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Credit where credit is due
2

¨ The original papers from Mikolov et al.
¨ CS 224D: Deep Learning for NLP

¤ https://cs224d.stanford.edu/lecture_notes/notes1.pdf
¨ McCormick, C. (2016). Word2Vec Tutorial. 

¤ http://www.mccormickml.com
¨ Understanding word vectors (Python notebook)

¤ https://gist.github.com/aparrish/2f562e3737544cf29aaf1
af30362f469

http://www.mccormickml.com/


Summary

¨ Language Models
¨ Word2vec

¤ Skip-gram
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Language Model
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¨ Definition: A model that assigns a probability to a 
sequence of tokens (e.g., words or characters). 

¨ A good language model gives...
¤ ...(syntactically and semantically) valid sentences a high 

probability.
¤ ...low probability to nonsense.

Language Model



Language Model - applications
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¨ NLP-based applications use language models for a 
variety of tasks:
¤ audio to text conversion, 
¤ speech recognition, 
¤ sentiment analysis, 
¤ summarization, 
¤ spell correction, 
¤ etc.



Language Model (example application)
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Example: query completion



Language Model (example application)
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Example: speech recognition

https://developer.nvidia.com/blog/how-to-build-domain-specific-automatic-speech-recognition-models-on-gpus/



Language Models (example)
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Language Models
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¨ A (statistical) LM produces a probability to an input 
sequence by applying the chain rule from 
Probability Theory.

The chain rule tells us how to 
compute the joint probability 
of a sequence by using the 
conditional probabilities of 
each component word given 
previous words.



Language Models
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n-gram models
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¨ A challenge in building LMs from a corpus is data 
sparsity: most possible word sequences are not 
observed in training. 

¨ One solution is to build a particular type a LM, an 
n-gram model.



n-grams (examples)
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¨ unigrams:
(the), (quick), (brown), (fox), (jumped), (over), (the), (lazy), (dog)

¨ bigrams:
(the quick), (quick brown), (brown fox), (fox jumped), (jumped over), (over the), (the lazy), 
(lazy dog)

¨ trigrams:
(the quick brown), (quick brown fox), (brown fox jumped), (fox jumped over), 
(jumped over the), (over the lazy), (the lazy dog)

An n-gram is a contiguous sequence of n tokens (e.g., words).



n-grams (example n=2)
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The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.



n-gram models – Markov assumption
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¨ n-gram models make the Markov assumption: “the 
probability of a word only depends on the previous 
n-1 words”.
¤ This assumption drastically simplifies the estimation of 

conditional probabilities from data.



n-gram models – Markov assumption
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Bigram model

Unigram model (aka bag of words model)
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n-gram models – Markov assumption

But, how to learn these conditional probabilities from data?



Learning n-gram models
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¨ The simplest way to build an n-gram model from a 
corpus is through maximum likelihood estimation
(count occurrences)

Example



statistical models à neural models
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¨ Statistical LMs (such as n-gram models) were 
pervasive in the 80s and 90s.

¨ But in the 2000s, several neural language models
started to appear.

¨ A neural language model is a language 
model built using Artificial Neural Networks.



Embedding models
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¨ Embedding models are a kind of neural language 
model.

¨ They aim to learn a continuous (vector) 
representation for each token in a corpus. 

¨ Once learnt, the continuous representations can be 
used in downstream machine learning tasks: 
classification, clustering, etc.



Embedding models
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¨ Two types: 
¤ word embedding

¤ contextual embedding

I left the left door of the barn open.

The kid dreamt of becoming an astronaut.
The child dreamt of becoming an astronaut.



Embedding models
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¨ word2vec1, GloVe1

¨ SkipThoughts
¨ Paragraph2Vec
¨ Doc2Vec
¨ FastText1

¨ ELMo2, BERT2, GPT2

Currently, the distributional hypothesis through vector 
embeddings models generated by ANNs is used 
pervasively in NLP. 

1) word embeddings (aka global embeddings)
2) contextual embeddings



word2vec23



word2vec
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¨ word2vec is a set of model architectures and 
optimizations to learn word embeddings from large 
corpora.

http://jalammar.github.io/illustrated-word2vec/



The word2vec trick
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¨ In word2vec, a single hidden layer neural network is 
trained to perform a certain “fake” task.
¤ But the resulting model is not actually used! 

¨ Instead, the goal is to learn the weights of the 
hidden layer.
¤ these weights are the “word vectors”



The fake tasks
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¨ Skip-gram: predicting surrounding context words
given a center word. 

¨ CBOW: predicting a center word from the 
surrounding context.



word2vec/skip-gram27



Skip-gram
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¨ The task: train a NN to predict whether a word is 
related to another word w given as input.
¤ The network is trained to produce a probability 

distribution (one entry for every word in the 
vocabulary) words of being nearby w.

¤ “nearby”: there is a "window size" (typical value: 5)



Skip-gram architecture
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¨ Input layer size: |V| 
¨ A single hidden layer, fully connected NN is used. 

¤ Neurons in the hidden layer are all linear. 
¤ Hidden layer size: set to the desired dimensionality of 

the resulting word vectors. 

¨ Output layer size: |V|

V is the vocabulary set



Skip-gram architecture
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https://arxiv.org/pdf/1301.3781.pdf



Skip-gram – output layer
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¨ Probabilities  produced in the output layer relate to 
how likely it is to find each vocabulary word nearby 
the input word w. 

¨ For example, say w = “Africa”
¤ output probabilities should be much higher for related 

words (e.g. “lion”, “zebra”) than for unrelated words 
(e.g. “bear”, “kangaroo”).



Training examples (word pairs)
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¨ The training examples will be word pairs taken 
from the input corpus.

¨ For example, suppose the NN gets many more 
examples of (“dog”, “cat”) than (“dog”, “tiger”). 
¤ After training, if the NN is given the word “dog”, it will 

output a much higher probability for “cat” (or “pet”) 
than it will for “tiger”.



Positive training examples (word pairs)
33

The word highlighted in blue is the input word w.
“The quick brown fox jumps over the lazy dog.” 
window size = 2. 



Negative training examples
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¨ Negative training examples are built for an input 
word w by forming pairs (w, wout), in which wout is 
some word in the vocabulary not inside the context 
of w.



One hot encoding
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¨ During training, we cannot provide the NN with the 
text of the words.
¤ Some vector representation for each word in V is 

needed à one hot encoding.



One hot encoding
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Credits: Marco Bonzaninin



One hot encoding
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Credits: Marco Bonzaninin



One hot encoding
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Credits: Marco Bonzaninin



Skip-gram NN architecture
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"Linear neurons" means there is no activation function on the hidden layer neurons, …



Skip-gram NN architecture
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…, but the output neurons use softmax. 



Skip-gram NN architecture
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The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding.



The hidden layer
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¨ Multiplying a 1 x n one-hot vector v by an n x d
matrix W (the hidden layer) will effectively select
the row of W corresponding to the “1” position in v.

So, the output of the hidden layer is just the “word vector” for the 
input word à the hidden layer plays the role of a lookup table.



The hidden layer
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The output of the hidden layer is 
just the “word vector” for the 

input word.
W is the matrix we really want!



The output layer
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¨ The 1 x d word vector (coming from the hidden 
layer) then gets fed to the output layer. 

¨ The output layer has |V| neurons and is a softmax
regression classifier.



word2vec
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word2vec
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¨ word2vec captures context similarity:
¤ If words wj and wk have similar contexts, then the model 

needs to output very similar results for them. 
n One way for the network to do this is to make the word 

vectors for wj and wk very similar. 

¤ So, if two words have similar contexts, the network is 
motivated to learn similar word vectors for them.



word2vec
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Credits: http://jalammar.github.io/illustrated-word2vec/



Skip-gram captures context similarity
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¨ If two words wj and wk have similar “contexts” (i.e., 
similar words are likely to appear around them), 
then the model needs to output very similar results 
for them. 
¤ One way for the network to do this is if the word vectors 

for wj and wk are similar. 
¨ So, if two words have similar contexts, our network 

is motivated to learn similar word vectors for them.



Final Remarks49



Take away notes
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¨ SOTA results in most NLP is currently neural-based.
¨ Neural-based NLP is recent but relies on older 

ideas.
¨ Attention mechanism is a novel and very promising 

idea.



Pretrained models
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https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert



To learn more – neural language models
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https://arxiv.org/abs/1906.03591



To learn more – contextual embeddings
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https://arxiv.org/abs/2003.07278



To learn more - word2vec
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¤ Efficient Estimation of Word Representations in Vector 
Space, September 7th, 2013.

¤ Distributed Representations of Words and Phrases and 
their Compositionality, October 16th, 2013.

https://research.fb.com/people/mikolov-tomas/

https://code.google.com/archive/p/word2vec/



Eduardo Bezerra (ebezerra@cefet-rj.br)

These slides are available at
http://eic.cefet-rj.br/˜ebezerra/



Backup slides56



A drawback of skip-gram
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¨ The resulting trained model contains a huge amount 
of weights. 
¤ e.g., d = 300 and |V| = 10,000, that’s 3M weights in 

the hidden layer and output layer each! 

¨ Training (optimizing) a skip-gram model on a large 
corpus would be prohibitive.

¨ In order to circumvent this, some innovations...



Three inovations
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1. Learn phrases from the corpus.
2. Subsample frequent words to decrease the 

number of training examples.
3. Modify the optimization objective with a technique 

called “Negative Sampling”, which causes each 
training sample to update only a small percentage 
of the model’s weights.


