Local/horário/turma
- CEFET/RJ, por videoconferência (plataforma MS Teams)
- Dia/horário: 5as-feiras, das 13:35h às 17:00h
- Turma 901932
Visão geral
Aprendizado de Máquina (Machine Learning) é um campo de estudo da Inteligência Artificial cujo objeto de estudo são sistemas que podem aprender a realizar alguma tarefa por meio de experiências. Neste curso, o objetivo é apresentar uma introdução aos conceitos, modelos, métodos, técnicas e aplicações do Aprendizado de Máquina. São também apresentados alguns algoritmos pertencentes a diferentes famílias de métodos em AM (simbolistas, conexionistas, probabilísticos, baseados em proximidade).
Aulas
Veja o plano do curso. Veja também o calendário acadêmico das graduações do CEFET/RJ.
aula | data | material | leituras |
1 | 11/fev | Visão geral do curso (AM00); Visão geral do AM (AM01) | Mitchell, Cap. 1; (r1); (r2) |
2 | 18/fev | Revisão – Álgebra Linear | |
3 | 25/fev | Revisão – Probabilidade e Estatística | |
4 | 04/mar | Revisão – Cálculo Diferencial | |
5 | 11/mar | Regressão linear univariada (AM02); Regressão linear multivariada (AM03) | regressão linear; cs229-notes1 |
6 | 18/mar | Regressão logística (AM04) | regressão logística |
7 | 25/mar | Regressão polinomial (AM05); Regularização (AM06); kNN (AM07) | |
8 | 01/abr | Decisions trees (AM08); Naive Bayes Classifier (AM09); | |
9 | 08/abr | Model Evaluation (AM10); Model Selection (AM11) | (r3) |
10 | 15/abr | Dimensionality Reduction (AM12) | |
11 | 22/abr | Detecção de anomalias (AM13); Clustering I (AM14a); | |
12 | 29/abr | Clustering II (AM14b) | (r4) |
13 | 06/mai | Ensemble methods (AM15), Redes Neurais I (AM16) |
(r5) (r6) |
14 | 13/mai | Recommender systems I (AM17) Redes neurais II |
Redes Neurais Profundas: O que são? Como vivem? De que se alimentam? |
15 | 20/mai | Recommender systems II (AM17) Redes neurais III |
|
16 | 27/mai | Redes neurais IV |
Projects
Additional resources
- Video: Recurrent Neural Networks, Image Captioning, LSTM, Andrej Karpathy.
- Online course: Practical Deep Learning For Coders
- Online course: Neural Networks and Deep Learning
- Online course: (Codecademy) Learn Python
- Word Embeddings
- Representation Learning for Reading Comprehension
- Practical Generative Adversarial Networks for Beginners
Readings
- (r1) Tom Mitchel, Key Ideas in Machine Learning
- (r2) Pedro Domingos, A Few Useful Things to Know About Machine Learning
- (r3) Sebastian Raschka, Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
- (r4) Eric Bauer & Ron Kohavi, An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
- (r5) Matriz Factorization for Recommender Systems
- (r6) Empirical Analysis of Predictive Algorithms for Collaborative Filtering
Books
- Ani Adhikari & John DeNero, Artificial Intelligence: Foundations of Computational Agents, second edition, Cambridge University Press, 2017.
- Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 2019.
- Brett Lantz. Machine Learning with R . Packt Publishing, Birmingham, October 2013.
- Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2006. pdf github
- Ethen Alpaydin, Introduction to Machine Learning, MIT Press, 2010.
- Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning: with Applications in R . Springer, 1st ed. 2013. corr. 4th printing 2014
- Ian Goodfellow et al, Deep Learning, MIT Press, 2016.
- Jake VanderPlas, Python Data Science Handbook, 2016.
- Jeremy Watt et al, Machine Learning Refined: Foundations, Algorithms, and Applications
- Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, MA, 1 edition edition, August 2012.
- Marc Peter et al, Mathematics for Machine Learning.
- Max Kuhn and Kjell Johnson, Feature Engineering and Selection: A Practical Approach for Predictive Models
- Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data . Cambridge University Press, Cambridge ; New York, 1st edition, 2012.
- Sebastian Raschka, Python Machine Learning, 3rd ed, Packt Publishing, 2019.
- Simon O. Haykin. Neural Networks and Learning Machines . Prentice Hall, New York, 3 edition edition, November 2008.
- Tom Mitchell, Machine Learning, McGraw-Hill, 1997.
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data . AMLBook, S.l., March 2012.
Livros de interesse geral sobre Aprendizado de Máquina
- Gary Marcus & Ernest Davis, Rebooting AI: Building Artificial Intelligence We Can Trust, 2019.
- Melanie Mitchel, Artificial Intelligence: A Guide for Thinking Humans, 2019.
- Jimmy Soni & Rob Goodman, A Mind at Play: How Claude Shannon Invented the Information Age, 2017.
- Pedro Domingos, The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World, 2015.
- Nick Bostrom, Superintelligence: Paths, Dangers, Strategies, 2014.