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Summary 

 Neural Nets (quick overview) 

 Word2vec 

 Language models 

 Skip-gram 
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Neural Nets - Representation 3 



Model of a biological neuron 
4 

 

http://creationwiki.org/Neuron 



Artificial Neuron 
5 

 The artificial neuron is a model inspired by the real 

 In an artificial neuron: 

 input are features 

 each feature has an associated weight 

 weighted sum of features is called neuron pre-activation 

 value produced in pre-activation goes through a non-

linearity to produce neuron activation 



Artificial Neuron 
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 The artificial neuron is a model 

inspired by the real one 

(biological neuron). 



Artificial Neuron - input 
7 

 

features 



Artificial Neuron – weights 
8 

 
weights 

(aka parameters) 



Artificial Neuron – pre-activation 
9 

 

pre-activation 



Artificial Neuron – activation function 
10 
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"The composition of linear 

transformations is also a 

linear transformation" 

Nonlinearities are required so that 

the network can learn complex 

representations of the data. 

activation 



Artificial Neuron – activation functions 
11 

 



Artificial Neuron – activation functions 
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 Sigmoid Logistic 

 Tangent Hyperbolic 

 ReLU 

 softmax 

 



softmax 
13 

 Maps the NN outputs to a probability distribution.  
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softmax 
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 Maps the NN outputs to a probability distribution.  

Fonte: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html 
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Artificial Neural Net 
15 

 It is possible to architect arbitrarily complex 

networks using the artificial neuron as the basic 

component. 



Artificial Neural Net 
16 

 

Feedforward Neural Network 



Kinds of layers 
17 

 In an ANN: 

 input layer are the input patterns (features); 

 output layer is result of the computation performed; 

 other layers are called hidden layers. 

 Amount of layers and amount of units (neurons) per 

layer are part of the ANN architecture. 



Kinds of layers - example 
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Kinds of ANNs 
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 Fully connected x not fully connected 

 Recurrent x feed forward 



ANNs - notation 
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 Pre-activation: 

 

 

 Activation: 



ANNs – notation - example 
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 e.g., in a two-layer ANN: 

Computations in the first layer: 



Rectified linear units, ReLU 

 Convnet of 4 layers with 

ReLUs. 

 CIFAR-10 (60K, 32x32 

imgs) 

 It reaches the same error 

level 6 times faster than 

tanh. 

ImageNet Classification with Deep Convolutional Neural Networks, 2012. 
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Neural Nets - Evaluation 23 



Cost function 
24 

 The error signal is the difference between y(i) and 

output produced for x(i). 

 measures the difference between the network predictions 

and the desired values. 

 A cost function must provide a way to measure the 

error signal for a set o training examples. 



Cost function J(W,b) 
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 Cost function: error of the network considering all 

the examples. 

 function of the set of all weights and bias of the 

network. 



Some (unregularized) cost functions 
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Cross entropy error 

Kullback-Leibler divergence 

Mean square error 



Neural Nets - Optimization (learning, training) 27 



Training 
28 

 Given a training set of the form 

 

 

 training an ANN corresponds to using this set to adjust 
the parameters of the network, so that the training 
error is minimized. 

 

 So, training of an ANN is an optimization problem. 



Training 

 The error signal (computed with a cost function) is used during 

training to gradually change the weights (parameters), so that 

the predictions are more accurate. 

Pick a training 

example 

Propagation of the example 

through layers from input to 

output () 

Propagation of the error 

signal through the layers 

from the output to the 

input () 

Update  

parameters  

W, b. 
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Stochastic Gradient Descent (SGD) 

 SGD allows to traverse the space of parameters of 

a neural network in search for a local minimum. 

 

Source: David McKay, ITPRNN 
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Alternatives to SGD 

 

Source: http://sebastianruder.com/optimizing-gradient-descent/ 
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Neural Nets - Backpropagation 32 



Error back-propagation 

 Consider that the output produced for x(i) is 
different from y(i) (i.e., there is an nonzero error 
signal). 

 Credit Assignment Problem  

 Then it is necessary to determine the responsibility of 
each parameter (weight) of the network by this error... 

 ... and change these parameters for the purpose of 
reducing the error. 
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Error back-propagation 

 In an ANN with at least one hidden layer, there is 

no direct supervision signal for these layers. 

Logistic regression 
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Error back-propagation 

 This problem gets worse as the amount of hidden 

layers increases. 
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Backpropagation 

 Algorithm invented many times... 

 Recursively propagates the error signal from the 

output layer through the hidden layers, to the input 

layer. 

 Used in conjunction with some optimization algorithm 

(e.g., SGD) to gradually minimize network error. 

Humelhart et al. Learning representations by back-propagating errors, 1986. 
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Backpropagation 

 
Backpropagation, an abbreviation for “backward 

propagation of errors”, is a common method of training 

artificial neural networks used in conjunction with an 

optimization method such as gradient descent. The method 

calculates the gradient of a loss function with respect to all 

the weights in the network. The gradient is fed to the 

optimization method which in turn uses it to update the 

weights, in an attempt to minimize the loss function. 
--Frederik Kratzert  
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ANN training with Backpropagation 

 Set initial weights for the network 

 Present an example and get the result 

 For each layer (from the last): 

 Calculate the error for each neuron 

 Update the weights (with SGD or variant) 

 Propagate this error to the previous layer 

 Repeat with other examples until convergence 
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Backpropagation – example 
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Fonte: Automatic Differentiation in Machine Learning: a Survey (https://arxiv.org/pdf/1502.05767.pdf) 



Backpropagation 
40 

 

Fonte: CS231n 



word2vec 41 



Credit where credit is due 
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 The original papers from Mikolov et al. 

 CS 224D: Deep Learning for NLP 
 https://cs224d.stanford.edu/lecture_notes/notes1.pdf 

 McCormick, C. (2016). Word2Vec Tutorial.  
 http://www.mccormickml.com 

 Understanding word vectors (Python notebook) 
 https://gist.github.com/aparrish/2f562e3737544cf29aaf1

af30362f469 

http://www.mccormickml.com/
http://www.mccormickml.com/


Language Models (Unigrams, Bigrams, etc.) 
43 

 A model that assigns a probability to a sequence of 

tokens.  

 A good language model gives...  

 ...(syntactically and semantically) valid sentences a high 

probability. 

 ...low probability to nonsense.  



Language Models (Unigrams, Bigrams, etc.) 
44 

 Mathematically, we can apply a LM to any given 

sequence of n words: 



Language Models (Unigrams, Bigrams, etc.) 
45 

 An example:  

"The quick brown fox jumps over the lazy dog." 

 Another example:  

"The quik brown lettuce over jumps the lazy dog.“ 

 

 



Language Models (Unigrams, Bigrams, etc.) 
46 

 

Bigram model 

Unigram model 

But, how to learn these probabilities? 



word2vec 
47 

 

 

 

 

 Efficient Estimation of Word Representations in Vector 
Space, September 7th, 2013. 

 Distributed Representations of Words and Phrases and 
their Compositionality, October 16th, 2013. 

https://research.fb.com/people/mikolov-tomas/ 

https://code.google.com/archive/p/word2vec/ 



The word2vec trick 
48 

 word2vec uses a trick:  

 A single hidden layer neural network is trained to 

perform a certain “fake” task. 

 But this NN is not actually used!  

 Instead, the goal is to learn the weights of the 

hidden layer– these weights are the “word vectors”. 



The fake tasks 
49 

 Skip-gram: predicting surrounding context words 

given a center word.  

 CBOW: predicting a center word from the 

surrounding context. 



Skip-gram 50 



Skip-gram 
51 

 The task: given a specific word w in the middle of a 
sentence (the input word), look at the words nearby 
and pick one word at random.  

 We then train the network to produce the 
probability (for every word in the vocabulary) of 
being nearby w. 

 “nearby” means there is actually a "window size" 
hyperparameter (typical value: 5) 



Skip-gram 
52 

 Output probabilities are going to relate to how 

likely it is to find each vocabulary word nearby our 

input word w.  

 For example, say w = “Africa” 

 output probabilities should be much higher for related 

words (e.g. “lion”, “zebra”) than for unrelated words 

(e.g. “bear”, “kangaroo”). 



Training examples (word pairs) 
53 

 The training examples will be word pairs taken 

from the input corpus. 

 During training, the network will learn parameters 

that capture the statistics related to the number of 

times each pairing shows up.  



Training examples (word pairs) 
54 

 For example, suppose the network gets many more 

training samples of (“Soviet”, “Union”) than 

(“Soviet”, “Sasquatch”).  

 After training, if the NN is given the word “Soviet”, it 

will output a much higher probability for “Union” (or 

“Russia”) than it will for “Sasquatch”. 



Training examples (word pairs) 
55 

 

The word highlighted in blue is the input word w. 
“The quick brown fox jumps over the lazy dog.”  

window size = 2.  



One hot encoding 
56 

 But, during training, we cannot provide the NN with 

the text of the words. 

 We need to use some vector representation for 

each word in the vocabulary  so, we have to use 

one hot encoding. 



One hot encoding 
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Credits: Marco Bonzaninin 



One hot encoding 
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Credits: Marco Bonzaninin 



One hot encoding 
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Credits: Marco Bonzaninin 



Skip-gram NN architecture 
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"Linear neurons" means there is no activation function on the hidden layer neurons, … 



Skip-gram NN architecture 
61 

…, but the output neurons use softmax.  



Skip-gram NN architecture 
62 

The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding. 



The hidden layer 
63 

 Multiplying a 1 x n one-hot vector v by an n x d 

matrix W (the hidden layer) will effectively select 

the row of W corresponding to the “1” position in v. 

So, the output of the hidden layer is just the “word vector” for the 

input word  the hidden layer plays the role of a lookup table. 



The hidden layer 
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The output of the hidden layer is 

just the “word vector” for the 

input word. 

W is the matrix we really want! 



The output layer 
65 

 The 1 x d word vector (coming from the hidden 

layer) then gets fed to the output layer.  

 The output layer has |V| neurons and is a softmax 

regression classifier. 



Skip-gram captures context similarity 
66 

 If two words wj and wk have similar “contexts” (i.e., 
similar words are likely to appear around them), 
then the model needs to output very similar results 
for them.  

One way for the network to do this is if the word vectors 
for wj and wk are similar.  

 So, if two words have similar contexts, our network 
is motivated to learn similar word vectors for them. 



A drawback of skip-gram 
67 

 The resulting trained model contains a huge amount 

of weights.  

 e.g., d = 300 and |V| = 10,000, that’s 3M weights in 

the hidden layer and output layer each!  

 Training (optimizing) a skip-gram model on a large 

corpus would be prohibitive.  

 In order to circumvent this, some innovations... 



Three inovations 
68 

1. Learn phrases from the corpus. 

2. Subsample frequent words to decrease the 

number of training examples. 

3. Modify the optimization objective with a technique 

called “Negative Sampling”, which causes each 

training sample to update only a small percentage 

of the model’s weights. 



Learning Phrases 
69 

 A word pair like “Boston Globe” (a newspaper) has 

a much different meaning than the individual words 

“Boston” and “Globe”.  

 So it makes sense to treat any occurrences of 

“Boston Globe” as a single word with its own word 

vector representation. 



Learning Phrases 
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 In an experiment from the 2nd word2vec paper: 

 a model was trained on 100 billion words from a 

Google News dataset, using d=300.  

 the addition of phrases to the model reduced the 

vocabulary size to 3 million "words". 

 This (pre-trained) model can be freely downloaded. 

 Phrase detection is also covered in the paper.  



Learning Phrases 
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 Each pass of their phrase detection tool only looks at 

combinations of 2 words.  

 But it can be executed multiple times to get longer 

phrases.  

 So, the first pass will pick up the phrase “New_York”, 

and then running it again will pick up “New_York_City” 

as a combination of “New_York” and “City”. 



Subsampling frequent words 
72 

 Two issues with common words like “the”: 

1. When looking at word pairs, (“fox”, “the”) 

doesn’t tell us much about the meaning of “fox”. 

2. We will have many more samples of (“the”, …) 

than we need to learn a good vector for “the”. 

 A “subsampling” scheme addresses this...  



Subsampling of frequent words 
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 Example: for a window size of 10, if a specific 

instance of “the” is removed: 

1. As we train on the remaining words, “the” will not 

appear in any of their context windows. 

2. We’ll have 10 fewer training samples where “the” is 

the input word. 

 This has a huge effect on the size of the training set. 



Subsampling of frequent words 
74 

 “subsampling” scheme:  

 For each word found in the corpus, there is a 

chance that it will be discarded.  

 The probability that a word wi will be discarded is 

related to its frequency: 



Subsampling of frequent words 
75 

 



Negative sampling 
76 

 Train a NN means to iterate on: “take each x(i) 

and adjust all of the weights slightly so that the 

NN predicts x(i) more accurately”.  

 i.e., each training sample will tweak all of the 

weights in the neural network. 

But the word2vec architecture is fully connected! 

 Negative sampling addresses this problem. 



Negative sampling 
77 

 Basic idea: modify only a small percentage of 

the weights in the NN for each training sample.  

 When training the network on the word pair 

(“fox”, “quick”), recall that the “label” (response 

signal) is a one-hot vector. 



Negative sampling 
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 With negative sampling, just a small number of 
“negative” words (let’s say 5) are randomly 
selected to update the weights.  

 (a “negative” word is one for which we want the 
network to output a 0 for).  

 We still update the weights for the “positive” 
word. 



Negative sampling - example 
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 Consider Negative Sampling applied to a output layer 

with a 300 x 10,000 weight matrix.  

 we will just be updating the weights for the positive 

word, plus the weights for 5 other words that we want to 

output 0.  

 That’s a total of 6 output neurons, and 1,800 weight values.  

 That’s only 0.06% of the 3M weights in the output layer! 



Negative sampling 
80 

 The “negative samples” are chosen using a 

“unigram distribution”. 

 The probability for selecting a word as a negative 

sample is related to its frequency, with more frequent 

words being more likely to be selected as negative 

samples. 



Negative sampling 
81 

 The 2nd paper says that  

 selecting 5-20 words works well for smaller 

datasets,  

only 2-5 words suffice for large datasets. 

 


