
NEURAL MODELS FOR
WORD EMBEDDING

Prof. Eduardo Bezerra
(CEFET/RJ)

ebezerra@cefet-rj.br

Credit where credit is due
2

¨ The original papers from Mikolov et al.
¨ CS 224D: Deep Learning for NLP

¤ https://cs224d.stanford.edu/lecture_notes/notes1.pdf
¨ McCormick, C. (2016). Word2Vec Tutorial.

¤ http://www.mccormickml.com
¨ Understanding word vectors (Python notebook)

¤ https://gist.github.com/aparrish/2f562e3737544cf29aaf1
af30362f469

http://www.mccormickml.com/

Summary

¨ Language Models
¨ Word2vec

¤ Skip-gram

3

Language Models4

Language Model
5

¨ Definition: A model that assigns a probability to a
sequence of tokens (e.g., words or characters).

¨ A good language model gives...
¤ ...(syntactically and semantically) valid sentences a high

probability.
¤ ...low probability to nonsense.

Language Model

Language Model - applications
6

¨ NLP-based applications use language models for a
variety of tasks:
¤ audio to text conversion,
¤ speech recognition,
¤ sentiment analysis,
¤ summarization,
¤ spell correction,
¤ etc.

Language Model (example application)
7

Example: query completion

Language Model (example application)
8

Example: speech recognition

https://developer.nvidia.com/blog/how-to-build-domain-specific-automatic-speech-recognition-models-on-gpus/

Language Models (example)
9

Language Models
10

¨ A (statistical) LM produces a probability to an input
sequence by applying the chain rule from
Probability Theory.

The chain rule tells us how to
compute the joint probability
of a sequence by using the
conditional probabilities of
each component word given
previous words.

Language Models
11

n-gram models
12

¨ A challenge in building LMs from a corpus is data
sparsity: most possible word sequences are not
observed in training.

¨ One solution is to build a particular type a LM, an
n-gram model.

n-grams (examples)
13

¨ unigrams:
(the), (quick), (brown), (fox), (jumped), (over), (the), (lazy), (dog)

¨ bigrams:
(the quick), (quick brown), (brown fox), (fox jumped), (jumped over), (over the), (the lazy),
(lazy dog)

¨ trigrams:
(the quick brown), (quick brown fox), (brown fox jumped), (fox jumped over),
(jumped over the), (over the lazy), (the lazy dog)

An n-gram is a contiguous sequence of n tokens (e.g., words).

n-grams (example n=2)
14

The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

n-gram models – Markov assumption
15

¨ n-gram models make the Markov assumption: “the
probability of a word only depends on the previous
n-1 words”.
¤ This assumption drastically simplifies the estimation of

conditional probabilities from data.

n-gram models – Markov assumption
16

Bigram model

Unigram model (aka bag of words model)

17

n-gram models – Markov assumption

But, how to learn these conditional probabilities from data?

Learning n-gram models
18

¨ The simplest way to build an n-gram model from a
corpus is through maximum likelihood estimation
(count occurrences)

Example

statistical models à neural models
19

¨ Statistical LMs (such as n-gram models) were
pervasive in the 80s and 90s.

¨ But in the 2000s, several neural language models
started to appear.

¨ A neural language model is a language
model built using Artificial Neural Networks.

Embedding models
20

¨ Embedding models are a kind of neural language
model.

¨ They aim to learn a continuous (vector)
representation for each token in a corpus.

¨ Once learnt, the continuous representations can be
used in downstream machine learning tasks:
classification, clustering, etc.

Embedding models
21

¨ Two types:
¤ word embedding

¤ contextual embedding

I left the left door of the barn open.

The kid dreamt of becoming an astronaut.
The child dreamt of becoming an astronaut.

Embedding models
22

¨ word2vec1, GloVe1

¨ SkipThoughts
¨ Paragraph2Vec
¨ Doc2Vec
¨ FastText1

¨ ELMo2, BERT2, GPT2

Currently, the distributional hypothesis through vector
embeddings models generated by ANNs is used
pervasively in NLP.

1) word embeddings (aka global embeddings)
2) contextual embeddings

word2vec23

word2vec
24

¨ word2vec is a set of model architectures and
optimizations to learn word embeddings from large
corpora.

http://jalammar.github.io/illustrated-word2vec/

The word2vec trick
25

¨ In word2vec, a single hidden layer neural network is
trained to perform a certain “fake” task.
¤ But the resulting model is not actually used!

¨ Instead, the goal is to learn the weights of the
hidden layer.
¤ these weights are the “word vectors”

The fake tasks
26

¨ Skip-gram: predicting surrounding context words
given a center word.

¨ CBOW: predicting a center word from the
surrounding context.

word2vec/skip-gram27

Skip-gram
28

¨ The task: train a NN to predict whether a word is
related to another word w given as input.
¤ The network is trained to produce a probability

distribution (one entry for every word in the
vocabulary) words of being nearby w.

¤ “nearby”: there is a "window size" (typical value: 5)

Skip-gram architecture
29

¨ Input layer size: |V|
¨ A single hidden layer, fully connected NN is used.

¤ Neurons in the hidden layer are all linear.
¤ Hidden layer size: set to the desired dimensionality of

the resulting word vectors.

¨ Output layer size: |V|

V is the vocabulary set

Skip-gram architecture
30

https://arxiv.org/pdf/1301.3781.pdf

Skip-gram – output layer
31

¨ Probabilities produced in the output layer relate to
how likely it is to find each vocabulary word nearby
the input word w.

¨ For example, say w = “Africa”
¤ output probabilities should be much higher for related

words (e.g. “lion”, “zebra”) than for unrelated words
(e.g. “bear”, “kangaroo”).

Training examples (word pairs)
32

¨ The training examples will be word pairs taken
from the input corpus.

¨ For example, suppose the NN gets many more
examples of (“dog”, “cat”) than (“dog”, “tiger”).
¤ After training, if the NN is given the word “dog”, it will

output a much higher probability for “cat” (or “pet”)
than it will for “tiger”.

Positive training examples (word pairs)
33

The word highlighted in blue is the input word w.
“The quick brown fox jumps over the lazy dog.”
window size = 2.

Negative training examples
34

¨ Negative training examples are built for an input
word w by forming pairs (w, wout), in which wout is
some word in the vocabulary not inside the context
of w.

One hot encoding
35

¨ During training, we cannot provide the NN with the
text of the words.
¤ Some vector representation for each word in V is

needed à one hot encoding.

One hot encoding
36

Credits: Marco Bonzaninin

One hot encoding
37

Credits: Marco Bonzaninin

One hot encoding
38

Credits: Marco Bonzaninin

Skip-gram NN architecture
39

"Linear neurons" means there is no activation function on the hidden layer neurons, …

Skip-gram NN architecture
40

…, but the output neurons use softmax.

Skip-gram NN architecture
41

The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding.

The hidden layer
42

¨ Multiplying a 1 x n one-hot vector v by an n x d
matrix W (the hidden layer) will effectively select
the row of W corresponding to the “1” position in v.

So, the output of the hidden layer is just the “word vector” for the
input word à the hidden layer plays the role of a lookup table.

The hidden layer
43

The output of the hidden layer is
just the “word vector” for the

input word.
W is the matrix we really want!

The output layer
44

¨ The 1 x d word vector (coming from the hidden
layer) then gets fed to the output layer.

¨ The output layer has |V| neurons and is a softmax
regression classifier.

word2vec
45

word2vec
46

¨ word2vec captures context similarity:
¤ If words wj and wk have similar contexts, then the model

needs to output very similar results for them.
n One way for the network to do this is to make the word

vectors for wj and wk very similar.

¤ So, if two words have similar contexts, the network is
motivated to learn similar word vectors for them.

word2vec
47

Credits: http://jalammar.github.io/illustrated-word2vec/

Skip-gram captures context similarity
48

¨ If two words wj and wk have similar “contexts” (i.e.,
similar words are likely to appear around them),
then the model needs to output very similar results
for them.
¤ One way for the network to do this is if the word vectors

for wj and wk are similar.
¨ So, if two words have similar contexts, our network

is motivated to learn similar word vectors for them.

Final Remarks49

Take away notes
50

¨ SOTA results in most NLP is currently neural-based.
¨ Neural-based NLP is recent but relies on older

ideas.
¨ Attention mechanism is a novel and very promising

idea.

Pretrained models
51

https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert

To learn more – neural language models
52

https://arxiv.org/abs/1906.03591

To learn more – contextual embeddings
53

https://arxiv.org/abs/2003.07278

To learn more - word2vec
54

¤ Efficient Estimation of Word Representations in Vector
Space, September 7th, 2013.

¤ Distributed Representations of Words and Phrases and
their Compositionality, October 16th, 2013.

https://research.fb.com/people/mikolov-tomas/

https://code.google.com/archive/p/word2vec/

Eduardo Bezerra (ebezerra@cefet-rj.br)

These slides are available at
http://eic.cefet-rj.br/˜ebezerra/

Backup slides56

A drawback of skip-gram
57

¨ The resulting trained model contains a huge amount
of weights.
¤ e.g., d = 300 and |V| = 10,000, that’s 3M weights in

the hidden layer and output layer each!

¨ Training (optimizing) a skip-gram model on a large
corpus would be prohibitive.

¨ In order to circumvent this, some innovations...

Three inovations
58

1. Learn phrases from the corpus.
2. Subsample frequent words to decrease the

number of training examples.
3. Modify the optimization objective with a technique

called “Negative Sampling”, which causes each
training sample to update only a small percentage
of the model’s weights.

