NEURAL MODELS FOR
WORD EMBEDDING

Prof. Eduardo Bezerra

(CEFET/R)J)

ebezerra@cefet-rj.br

Summary

Neural Nets (quick overview)

Word2vec

Language models

Skip-gram

- Neural Nets - Representation

Model of a biological neuron

Cell Body

http://creationwiki.org/Neuron

Artificial Neuron

The artificial neuron is a model inspired by the real

In an artificial neuron:
input are features
each feature has an associated weight
weighted sum of features is called neuron pre-activation

value produced in pre-activation goes through a non-
linearity to produce neuron activation

Artificial Neuron

The artificial neuron is a model
inspired by the real one
(biological neuron).

Artificial Neuron - input

-:171-
I
r = |T2
5
xn

features

Artificial Neuron — weights

wl
Wa :
w = | W2
:
Wnp, :
| @ Wn

weights
(aka parameters)

Artificial Neuron — pre-activation

pre-activation

Artificial Neuron — activation function

b activation

Nonlinearities are required so that
the network can learn complex
representations of the data.

"The composition of linear
transformations is also a
linear transformation”

Artificial Neuron — activation functions

1 8_|]
1 = 6 i
—_ b ~—
= = S 4+ .
© 05+ 1 g 0 3 7| /
= R
1 0 :
0 l | | | | l | l

| L |
—4-20 2 4 —4-20 2 4 —4-20 2 4
< < <

(a) Logistica. (b) Hiperbolica tangente. (c) Retificada linear.

Artificial Neuron — activation functions

N

1 Sigmoid Logistic 1
9 v o) = o) = T
-1 Tangent Hyperbolic — .
L] ReLU SO(Z) - taﬂh(Z) - e + e~
1 softmax p(z) = ReLU(z2) = max(0,2)
LD
L (_L+1) _ €
Yi 0] (CIt) Z?,:l 6@;L+1)

(L+1)
e%i

softmax i =o(af"™

) R LD
E P A
g=1

1 Maps the NN outputs to a probability distribution.

N 3—»§—»o,7
‘\? 2 ~|5 |~ 02
X Ve 04— |~ 01

L (LD

L+1 €
(D

SOmeCIX Yi = O(i) - Z;il 6a§L+1)

1 Maps the NN outputs to a probability distribution.

n Wiaz + Waazz + Wigzs + by
+by | —> e |
Y2 | = softmax |Wa 21 + Waoxa + Wasxs + b
S Y3 Waioy + Waa®a + Was®s + b3
+by| —> g} —_—
Q
x Y Wian Wia Wag| | by
i — — Y2 | = softmax | |Wan Waa Waogs|-|Z2| + by
Y3 Wia Wia Was| |23 b3

Fonte: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html

Artificial Neural Net

0 It is possible to architect arbitrarily complex
networks using the artificial neuron as the basic

component.

6

|
r=wlez+b a=p(z)

|

|

TR,
ARET

or

Artificial Neural Net

Feedforward Neural Network

Kinds of layers

In an ANN:

input layer are the input patterns (features);
output layer is result of the computation performed;
other layers are called hidden layers.

Amount of layers and amount of units (neurons) per
layer are part of the ANN architecture.

Kinds of layers - example

AN
e
,}Q{‘ '//‘
RO
%0;0

output layer

/
®
®

\ output layer :
input layer inpul layer

hidden layer \ hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

Kinds of ANNs
o

o Fully connected x not fully connected

1 Recurrent x feed forward

ANNs - notation
N
1 Pre-activation:

+ identifica a camada

1]
<) < identifica o neuronio dentro da camada [

1 Activation:

<+ identifica a camada

1]
a’i <+ identifica o neuronio dentro da camada [

ANNs — notation - example

0 e.g., in a two-layer ANN:

Computations in the first layer:
D A= () e +b 6 = o))
5 —— . 1 1 1 1
W @ 5 Aokl ad = o)
b) 1 1 1 1 1
& @) o) uf!)a . = ()
1 1 1 1 1
| zﬁ[l] :(w,[i])Tm—kb‘[i]}ai):go(z,_[l])

Rectified linear units, RelLU

Convnet of 4 layers with
RelUs.

CIFAR-10 (60K, 32x32
imgs)
It reaches the same error

level 6 times faster than
tanh.

ImageNet Classification with Deep Convolutional Neural Networks, 2012.

Training error rate

e
i
Sy
—
T —
*‘
—
0,251 =

15

20

Epochs

25

30

40

- Neural Nets - Evaluation

24

Cost function

The error signal is the difference between y() and
output produced for x!.

measures the difference between the network predictions

and the desired values.

A cost function must provide a way to measure the
error signal for a set o training examples.

Cost function J(W,b)

Cost function: error of the network considering all
the examples.

function of the set of all weights and bias of the
network.

, 1 m _ ? | A\ T
‘](Ivb) — Z J(f(X{z}, Hﬁb)* y(l)) + Z Z(”E])2
{

m 4 2m
=1
L

L. i

k
T "
custo dos dados custo de regularizacao

Some (unregularized) cost functions
N

D={x"y"):1<i<m}

] — | 72
JMSE - a Z |:f (X(z)) o y(z)] Mean square error
=1
JCI‘OSS entropy — Z [p(Xm)]Og Q(X(z))] Cross entropy error
i=1

m (2)
Z i PX
JKL — p(x()) log (-)] Kullback-Leibler divergence

Optimization (learning, training)

Training
Given a training set of the form
{X“),ym 1 <i<m}

training an ANN corresponds to using this set to adjust
the parameters of the network, so that the training
error is minimized.

So, training of an ANN is an optimization problem.

Training

The error signal (computed with a cost function) is used during
training to gradually change the weights (parameters), so that
the predictions are more accurate.

) . . Propagation of the example
Pick a training)

through layers from input to
example

output ()
Uodat Propagation of the error
P Gfe signal through the layers
IOG':\/mE e from the output to the
, b.

input (<€)

Stochastic Gradient Descent (SGD)

7 SGD allows to traverse the space of parameters of
a neural network in search for a local minimum.

LI T [7o

SRR TR
RSN TS
\‘\\\\‘.%:.::“".:.‘~§

T 2 =
Q‘Q\ﬁ‘*’"h *‘:-:—;,-%:‘;'0

s
T T A

e 7
e W

S T S
e e Yy S Yy,
S

L
S

Source: David McKay, ITPRNN

Alternatives to SGD

SGD
Momentum

- NAG

Adagrad
Adadelta
Rmsprop
7 "f//,,;,"/':,'"f":"l"l"‘ N

2 2205 25705 'l "'"
)

8)

1.0

Source: http://sebastianruder.com/optimizing-gradient-descent/

- Neural Nets - Backpropagation

Error back-propagation

Consider that the output produced for x! is
different from y' (i.e., there is an nonzero error
signal).

Credit Assignment Problem

Then it is necessary to determine the responsibility of
each parameter (weight) of the network by this error...

... and change these parameters for the purpose of
reducing the error.

Error back-propagation
7 In an ANN with at least one hidden layer, there is
no direct supervision signal for these layers.

xl xl
xz ’O > y xz .O ’5\1
A3 X3 —

2 3) o)

Logistic regression

Error back-propagation
N
0 This problem gets worse as the amount of hidden
layers increases.

N -Q FOOREY
1 -,;, ,“,._‘ X
Xy | {)"0 (} O |
X3 | QoA ga ol 'O

Backpropagation

Algorithm invented many times...

Recursively propagates the error signal from the

output layer through the hidden layers, to the input
layer.

Used in conjunction with some optimization algorithm
(e.g., SGD) to gradually minimize network error.

Humelhart et al. Learning representations by back-propagating errors, 1986.

Backpropagation

Backpropagation, an abbreviation for “backward
propagation of errors”, is a common method of training
artificial neural networks used in conjunction with an
optimization method such as gradient descent. The method
calculates the gradient of a loss function with respect to all
the weights in the network. The gradient is fed to the
optimization method which in turn uses it to update the

weights, in an attempt to minimize the loss function.
--Frederik Kratzert

ANN training with Backpropagation

Set initial weights for the network
Present an example and get the result

For each layer (from the last):
Calculate the error for each neuron
Update the weights (with SGD or variant)

Propagate this error to the previous layer

Repeat with other examples until convergence

Backpropagation — example
e 4

(a) Forward pass >

LR

OE /duwy,

- (b) Backward pass

Fonte: Automatic Differentiation in Machine Learning: a Survey (https://arxiv.org/pdf/1502.05767.pdf)

ropagation

o
5 IS
o5 x 22 [2
022.* ox f Z
0z °
22 0]
B\ -
%
dJ 0Ty
-~ 0%

- word2vec

Credit where credit is due

The original papers from Mikolov et al.
CS 224D: Deep Learning for NLP

https: / /cs224d.stanford.edu/lecture_notes/notes1.pdf
McCormick, C. (2016). Word2Vec Tutorial.

Understanding word vectors (Python notebook)

https: / /gist.github.com /aparrish /2f562e3737544cf29aaf1
af30362f469

http://www.mccormickml.com/
http://www.mccormickml.com/

Ldnguoge Models (Unigrams, Bigrams, etc.)

A model that assigns a probability to a sequence of
tokens.

A good language model gives...

...(syntactically and semantically) valid sentences a high
probability.

...low probability to nonsense.

Lcmguc:ge Models (Unigrams, Bigrams, etc.)
I

7 Mathematically, we can apply a LM to any given
sequence of n words:

p(wlfwz;" T fwn)

Lcmguc:ge Models (Unigrams, Bigrams, etc.)
I

1 An example:
"The quick brown fox jumps over the lazy dog."
1 Another example:

"The quik brown lettuce over jumps the lazy dog.”

Lcmguage Models (Unigrams, Bigrams, etc.)
N

n

P(wy,wyp, -+ ,wy) = HP(w,;) rigram movel
=1
n
P(wl,w2, tee ,wn) — HP(wf\wf_l) Bigram model
1=2

But, how to learn these probabilities?

word2vec
e

Tomas Mikolov

Research Scientist

htt://research.fb.com/people/mikolov-tomas/
Efficient Estimation of Word Representations in Vector
Space, September 7th, 201 3.

Distributed Representations of Words and Phrases and
their Compositionality, October 16th, 201 3.

https://code.google.com/archive/p/word2vec/

48

The word2vec trick

word2vec uses a trick:

A single hidden layer neural network is trained to
perform a certain “fake” task.

But this NN is not actually used!

Instead, the goal is to learn the weights of the
hidden layer— these weights are the ‘“‘word vectors’.

The fake tasks

Skip-gram: predicting surrounding context words

given a center word.

CBOW: predicting a center word from the
surrounding context.

" sopgon

Skip-gram

The task: given a specific word w in the middle of a
sentence (the input word), look at the words nearby
and pick one word at random.

We then train the network to produce the

probability (for every word in the vocabulary) of
being nearby w.

“nearby” means there is actually a "window size"
hyperparameter (typical value: 5)

Skip-gram

Output probabilities are going to relate to how

likely it is to find each vocabulary word nearby our
input word w.

For example, say w = “Africa”

output probabilities should be much higher for related

words (e.g. “lion”, “zebra”) than for unrelated words
(e.g. “bear”, “kangaroo”).

Training examples (word pairs)

The training examples will be word pairs taken
from the input corpus.

During training, the network will learn parameters
that capture the statistics related to the number of
times each pairing shows up.

Training examples (word pairs)

For example, suppose the network gets many more
training samples of (“Soviet”, “Union”) than
(“Soviet”, “Sasquatch”).

After training, if the NN is given the word “Soviet”, it

will output a much higher probability for “Union” (or
“Russia”) than it will for “Sasquatch”.

Training examples (word pairs)
|

Training
Samples

Source Text

quick|brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick- fox|jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|gquick hrown-jumps over|the lazy dog. == (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

“The quick brown fox jumps over the lazy dog.” o _ _ _
window size = 2. The word highlighted in blue is the input word w.

One hot encoding

But, during training, we cannot provide the NN with
the text of the words.

We need to use some vector representation for
each word in the vocabulary = so, we have to use
one hot encoding.

One hot encoding

rRome = [1, O, O, O, O, O, .., O]

Paris

|
O
|
|_\
~
O
-
O
-
O
|
O
|
-

0]
Ttaly = [0, O, 1, 0, O, O, .., O]

France = I:Or Or Or 1! Or 0! ey 0]

Credits: Marco Bonzaninin

One hot encoding

s
Paris
Rome\ WOde\
Rome = (1, o0, O, O, O, O, .., O]
Paris = [O, 1, O, O, O, O, , O]

Italy = [0, O, 1, O, 0, O, .., O]

France = [Or Or Or lr O! O! o O]

Credits: Marco Bonzaninin

One hot encoding
|

V = vocabulary size (huge)

Rome = [1, O, O, O, O, O, .., O]
Paris = [0, 1, O, O, O, O, .., O]

Ttaly

I

-
-~
-
-
|_\
-
-
-
-
-~
-
~
-
-

France= [0, O, 0O, 1, O, 0O, .., O]

Credits: Marco Bonzaninin

Skip-gram NN architecture

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
—— randomly chosen, nearby
position is “abandon”

Input Vector

0 v
0 / }
F / —— .. "ability”
0 rd
o]
0 »>
A ‘1’ in the position 0 ——> ..“able
corresponding to the —
word “ants’ 0
0
10,000
positions
300 neurons ———> .."“zone”

10,000
neurons

"Linear neurons" means there is no activation function on the hidden layer neurons, ...

Skip-gram NN architecture

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
—— randomly chosen, nearby
position is “abandon”

Input Vector

A ‘1" in the position
corresponding to the —
word “ants”

B0 - E000R0E
A\
.)
o

10,000
positions

“ "
300 neurons o ——= .."“zone

10,000

neurons

..., but the output neurons use softmax.

Skip-gram NN architecture

Output Layer
Softmax Classifier

Hidden Layer

. Probability that the word at a
Linear Neurons

randomly chosen, nearby

Input Vector

position is “abandon”
0
— lv
0
0 / ... "“ability”
0 rd
0 /
0 »
A ‘1" in the position 0 - “able
corresponding to the —
word “ants’ 0
0
: [
10,000
positions
300 neurons ... “zone”

10,000
neurons

The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding.

The hidden layer

63

Multiplying a T x n one-hot vector v by ann x d
matrix W (the hidden layer) will effectively select
the row of W corresponding to the “1” position in v.

17 24 1 -
23 5 7
[0 0 01 0 x |4 6 13| =10 12 19]
10 12 19
11 18 25.

So, the output of the hidden layer is just the “word vector” for the
input word -> the hidden layer plays the role of a lookup table.

The hidden layer
-1

Hidden Layer | Word Vector
Weight Matrix Lookup Table!

300 neurons 300 features

The output of the hidden layer is
just the “word vector” for the
input word.

W is the matrix we really want!

10,000 words
10,000 words

The output layer
-1

7 The 1 x d word vector (coming from the hidden
layer) then gets fed to the output layer.

-1 The output layer has |V | neurons and is a softmax

regression classifier.

Output weights for “car”

softmax

Probability that if you
= randomly pick a word
nearby “ants”, that it is “car”

Word vector for “ants”

T X

300 features

300 features

66

Skip-gram captures context similarity

If two words w; and w, have similar “contexts” (i.e.,
similar words are likely to appear around them),
then the model needs to output very similar results
for them.
One way for the network to do this is if the word vectors
for w; and w, are similar.
So, if two words have similar contexts, our network
is motivated to learn similar word vectors for them.

A drawback of skip-gram

The resulting trained model contains a huge amount
of weights.

e.g., d = 300 and |V]| = 10,000, that’s 3M weights in
the hidden layer and output layer each!

Training (optimizing) a skip-gram model on a large
corpus would be prohibitive.

In order to circumvent this, some innovations...

Three inovations

Learn phrases from the corpus.

Subsample frequent words to decrease the
number of training examples.

Modify the optimization objective with a technique
called “Negative Sampling”, which causes each
training sample to update only a small percentage
of the model’s weights.

Learning Phrases

A word pair like “Boston Globe” (a newspaper) has

a much different meaning than the individual words
“Boston” and “Globe”.

So it makes sense to treat any occurrences of
“Boston Globe” as a single word with its own word
vector representation.

Learning Phrases

In an experiment from the 2" word2vec paper:
a model was trained on 100 billion words from a
Google News dataset, using d=300.
the addition of phrases to the model reduced the

vocabulary size to 3 million "words".

This (pre-trained) model can be freely downloaded.

Phrase detection is also covered in the paper.

Learning Phrases

Each pass of their phrase detection tool only looks at
combinations of 2 words.

But it can be executed multiple times to get longer
phrases.

So, the first pass will pick up the phrase “New_York”,
and then running it again will pick up “New_York_City”
as a combination of “New_York” and “City”.

Subsampling frequent words

Two issues with common words like “the”:

When looking at word pairs, (“fox”, “the”)
doesn’t tell us much about the meaning of “fox”.

We will have many more samples of (“the”, ...)
than we need to learn a good vector for “the”.

A “subsampling” scheme addresses this...

Subsampling of frequent words

Example: for a window size of 10, if a specific
instance of “the” is removed:

As we train on the remaining words, “the” will not
appear in any of their context windows.

We'll have 10 fewer training samples where “the” is
the input word.

This has a huge effect on the size of the training set.

Subsampling of frequent words

“subsampling” scheme:

For each word found in the corpus, there is @
chance that it will be discarded.

The probability that a word w. will be discarded is
related to its frequency:

Subsampling of frequent words
s

Subsampling formula (t=1077)

098
t
P (wz) =1- 096
S (w;)
:3‘:
& 094
092
050
000 002 004 006 008 010

fwi)

Negative sampling

Train a NN means to iterate on: “take each xi

and adjust all of the weights slightly so that the
NN predicts x/! more accurately”.

i.e., each training sample will tweak all of the
weights in the neural network.

But the word2vec architecture is fully connected!

Negative sampling addresses this problem.

Negative sampling

Basic idea: modify only a small percentage of
the weights in the NN for each training sample.

When training the network on the word pair

(“fox”, “quick”), recall that the “label” (response

signal) is a one-hot vector.

Negative sampling

With negative sampling, just a small number of
“negative” words (let’s say 5) are randomly
selected to update the weights.

(a “negative” word is one for which we want the
network to output a O for).

We still update the weights for the “positive”
word.

Negative sampling - example

79

Consider Negative Sampling applied to a output layer
with a 300 x 10,000 weight matrix.

we will just be updating the weights for the positive
word, plus the weights for 5 other words that we want to
output O.

That’s a total of 6 output neurons, and 1,800 weight values.

That’s only 0.06% of the 3M weights in the output layer!

80

Negative sampling

The “negative samples” are chosen using a
“unigram distribution”.

The probability for selecting a word as a negative
sample is related to its frequency, with more frequent
words being more likely to be selected as negative

samples.
3/4
) /

Pluw;) — J(w;

S0 (00

Negative sampling

The 2" paper says that

selecting 5-20 words works well for smaller
datasets,

only 2-5 words suffice for large datasets.

