NEURAL MODELS FOR
WORD EMBEDDING

Prof. Eduardo Bezerra
(CEFET/R)J)

ebezerra@cefet-rj.br

Credit where credit is due

The original papers from Mikolov et al.
CS 224D: Deep Learning for NLP

https:/ /cs224d.stanford.edu/lecture_notes/notes1.pdf
McCormick, C. (2016). Word2Vec Tutorial.

Understanding word vectors (Python notebook)

https: / /gist.github.com /aparrish /2f562e3737544cf29aaf]
af30362f469

http://www.mccormickml.com/

Summary
.,

7 Language Models

7 Word2vec
o Skip-gram

- Language Models

Language Model

Definition: A model that assigns a probability to a
sequence of tokens (e.g., words or characters).
A good language model gives...

...(syntactically and semantically) valid sentences a high
probability.

...low probability to nonsense.

S Pr(s)

Language Model - applications

NLP-based applications use language models for a
variety of tasks:

audio to text conversion,

speech recognition,

sentiment analysis,

summarization,

spell correction,

efc.

Lomguc:ge Model (example application)
7]

Example: query completion

Google

images

what is the fastest anim| X @B Q

what is the fastest animal in the world

what is the fastest animal

what is the fastest animal on earth

what is the fastest animal in the sea

what is the fastest animal on land

what is the fastest animal in the water

what is the fastest animal on the planet

what is the fastest animal in the world in water

what is the fastest animal in the sky

P L PLPLPLOLOLOLOLHOL P

what is the fastest animal in the whole world) o
Report inappropriate predictions

Lomguc:ge Model (example application)
8]

Example: speech recognition

Feature I Acoustic
W =" [Extraction Model

* Jasper
* QuartzNet

Language
Model

https://developer.nvidia.com/blog/how-to-build-domain-specific-automatic-speech-recognition-models-on-gpus/

Language Models (example)

s1 = The quick brown fox jumps over the lazy dog.

sy = The quik brown lettuce over jumps the lazy dog

Pr(s;) > Pr(sy)

Language Models

o A (statistical) LM produces a probability to an input

sequence by applying the chain rule from

Probability Theory.

Pr(wy, ws, -+ ,w,) =Pr(w;) X
Pr(ws | wy) X
Pr(ws | wy, wy)X
X e X

Pr(w, | wi,we, -+ ,w,_1)

The chain rule tells us how to
compute the joint probability
of a sequence by using the
conditional probabilities of
each component word given
previous words.

Language Models

s; = The quick brown fox jumps over the lazy dog.

Pr(The, quick, - - - , dog) = Pr(The) x
Pr(quick | The) x
Pr(brown | The, quick) x
SR,
Pr(dog | The, quick, - - - , lazy)

n-gram models

A challenge in building LMs from a corpus is data
sparsity: most possible word sequences are not
observed in training.

One solution is to build a particular type a LM, an
n-gram model.

13

N-grams (examples)

Unig rams: An n-gram is a contiguous sequence of n tokens (e.g., words).
(the), (quick), (brown), (fox), (jumped), (over), (the), (lazy), (dog)
bigrams:

(the quick), (quick brown), (brown fox), (fox jumped), (jumped over), (over the), (the lazy),
(lazy dog)

trigrams:

(the quick brown), (quick brown fox), (brown fox jumped), (fox jumped over),
(jumped over the), (over the lazy), (the lazy dog)

14

N-grams (example n=2)

The

quick [brown

The
The
The

quick brown

fox jumped over the lazy dog.

fox jumped over the lazy dog.

quick [brown

fox| jumped over the lazy dog.

quick brown

fox jumped over the lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the|lazy dog.

The quick brown fox jumped over the lazy dog.

The quick brown fox jumped over the|lazy dog.

n-gram models — Markov assumption

n-gram models make the Markov assumption: “the
probability of a word only depends on the previous
n-1 words”.

This assumption drastically simplifies the estimation of
conditional probabilities from data.

n-gram models - Markov assumption
s

Unigram model (aka bag of words model)

Pr(wy, we, -+ ,w,) = HPr(wz-)
1=1

Pr(wy, we, -+ ,w,) =Pr(w;)x
Pr(wsy | wy)x
PI‘(’(U3 | wl,wg)x

XX Bigram model
Pr(wn | Wy, Wa, - - awn—l)

Pr(wy, w, -, wy) = | [Pr(w; | wiy)
1=2

n-gram models — Markov assumption

s; = The quick brown fox jumps over the lazy dog.

Pr(The, quick, - - - , dog) = Pr(The) x Pr(The, quick, - - - , dog) = Pr(The) x
Pr(quick | The)x Pr(quick | The)x
Pr(brown | The, quick) x — Pr(brown | quick)
XX ceex
Pr(dog | The, quick, - - - , lazy) Pr(dog | lazy)

But, how to learn these conditional probabilities from data?

Learning n-gram models
N

o The simplest way to build an n-gram model from a
corpus is through maximum likelihood estimation
(count occurrences)

#('wi—('n.—l)a ceey Wh :'u-"z'.)
#(Wi—(n-1), - -, Wi-1)

#(‘lazy dog’)
#(lazy)

Pr(w; | w;_(n_1y....,wi_1) =

Pr(‘dog’ | ‘lazy’) ~

Example

statistical models =2 neural models

Statistical LMs (such as n-gram models) were
pervasive in the 80s and 90s.

But in the 2000s, several neural language models

started to appear.

A neural language model is a language
model built using Artificial Neural Networks.

20

Embedding models

Embedding models are a kind of neural language
model.

They aim to learn a continuous (vector)
representation for each token in a corpus.

Once learnt, the continuous representations can be
used in downstream machine learning tasks:

classification, clustering, etc.

Embedding models

Two types:
word embedding

contextual embedding

The kid dreamt of becoming an astronaut.
The child dreamt of becoming an astronaut.

| left the left door of the barn open.

Embedding models

[
[
[
[
[
[

word2vec', GloVe'
SkipThoughts
Paragraph2Vec
Doc2Vec

FastText!

ELMo?, BERT2, GPT?

AND MANY:
MORE!!

Currently, the distributional hypothesis through vector
embeddings models generated by ANNs is used
pervasively in NLP.

1) word embeddings (aka global embeddings)
2) contextual embeddings

- word2vec

word2vec

24

word2vec is a set of model architectures and
optimizations to learn word embeddings from large

corpord.

Word2vec

http://jalammar.github.io/illustrated-word2vec/

The word2vec trick

In word2vec, a single hidden layer neural network is
trained to perform a certain “fake” task.

But the resulting model is not actually used!
Instead, the goal is to learn the weights of the
hidden layer.

these weights are the “word vectors”

The fake tasks

Skip-gram: predicting surrounding context words

given a center word.

CBOW: predicting a center word from the
surrounding context.

- word2vec/skip-gram

Skip-gram
The task: train a NN to predict whether a word is
related to another word w given as input.
The network is trained to produce a probability

distribution (one entry for every word in the
vocabulary) words of being nearby w.

“nearby”: there is a "window size" (typical value: 5)

Skip-gram architecture

Input layer size: | V|
A single hidden layer, fully connected NN is used.

Neurons in the hidden layer are all linear.

Hidden layer size: set to the desired dimensionality of
the resulting word vectors.

Output layer size: | V|

V is the vocabulary set

Skip-gram architecture

https://arxiv.org/pdf/1301.3781.pdf

INPUT

wit) ———»

PROJECTION OUTPUT

AN

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram — output layer

Probabilities produced in the output layer relate to
how likely it is to find each vocabulary word nearby

the input word w.

For example, say w = “Africa”

output probabilities should be much higher for related

words (e.g. “lion”, “zebra”) than for unrelated words

(e.g. “bear”, “kangaroo”).

Training examples (word pairs)

The training examples will be word pairs taken
from the input corpus.

For example, suppose the NN gets many more
examples of (“dog”, “cat”) than (“dog”, “tiger”).
After training, if the NN is given the word “dog”, it will

output a much higher probability for “cat” (or “pet”)
than it will for “tiger”.

Positive training examples (word pairs)
-1

Training
Samples

Source Text

-quick brown [fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown [fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick- fox|jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The| quick|brown . jumps|over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

“The quick brown fox jumps over the lazy dog.” o _ _ .
window size = 2. The word highlighted in blue is the input word w.

Negative training examples

Negative training examples are built for an input

word w by forming pairs (w, w,), in which w_, is
some word in the vocabulary not inside the context

of w.

35

One hot encoding

During training, we cannot provide the NN with the
text of the words.

Some vector representation for each word in V is

needed 2 one hot encoding.

One hot encoding

Rome =1, o0, 0, 0, O, O, .., O]

I
-
-
=
~
-,
~
-,
~
-,
~
-
-
~
-

Paris
Italy = [0, O, 1, O, O, O, .., O]

France= [0, O, O, 1, 0, 0O, .., O]

Credits: Marco Bonzaninin

One hot encoding

s
Paris
Rome\ \ wordV\v
Rome =11, o, o, 0, 0, O, .., O]
Paris = [0, 1, O, O, O, O, , O]

Italy = [0, O, 1, 0, 0, O, .., O]

France = [OI Or Or 11 Ol Ol N 0]

Credits: Marco Bonzaninin

One hot encoding
-1

V = vocabulary size (huge)

rRome = [1, O, O, O, O, O, .., O]
paris = [0, 1, O, O, O, O, .., O]

Ttaly

1
-
~
-
~
|_\
~
-
~
-
~
-
~
~
-

France = [Or O/ O/ 1/ OI OI ey 0]

Credits: Marco Bonzaninin

Skip-gram NN architecture

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
—— randomly chosen, nearby
position is “abandon”

Input Vector

0
0
T —— .. “ability”
0
0
0 >
A ‘1’ in the position 0 > .. "able
corresponding to the —
word “ants’ 0
0
10,000
positions
300 neurons —— .."“zone”

10,000
nheurons

"Linear neurons" means there is no activation function on the hidden layer neurons, ...

Skip-gram NN architecture

Output Layer
Softmax Classifier

H Idden Layer Probability that the word at a
Linear Neurons ; —— randomly chosen, nearby

position is “abandon”

Input Vector

A ‘1" in the position
corresponding to the —
word “ants”

[e[efe]e]e[o]o[o]o]
v
o

10,000
positions

300 neurons a —— .."“zone”

10,000
nheurons

..., but the output neurons use softmax.

Skip-gram NN architecture

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
randomly chosen, nearby

Input Vector

position is “abandon”
0
— v
0
T ... “ability”
0
0
0 >
A ‘1" in the position 0 ... “able
corresponding to the —
word “ants’ 0
0
i M
10,000
positions
300 neurons ... “zone”

10,000
nheurons

The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding.

The hidden layer

42

Multiplying a T x n one-hot vector v by an n x d
matrix W (the hidden layer) will effectively select
the row of W corresponding to the “1” position in v.

(17 24 1 7
23 5 7
0 0 0 1 0] x |4 6 13| = [10 12 19]
10 12 19
11 18 254

So, the output of the hidden layer is just the “word vector” for the
input word - the hidden layer plays the role of a lookup table.

The hidden layer

Hidden Layer | Word Vector
Weight Matrix Lookup Table!

300 neurons 300 features

The output of the hidden layer is
just the “word vector” for the
input word.

W is the matrix we really want!

10,000 words
10,000 words

The output layer
.. @444

7 The 1 x d word vector (coming from the hidden
layer) then gets fed to the output layer.

o The output layer has | V| neurons and is a softmax

regression classifier.

Output weights for “car”

softmax

Probability that if you
= randomly pick a word
nearby “ants”, that it is “car”

Word vector for “ants”

. X

300 features

300 features

word2vec

45

Vonehot

Vembed

e.g., V= 50000, D = 300

W € %3(]() x 50000

o000 x 1
Vonehot c SR

Vembed — W x Vonehot

300x1
Vembed c 5}?

46

word2vec

word2vec captures context similarity:

If words w; and w, have similar contexts, then the model
needs to output very similar results for them.
One way for the network to do this is to make the word

vectors for w; and w, very similar.

So, if two words have similar contexts, the network is
motivated to learn similar word vectors for them.

word2vec

queen(fl - [[RINUIN N
woman [l il] |
oir LN I PR T
boy [11 1 I TR O TR T
man | [f 1] I
king 1 L R
queen RININ N
water (i || I NI DRI T 0O 00

48

Skip-gram captures context similarity

If two words w; and w, have similar “contexts” (i.e.,
similar words are likely to appear around them),
then the model needs to output very similar results
for them.
One way for the network to do this is if the word vectors
for w; and w, are similar.
So, if two words have similar contexts, our network
is motivated to learn similar word vectors for them.

- Final Remarks

50

Take away notes

SOTA results in most NLP is currently neural-based.

Neural-based NLP is recent but relies on older
ideas.

Attention mechanism is a novel and very promising
idea.

Pretrained models
LB

The links to the models are here (right-click, ‘Save link as..." on the name):

Pre'tra i ned Word and ph ra se veCtors ® BERT-Large, Uncased (Whole Word Masking) : 24-layer, 1024-hidden, 16-head

BERT-Large, Cased (Whole Word Masking) : 24-layer, 1024-hidden, 16-heads, 340M parameters

We are publishing pre-trained vectors trained on part of Google
News dataset (about 100 billion words). The model contains 300-
dimensional vectors brds and phrases. The phrases
were obtained using a simple data-driven approach described in

BERT-Base, Uncased : 12-layer, 768-hidden, 12-heads, 110M parameters

BERT-Large, Uncased : 24-layer, 1024-hidden, 16-heads, 340M parameters

BERT-Base, Cased : 12-layer, 768-hidden, 12-heads, 110M parameters

BERT-Large, Cased : 24-layer, 1024-hidden, 16-heads, 340M parameters

BERT-Base, Multilingual Cased (New, recommended) : 104 languages, 12-layer, 768-hidden, 12-heads, 110M

[2]. The archive is available here: GoogleNews-vectors- parameters
. . e BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased
negatlve300'bln'gz' instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

e BERT-Base, Chinese : Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert

24-layer, 1024-hidden, 16-heads, 345M parameters.
gpt2-medium OpenAl's Medium-sized GPT-2 English model

GPT-2

36-layer, 1280-hidden, 20-heads, 774M parameters.
gpt2-large OpenAl's Large-sized GPT-2 English model

48-layer, 1600-hidden, Z&heao
gpt2-x1 OpenAl's XL-sized GPT-2 English model

To learn more — neural language models
S

L earn More

A Survey on Neural Network Language Models
Kun Jing, Jungang Xu
As the core component of Natural Language Processing (NLP) system, Language Model (LM) can provide word representation and probability indication of word

sequences. Neural Network Language Models (NNLMs) overcome the curse of dimensionality and improve the performance of traditional LMs. A survey on NNLMs is

performed in this paper. The structure of classic NNLMs is described firstly, and then some major improvements are introduced and analyzed. We summarize and
compare corpora and toolkits of NNLMs. Further, some research directions of NNLMs are discussed.

https://arxiv.org/abs/1906.03591

To learn more — contextual embeddings
=

Learn More

(QULITIIUICY VIT LU VIQl £VEV [V1), IGdL ITVIICTW 1J M £VLV (UND VTIDIVIL, VE))

A Survey on Contextual Embeddings

Qi Liu, Matt J. Kusner, Phil Blunsom

Contextual embeddings, such as ELMo and BERT, move beyond global word representations like Word2Vec and achieve ground-breaking performance on a wide
range of natural language processing tasks. Contextual embeddings assign each word a representation based on its context, thereby capturing uses of words
across varied contexts and encoding knowledge that transfers across languages. In this survey, we review existing contextual embedding models, cross-lingual
polyglot pre-training, the application of contextual embeddings in downstream tasks, model compression, and model analyses.

https://arxiv.org/abs/2003.07278

To learn more - word?2vec
o

P s,
‘i&} Tomas Mikolov
Research Scientist

https://research.fb.com/people/mikolov-tomas/
Efficient Estimation of Word Representations in Vector
Space, September 7th, 201 3.

Distributed Representations of Words and Phrases and
their Compositionality, October 16th, 201 3.

https://code.google.com/archive/p/word2vec/

These slides are available at
http://eic.cefet-rj.br/"ebezerra/

- Backup slides

A drawback of skip-gram

The resulting trained model contains a huge amount
of weights.

e.g., d =300 and | V]| = 10,000, that's 3M weights in
the hidden layer and output layer each!

Training (optimizing) a skip-gram model on a large
corpus would be prohibitive.

In order to circumvent this, some innovations...

58

Three inovations

Learn phrases from the corpus.

Subsample frequent words to decrease the
number of training examples.

Modify the optimization objective with a technique
called “Negative Sampling”, which causes each
training sample to update only a small percentage

of the model’s weights.

