
NEURAL MODELS FOR

WORD EMBEDDING

 Prof. Eduardo Bezerra

(CEFET/RJ)
ebezerra@cefet-rj.br

Summary

 Neural Nets (quick overview)

 Word2vec

 Language models

 Skip-gram

2

Neural Nets - Representation 3

Model of a biological neuron
4

http://creationwiki.org/Neuron

Artificial Neuron
5

 The artificial neuron is a model inspired by the real

 In an artificial neuron:

 input are features

 each feature has an associated weight

 weighted sum of features is called neuron pre-activation

 value produced in pre-activation goes through a non-

linearity to produce neuron activation

Artificial Neuron
6

 The artificial neuron is a model

inspired by the real one

(biological neuron).

Artificial Neuron - input
7

features

Artificial Neuron – weights
8

weights

(aka parameters)

Artificial Neuron – pre-activation
9

pre-activation

Artificial Neuron – activation function
10

10

"The composition of linear

transformations is also a

linear transformation"

Nonlinearities are required so that

the network can learn complex

representations of the data.

activation

Artificial Neuron – activation functions
11

Artificial Neuron – activation functions
12

 Sigmoid Logistic

 Tangent Hyperbolic

 ReLU

 softmax

softmax
13

 Maps the NN outputs to a probability distribution.

3

2

0,4

0,7

0,2

0,1

13

softmax
14

 Maps the NN outputs to a probability distribution.

Fonte: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/beginners/index.html

14

Artificial Neural Net
15

 It is possible to architect arbitrarily complex

networks using the artificial neuron as the basic

component.

Artificial Neural Net
16

Feedforward Neural Network

Kinds of layers
17

 In an ANN:

 input layer are the input patterns (features);

 output layer is result of the computation performed;

 other layers are called hidden layers.

 Amount of layers and amount of units (neurons) per

layer are part of the ANN architecture.

Kinds of layers - example

18

Kinds of ANNs
19

 Fully connected x not fully connected

 Recurrent x feed forward

ANNs - notation
20

 Pre-activation:

 Activation:

ANNs – notation - example
21

 e.g., in a two-layer ANN:

Computations in the first layer:

Rectified linear units, ReLU

 Convnet of 4 layers with

ReLUs.

 CIFAR-10 (60K, 32x32

imgs)

 It reaches the same error

level 6 times faster than

tanh.

ImageNet Classification with Deep Convolutional Neural Networks, 2012.

22

Neural Nets - Evaluation 23

Cost function
24

 The error signal is the difference between y(i) and

output produced for x(i).

 measures the difference between the network predictions

and the desired values.

 A cost function must provide a way to measure the

error signal for a set o training examples.

Cost function J(W,b)
25

 Cost function: error of the network considering all

the examples.

 function of the set of all weights and bias of the

network.

Some (unregularized) cost functions
26

Cross entropy error

Kullback-Leibler divergence

Mean square error

Neural Nets - Optimization (learning, training) 27

Training
28

 Given a training set of the form

 training an ANN corresponds to using this set to adjust
the parameters of the network, so that the training
error is minimized.

 So, training of an ANN is an optimization problem.

Training

 The error signal (computed with a cost function) is used during

training to gradually change the weights (parameters), so that

the predictions are more accurate.

Pick a training

example

Propagation of the example

through layers from input to

output ()

Propagation of the error

signal through the layers

from the output to the

input ()

Update

parameters

W, b.

29

Stochastic Gradient Descent (SGD)

 SGD allows to traverse the space of parameters of

a neural network in search for a local minimum.

Source: David McKay, ITPRNN

30

Alternatives to SGD

Source: http://sebastianruder.com/optimizing-gradient-descent/

31

Neural Nets - Backpropagation 32

Error back-propagation

 Consider that the output produced for x(i) is
different from y(i) (i.e., there is an nonzero error
signal).

 Credit Assignment Problem

 Then it is necessary to determine the responsibility of
each parameter (weight) of the network by this error...

 ... and change these parameters for the purpose of
reducing the error.

33

Error back-propagation

 In an ANN with at least one hidden layer, there is

no direct supervision signal for these layers.

Logistic regression

34

Error back-propagation

 This problem gets worse as the amount of hidden

layers increases.

35

Backpropagation

 Algorithm invented many times...

 Recursively propagates the error signal from the

output layer through the hidden layers, to the input

layer.

 Used in conjunction with some optimization algorithm

(e.g., SGD) to gradually minimize network error.

Humelhart et al. Learning representations by back-propagating errors, 1986.

36

Backpropagation

Backpropagation, an abbreviation for “backward

propagation of errors”, is a common method of training

artificial neural networks used in conjunction with an

optimization method such as gradient descent. The method

calculates the gradient of a loss function with respect to all

the weights in the network. The gradient is fed to the

optimization method which in turn uses it to update the

weights, in an attempt to minimize the loss function.
--Frederik Kratzert

37

ANN training with Backpropagation

 Set initial weights for the network

 Present an example and get the result

 For each layer (from the last):

 Calculate the error for each neuron

 Update the weights (with SGD or variant)

 Propagate this error to the previous layer

 Repeat with other examples until convergence

38

Backpropagation – example
39

Fonte: Automatic Differentiation in Machine Learning: a Survey (https://arxiv.org/pdf/1502.05767.pdf)

Backpropagation
40

Fonte: CS231n

word2vec 41

Credit where credit is due
42

 The original papers from Mikolov et al.

 CS 224D: Deep Learning for NLP
 https://cs224d.stanford.edu/lecture_notes/notes1.pdf

 McCormick, C. (2016). Word2Vec Tutorial.
 http://www.mccormickml.com

 Understanding word vectors (Python notebook)
 https://gist.github.com/aparrish/2f562e3737544cf29aaf1

af30362f469

http://www.mccormickml.com/
http://www.mccormickml.com/

Language Models (Unigrams, Bigrams, etc.)
43

 A model that assigns a probability to a sequence of

tokens.

 A good language model gives...

 ...(syntactically and semantically) valid sentences a high

probability.

 ...low probability to nonsense.

Language Models (Unigrams, Bigrams, etc.)
44

 Mathematically, we can apply a LM to any given

sequence of n words:

Language Models (Unigrams, Bigrams, etc.)
45

 An example:

"The quick brown fox jumps over the lazy dog."

 Another example:

"The quik brown lettuce over jumps the lazy dog.“

Language Models (Unigrams, Bigrams, etc.)
46

Bigram model

Unigram model

But, how to learn these probabilities?

word2vec
47

 Efficient Estimation of Word Representations in Vector
Space, September 7th, 2013.

 Distributed Representations of Words and Phrases and
their Compositionality, October 16th, 2013.

https://research.fb.com/people/mikolov-tomas/

https://code.google.com/archive/p/word2vec/

The word2vec trick
48

 word2vec uses a trick:

 A single hidden layer neural network is trained to

perform a certain “fake” task.

 But this NN is not actually used!

 Instead, the goal is to learn the weights of the

hidden layer– these weights are the “word vectors”.

The fake tasks
49

 Skip-gram: predicting surrounding context words

given a center word.

 CBOW: predicting a center word from the

surrounding context.

Skip-gram 50

Skip-gram
51

 The task: given a specific word w in the middle of a
sentence (the input word), look at the words nearby
and pick one word at random.

 We then train the network to produce the
probability (for every word in the vocabulary) of
being nearby w.

 “nearby” means there is actually a "window size"
hyperparameter (typical value: 5)

Skip-gram
52

 Output probabilities are going to relate to how

likely it is to find each vocabulary word nearby our

input word w.

 For example, say w = “Africa”

 output probabilities should be much higher for related

words (e.g. “lion”, “zebra”) than for unrelated words

(e.g. “bear”, “kangaroo”).

Training examples (word pairs)
53

 The training examples will be word pairs taken

from the input corpus.

 During training, the network will learn parameters

that capture the statistics related to the number of

times each pairing shows up.

Training examples (word pairs)
54

 For example, suppose the network gets many more

training samples of (“Soviet”, “Union”) than

(“Soviet”, “Sasquatch”).

 After training, if the NN is given the word “Soviet”, it

will output a much higher probability for “Union” (or

“Russia”) than it will for “Sasquatch”.

Training examples (word pairs)
55

The word highlighted in blue is the input word w.
“The quick brown fox jumps over the lazy dog.”

window size = 2.

One hot encoding
56

 But, during training, we cannot provide the NN with

the text of the words.

 We need to use some vector representation for

each word in the vocabulary  so, we have to use

one hot encoding.

One hot encoding
57

Credits: Marco Bonzaninin

One hot encoding
58

Credits: Marco Bonzaninin

One hot encoding
59

Credits: Marco Bonzaninin

Skip-gram NN architecture
60

"Linear neurons" means there is no activation function on the hidden layer neurons, …

Skip-gram NN architecture
61

…, but the output neurons use softmax.

Skip-gram NN architecture
62

The amount of neurons in the hidden layer (a hyperparameter) determines de size of the embedding.

The hidden layer
63

 Multiplying a 1 x n one-hot vector v by an n x d

matrix W (the hidden layer) will effectively select

the row of W corresponding to the “1” position in v.

So, the output of the hidden layer is just the “word vector” for the

input word  the hidden layer plays the role of a lookup table.

The hidden layer
64

The output of the hidden layer is

just the “word vector” for the

input word.

W is the matrix we really want!

The output layer
65

 The 1 x d word vector (coming from the hidden

layer) then gets fed to the output layer.

 The output layer has |V| neurons and is a softmax

regression classifier.

Skip-gram captures context similarity
66

 If two words wj and wk have similar “contexts” (i.e.,
similar words are likely to appear around them),
then the model needs to output very similar results
for them.

One way for the network to do this is if the word vectors
for wj and wk are similar.

 So, if two words have similar contexts, our network
is motivated to learn similar word vectors for them.

A drawback of skip-gram
67

 The resulting trained model contains a huge amount

of weights.

 e.g., d = 300 and |V| = 10,000, that’s 3M weights in

the hidden layer and output layer each!

 Training (optimizing) a skip-gram model on a large

corpus would be prohibitive.

 In order to circumvent this, some innovations...

Three inovations
68

1. Learn phrases from the corpus.

2. Subsample frequent words to decrease the

number of training examples.

3. Modify the optimization objective with a technique

called “Negative Sampling”, which causes each

training sample to update only a small percentage

of the model’s weights.

Learning Phrases
69

 A word pair like “Boston Globe” (a newspaper) has

a much different meaning than the individual words

“Boston” and “Globe”.

 So it makes sense to treat any occurrences of

“Boston Globe” as a single word with its own word

vector representation.

Learning Phrases
70

 In an experiment from the 2nd word2vec paper:

 a model was trained on 100 billion words from a

Google News dataset, using d=300.

 the addition of phrases to the model reduced the

vocabulary size to 3 million "words".

 This (pre-trained) model can be freely downloaded.

 Phrase detection is also covered in the paper.

Learning Phrases
71

 Each pass of their phrase detection tool only looks at

combinations of 2 words.

 But it can be executed multiple times to get longer

phrases.

 So, the first pass will pick up the phrase “New_York”,

and then running it again will pick up “New_York_City”

as a combination of “New_York” and “City”.

Subsampling frequent words
72

 Two issues with common words like “the”:

1. When looking at word pairs, (“fox”, “the”)

doesn’t tell us much about the meaning of “fox”.

2. We will have many more samples of (“the”, …)

than we need to learn a good vector for “the”.

 A “subsampling” scheme addresses this...

Subsampling of frequent words
73

 Example: for a window size of 10, if a specific

instance of “the” is removed:

1. As we train on the remaining words, “the” will not

appear in any of their context windows.

2. We’ll have 10 fewer training samples where “the” is

the input word.

 This has a huge effect on the size of the training set.

Subsampling of frequent words
74

 “subsampling” scheme:

 For each word found in the corpus, there is a

chance that it will be discarded.

 The probability that a word wi will be discarded is

related to its frequency:

Subsampling of frequent words
75

Negative sampling
76

 Train a NN means to iterate on: “take each x(i)

and adjust all of the weights slightly so that the

NN predicts x(i) more accurately”.

 i.e., each training sample will tweak all of the

weights in the neural network.

But the word2vec architecture is fully connected!

 Negative sampling addresses this problem.

Negative sampling
77

 Basic idea: modify only a small percentage of

the weights in the NN for each training sample.

 When training the network on the word pair

(“fox”, “quick”), recall that the “label” (response

signal) is a one-hot vector.

Negative sampling
78

 With negative sampling, just a small number of
“negative” words (let’s say 5) are randomly
selected to update the weights.

 (a “negative” word is one for which we want the
network to output a 0 for).

 We still update the weights for the “positive”
word.

Negative sampling - example
79

 Consider Negative Sampling applied to a output layer

with a 300 x 10,000 weight matrix.

 we will just be updating the weights for the positive

word, plus the weights for 5 other words that we want to

output 0.

 That’s a total of 6 output neurons, and 1,800 weight values.

 That’s only 0.06% of the 3M weights in the output layer!

Negative sampling
80

 The “negative samples” are chosen using a

“unigram distribution”.

 The probability for selecting a word as a negative

sample is related to its frequency, with more frequent

words being more likely to be selected as negative

samples.

Negative sampling
81

 The 2nd paper says that

 selecting 5-20 words works well for smaller

datasets,

only 2-5 words suffice for large datasets.

