of the 13 input variables on the target variation for the demographic

 data. No small group of variables dominate.

 lack of interactions among the input variables; an approximation additive in

 the individual input variables (J = 2) seems to be adequate.
 Figure 12 shows the relative importance of the input variables in predicting

 income, based on the (J = 2) LS-TreeBoost approximation. There is no small

 subset of them that dominates. Figure 13 shows partial dependence plots on
 the six most influential variables. Those for the categorical variables are rep-

 resented as bar plots, and all plots are centered to have zero mean over the
 data. Since, the approximation consists of main effects only [first sum in (42)],

 these plots completely describe the corresponding contributions f j(xj) of each
 of these inputs.

 There do not appear to be any surprising results in Figure 13. The depen-
 dencies for the most part confirm prior suspicions and suggest that the approx-
 imation is intuitively reasonable.

 10. Data mining. As "off the shelf" tools for predictive data mining, the
 TreeBoost procedures have some attractive properties. They inherit the favor-

 able characteristics of trees while mitigating many of the unfavorable ones.
 Among the most favorable is robustness. All TreeBoost procedures are invari-
 ant under all (strictly) monotone transformations of the individual input vari-

 ables. For example, using xj, log xj, exi, or xY; as the jth input variable yields
 the same result. Thus, the need for. considering input variable transformations
 is eliminated. As a consequence of this invariance, sensitivity to long-tailed
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 Occupation Household status Marital status

 0 V^~~Uemployed Single
 Retired Live with family ._ Military flWidowed
 Homemaker Rent Dv sep.

 Laborer _ Live together prS a lesngai Own MariedN
 Prof./manag. Married

 -1.5 -0.5 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 1.5

 Age Education Type home

 1 2- \ 3 - 4 5 6|7 1 2 3 4 5 -1.5 -1.0 -0.5 0.0 0.5 1.Other
 / I T / 1 8 1 ~~~~~~~~~~~~~~~~Mobile home

 | / | 1 / | | ~~~~~~~~~~~~~~~~~Apartment
 N ] / | ' 4 / | ~~~~~~~ ~~Condo _

 ' 1/ t N4> , , ,! ~~~~~~~~House
 1 2 3 4 5 6 7 2 3 4 5 6 -. -10 -0.5 0.0 05 1.0

 FIG. 13. Partial dependence plots for the six most influential input variables in the demographic
 data. Note the different vertical scales for each plot. The abscissa values for age and education are
 codes representing consecutive equal intervals. The dependence of income on age is nonmonotonic
 reaching a maximum at the value 5, representing the interval 45-54 years old.

 distributions and outliers is also eliminated. In addition, LADRTreeBoost is
 completely robust against outliers in the output variable y as well. M-Tree-
 Boost also enjoys a fair measure of robustness against output outliers.

 Another advantage of decision tree induction is internal feature selection.
 Trees tend to be quite robust against the addition of irrelevant input variables.
 Also, tree-based models handle missing values in a unified and elegant manner
 [Breiman, Friedman, Olshen and Stone (1983)]. There is no need to consider
 external imputation schemes. TreeBoost clearly inherits these properties as
 well.

 The principal disadvantage of single tree models is inaccuracy. This is a
 consequence of the coarse nature of their piecewise constant approximations,
 especially for smaller trees, and instability, especially for larger trees, and
 the fact that they involve predominately high-order interactions. All of these
 are mitigated by boosting. TreeBoost procedures produce piecewise constant
 approximations, but the granularity is much finer. TreeBoost enhances sta-
 bility by using small trees and by the effect of averaging over many of them.
 The interaction level of TreeBoost approximations is effectively controlled by
 limiting the size of the individual constituent trees.

 Among the purported biggest advantages of single tree models is inter-
 pretability, whereas boosted trees are thought to lack this feature. Small trees
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 1230 J. H. FRIEDMAN

 can be easily interpreted, but due to instability such interpretations should

 be treated with caution. The interpretability of larger trees is questionable

 [Ripley (1996)]. TreeBoost approximations can be interpreted using partial
 dependence plots in conjunction with the input variable relative importance

 measure, as illustrated in Sections 8.3 and 9. While not providing a complete
 description, they at least offer some insight into the nature of the input-
 output relationship. Although these tools can be used with any approxima-
 tion method, the special characteristics of tree-based models allow their rapid
 calculation. Partial dependence plots can also be used with single regression
 trees, but as noted above, more caution is required owing to greater instability.

 After sorting of the input variables, the computation of the regression Tree-

 Boost procedures (LS, LAD, and M-TreeBoost) scales linearly with the num-
 ber of observations N, the number of input variables n and the number of
 iterations M. It scales roughly as the logarithm of the size of the constituent
 trees J. In addition, the classification algorithm LK-TreeBoost scales linearly
 with the number of classes K; but it scales highly sublinearly with the num-
 ber of iterations M, if influence trimming (Section 4.5.1) is employed. As a
 point of reference, applying M-TreeBoost to the garnet data of Section 9.1
 (N = 13317, n = 11, J = 6, M = 500) required 20 seconds on a 933Mh Pen-
 tium III computer.

 As seen in Section 5, many boosting iterations (M - 500) can be required

 to obtain optimal TreeBoost approximations, based on small values of the
 shrinkage parameter v (36). This is somewhat mitigated by the very small
 size of the trees induced at each iteration. However, as illustrated in Figure

 1, improvement tends to be very rapid initially and then levels off to slower
 increments. Thus, nearly optimal approximations can be achieved quite early
 (M -_ 100) with correspondingly much less computation. These near-optimal
 approximations can be used for initial exploration and to provide an indication
 of whether the final approximation will be of sufficient accuracy to warrant
 continuation. If lack of fit improves very little in the first few iterations (say
 100), it is unlikely that there will be dramatic improvement later on. If contin-
 uation is judged to be warranted, the procedure can be restarted where it left
 off previously, so that no computational investment is lost. Also, one can use
 larger values of the shrinkage parameter to speed initial improvement for this
 purpose. As seen in Figure 1, using v -0.25 provided accuracy within 10% of
 the optimal (v = 0.1) solution after only 20 iterations. In this case however,
 boosting would have to be restarted from the beginning if a smaller shrinkage
 parameter value were to be subsequently employed.

 The ability of TreeBoost procedures to give a quick indication of potential
 predictability, coupled with their extreme robustness, makes them a useful
 preprocessing tool that can be applied to imperfect data. If sufficient pre-
 dictability is indicated, further data cleaning can be invested to render it
 suitable for more sophisticated, less robust, modeling procedures.

 If more data become available after modeling is complete, boosting can be
 continued on the new data starting from the previous solution. This usually
 improves accuracy provided an independent test data set is used to monitor
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 GREEDY FUNCTION APPROXIMATION 1231

 improvement to prevent overfitting on the new data. Although the accuracy
 increase is generally less than would be obtained by redoing the entire analysis
 on the combined data, considerable computation is saved.

 Boosting on successive subsets of data can also be used when there is insuf-

 ficient random access main memory to store the entire data set. Boosting can
 be applied to "arcbites" of data [Breiman (1997)] sequentially read into main
 memory, each time starting at the current solution, recycling over previous

 subsets as time permits. Again, it is crucial to use an independent test set
 to stop training on each individual subset at that point where the estimated
 accuracy of the combined approximation starts to diminish.

 Acknowledgments. Helpful discussions with Trevor Hastie, Bogdan
 Popescu and Robert Tibshirani are gratefully acknowledged.
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