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RESUMO

An adaptive hybrid genetic algorithm for hyperparameter optimization

Cláudio André da Silva Alves

Orientadores:
Pedro Henrique González Silva

Resumo da Dissertação submetida ao Programa de Pós-graduação em Ciência da Computação do
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ como parte dos
requisitos necessários à obtenção do grau de mestre.

O recente aumento na popularidade das aplicações de aprendizado de máquina (AM) levou a um
aumento na demanda por modelos de AM eficientes. Uma das principais etapas na construção de
tais modelos é selecionar um conjunto adequado de hiperparâmetros. No entanto, com o aumento da
complexidade dos modelos e técnicas de treinamento, definir manualmente esses parâmetros tornou-
se uma tarefa trabalhosa, exigindo uma quantidade significativa de tempo e conhecimento específico
sobre o modelo que está sendo ajustado. Para enfrentar esse desafio, a comunidade do Automatic
Machine Learning (AutoML) está se concentrando em criar maneiras de encontrar automaticamente
o melhor conjunto de hiperparâmetros para algoritmos de AM por meio de sua área de pesquisa
chamada de Hyperparameter Optimization (HPO). Recentemente, o Hybrid Biased Random Key
Genetic Algorithm (HBRKGA), um algoritmo genético que usa funções de otimização substitutas
na etapa de exploitation, tem sido usado para encontrar hiperparâmetros automaticamente de forma
eficiente para diferentes conjuntos de dados. No entanto, seu potencial não foi totalmente explorado,
pois o HBRKGA usa apenas uma função substituta fixa na etapa de exploitation. Esta pesquisa
apresenta uma nova abordagem para HPO de modelos de AM baseados no HBRKGA. Um método
chamado Adaptive HBRKGA (A-HBRKGA) é desenvolvido para melhorar a probabilidade de en-
contrar a melhor solução. Este método é baseado no princípio de que diferentes passos evolutivos
requerem diferentes funções de otimização, o que permite ao HBRKGA ter múltiplas funções sub-
stitutas que são escolhidas com base em avaliações anteriores. A abordagem foi testada em vários
conjuntos de dados disponíveis publicamente e apresenta melhores resultados quando comparada a
outros métodos da literatura.

Palavras-chave:
otimização, otimização de hiperparâmetros, algoritmos genéticos, algoritmos evolutivos, meta-

heurística

Rio de Janeiro,

Agosto de 2023



ABSTRACT

An adaptive hybrid genetic algorithm for hyperparameter optimization

Cláudio André da Silva Alves

Advisors:
Pedro Henrique González Silva

Abstract of dissertation submitted to Programa de Pós-graduação em Ciência da Computação -
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ as partial fulfill-
ment of the requirements for the degree of master.

The recent spike in the popularity of machine learning (ML) applications has led to an in-
creased demand for efficient ML models. One of the key steps in building such models is selecting
a well-suited set of hyperparameters. However, with the increasing complexity of models and train-
ing techniques, manually defining these parameters has become a labor-intensive task, requiring a
significant amount of time and specific knowledge about the model being tuned. To address this
challenge, the community of AutoML is focusing on devising ways to automatically find the best
set of hyperparameters for ML algorithms through its research area called hyperparameter opti-
mization (HPO). Recently, Hybrid Biased Random-Key Genetic Algorithm (HBRKGA), a Genetic
Algorithm (GA) that uses surrogate optimization functions at the exploitation step, has been used
to efficiently find automatic hyperparameters for different datasets. However, its potential has not
been fully explored as HBRKGA uses only one fixed surrogate function at the exploitation step.
This research presents a novel approach for HPO of ML models based on HBRKGA. A method
called Adaptive HBRKGA (A-HBRKGA) is devised to improve the probability of finding the best
solution. This method is based on the principle that different evolutionary steps require different
optimization functions, which allows HBRKGA to have multiple surrogate functions that are chosen
based on past evaluations. The approach has been tested against several publicly available datasets
and it is shown that it presents better results when compared to other methods in the literature.

Key-words:
optimization, hyperparameter optimization, genetic algorithms, evolutionary algorithms, meta-

heuristic

Rio de Janeiro,

Agosto de 2023
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Chapter I Introduction

The constant growth in computational power and data availability has led to a significant in-

crease in interest in machine learning research. At the same time, the complexity of models has

also increased as the demand for specialized tasks has grown rapidly, with models becoming increas-

ingly tailored to specific tasks rather than general-purpose tools. In order to make these models

be trained effectively. The parameters specific of algorithms been used are chosen based on data

and experience, and a proper selection can have a significant impact on training time, required

infrastructure, and model performance [Hutter et al., 2019]. As model complexity increases, the

number of parameters also grows, making the task of determining an optimal combination of hy-

perparameters an important aspect of building machine learning models. Manually finding a good

combination can be a tedious and ineffective job [Yang and Shami, 2020], so the need to find a

way to automatically define those parameters has also increased. The Automatic Machine Learning

(AutoML) field has a specific area of study dedicated to finding these hyperparameters, known as

Hyperparameter Optimization (HPO). Hyperparameter Optimization can improve the performance

of a model [Frank Hutter, 2019], but it also has several challenges, as it usually can not make use of

traditional optimization algorithms. For instance, its objective function lacks features of traditional

optimization problems, such as convexity [Frank Hutter, 2019].

Illustrating this growing increase in the number of parameters and consequently hyperparameters

in recent machine learning models, Figure I.1 lists the number of parameters in the main models

over the years, even when comparing models with different uses such as VGG16, ResNet-50 for

computational vision or BERT and GPT-3 for natural language processing (NLP). Over the years,

is possible to note the growing trend to create bigger and more powerful models boosted by more

accessible computational power and data availability [Bernstein et al., 2021].

There are many methods, or variations of them, being used to search for an optimal solution

in HPO. One can highlight Random Search [Bergstra and Bengio, 2012], Grid Search [Barbero

et al., 2007], Bayesian Optimization [Brochu et al., 2010; Snoek et al., 2012], and Covariance Matrix

Adaptation Evolution Estrategy (CMA-ES) [Hansen, 2006]. Random Search is an approach that

randomly explores the search space, constrained to a limited time and/or resource usage. Grid

Search also explores the search space, but exhaustively in a fixed domain of values. On the other

hand, Bayesian Optimization works by evaluating the previous value to determine the next one,
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Figure I.1: Number of parameters in recent neural network architectures
Legend: Adapted from Bernstein et al. [2021]

avoiding many unnecessary iterations and finding the best results earlier [Yang and Shami, 2020].

CMA-ES sample solutions based on a multivariate Gaussian distribution updating its parameters

according to evaluation values.

In this research, a novel approach based on the method proposed by [Japa et al., 2022] is

presented. Our approach is a step further in improving the exploration step by allowing Hybrid

Biased Random Key Genetic Algorithm (HBRKGA) to have more than one surrogate function, and

in an adaptive manner select which one would yield the best results. Five hyperparameters of a

Multilayer Perceptron (MLP), a fully connected Artificial Neural Network (ANN) were optimized

through experimentation; the results show that the proposed method generates competitive ANNs,

with advantages when compared to traditional models. Our main contributions are the following:

1. The improvement of HBRKGA by adding an adaptive component and allowing for the use of

multiple surrogate functions.

2. Providing experimental data that demonstrates the superiority of the proposed method when

compared to the baseline techniques like Grid Search, Random Search, Bayesian Optimization,

and CMA-ES.

3. Providing further comparisons with other commonly used HPO algorithms.

The development and deployment of a machine learning application address several steps [Russell

and Norvig, 2021]. Figure I.2 shows these main tasks enumerated. It all starts with data preparation

where data preprocessing activities like data cleaning or feature engineering will be applied to assure
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the integrity and quality of data. In sequence, the algorithms’ hyperparameters are defined. Next,

the algorithm is trained using hyperparameters and training data to create a model aforementioned.

In the sequence, the model is evaluated with unseen examples from test data. Normally, these three

previous steps are repeated until the stop criteria is met. Finally, with the achievement of minimum

requirements established, the model can be deployed to the production environment.

Figure I.2: Machine Learning workflow
Legend: Prepared by the author

The proposed approach, A-HBRKGA, is located at the hyperparameter definition, it’s respon-

sible for generating candidate solutions that must improve the overall performance of the model.

The remainder of this document is structured as follows: In Chapter II, we describe important

concepts used in this work. In Chapter III, we describe related works in the field of hyperparameter

optimization; In Chapter IV we present the proposed method. In Chapter V, the computational

experiments are shown. Finally, Chapter VI presents the conclusion and future directions.
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Chapter II Background

This chapter presents the fundamental concepts used in this work. Section II.1 describes hy-

perparameters and some strategies used for their optimization. Section II.2 presents BRKGA, the

base for proposed strategy. Section II.3 explains artificial neural networks.

II.1 Hyperparameter and principal optimization strategies

In machine learning exists two types of parameters: model parameters are estimated from a

dataset during the training step. After that, these parameters are incorpored to model and used to

make predictions or classify new data; hyperparameters are specific to algorithm and not to dataset,

so they can’t be learned from data and must be set previously [Yang and Shami, 2020].

Hyperparameter Optimization (HPO) is the process of experimenting different values and select-

ing ones that give best performance. The operation of a hyperparameter search algorithm can be

summarized in the iterative process consisting of evaluating the metrics obtained with the current

configuration and proposing a new hyperparameter configuration with the potential to improve the

metrics. The next subsections presents some of these strategies: Grid Search (Subsection II.1.1),

Random Search (Subsection II.1.2), Bayesian Optimization (Subsection II.1.3) and CMA-ES (Sub-

section II.1.4).

II.1.1 Grid Search

Grid Search it’s the most basic HPO method, it performs an exhaustive search considering a

manually specified a multi-dimensional grid of hyperparameters [Bergstra and Bengio, 2012]. It is

a simple but computationally expensive method for hyperparameter optimization.

Grid Search is negatively impacted by the curse of dimensionality since the required evaluation

grows exponentially with the dimensionality of the configuration space [Hutter et al., 2019]. The

curse of dimensionality refers to the fact that as the number of dimensions in a dataset increases,

the amount of data to train a model effectively also increases [Debie and Shafi, 2019]. Grid Search

performance depends on the search space defined, including the step used to change from one

hyperparameter to another. Figure II.1 shows the Grid Search procedure explores all search space

until return the best hyperparameter solution found in red.
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Figure II.1: Grid Search strategy for hyperparameter optimization problem.
Legend: Every point represents a solution of a combination of hyperparameters. This technique
finds the best solution (red point) after running a sequential path. Adapted from Bergstra and

Bengio [2012]

II.1.2 Random Search

Random Search sample configurations stochastically from a user-defined subspace. Compared

to Grid Search it’s more computationally efficient to the effect that it doesn’t combine all values in

a multi-dimensional grid of hyperparameters [Bergstra and Bengio, 2012].

Random Search’s main advantages are easy implementation and parallelization since each hyper-

parameter configuration can be generated and evaluated independently. It’s very used as a baseline

method because is non-dependent of algorithm [Hutter et al., 2019]. Figure II.2 shows the Random

Search procedure until finding the best hyperparameter solution in red after some trials.
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Figure II.2: Random Search strategy for hyperparameter optimization problem.
Legend: Every point represents a solution of a combination of hyperparameters values randomly

generated. This technique finds the best solution (red point) after running some random solutions
trials. Adapted from Bergstra and Bengio [2012]

II.1.3 Bayesian Optimization

Bayesian Optimization (BO) is an iterative algorithm, unlike Grid Search and Random Search,

determines the future evaluation solutions based on previous results [Snoek et al., 2012]. Bayesian

Optimization construct a probabilistic model for a function f(x) to search for better solutions than

current found.

BO has two key components: a surrogate model, which attempts to fit existing points with the

objective function; acquisition function, to determine the next point to be explored balancing explo-

ration and exploitation. Exploration is to sample points in areas that have not been explored yet,

while exploitation samples points in a neighborhood that is most likely to contain global optimum

[Yang and Shami, 2020].

Figure II.3 exemplifies a run of Bayesian Optimization with four iterations. Starting with two

points, at every iteration of the algorithm, the goal is to maximize the acquisition function to de-

termine the next sampling point from the objective function. The acquisition function incorporates

the mean and variance of the predictions across the space to estimate the utility of sampling. Sub-

sequently, the objective function is sampled at the location that corresponds to the highest value of

the acquisition function, the Gaussian process is updated with this new information, and the entire

process is repeated iteratively [Brochu et al., 2010].
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Figure II.3: Bayesian Optimization strategy for hyperparameter optimization problem.
Legend: As points are observed, the Gaussian process is adjusted, maing able for the acquisition

function to evaluate new solutions. From Brochu et al. [2010]

II.1.4 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Estrategy (CMA-ES) is an evolutionary algorithm, a

population of new search points is generated from normal multivariate distribution sampling. It

iteratively evaluates solutions and adjusts the sampling distribution used for the next iteration to

give a higher probability to find good solutions [Loshchilov and Hutter, 2016]. It’s a derivative-

free optimization algorithm, well-suited for high-dimensional problems and problems with a large

number of local optima [Loshchilov, 2014].

The computation of the covariance matrix in CMA-ES is carefully designed to leverage both

the variance among selected points within a generation and the correlation across generations.

This approach aims to fully exploit the information available in the optimization process. The

objective of CMA-ES is to adjust the search distribution, represented by a Gaussian probability

distribution, to align with the contour lines of the objective function that is being minimized. By



19

aligning the search distribution with the objective function’s contour lines, CMA-ES improves its

ability to explore and exploit the search space effectively [Khan, 2018]. This process is shown in

Figure II.4, with the progress of each CMA-ES generation, the parameters of the search distribution,

including the mean vector and covariance matrix, are dynamically adjusted. This process aims to

align the search distribution with the contour lines of the objective function. As a result, as the

optimization continues, the evaluation points become increasingly concentrated in the neighborhood

of the minimum of the objective function.

Figure II.4: CMA-ES strategy for hyperparameter optimization problem.
Legend: Adapted from Sentewolf [2023]

II.2 Biased Random Key Genetic Algorithm

Genetic algorithms have Darwin’s evolutionary concept as a theoretical foundation regarding

the survival of the fittest individuals [Darwin and Knight, 2003]. Genetic algorithms begin with the

selection of the best individuals from the initial population according to a metric that evaluates how

well that configuration behaved. The best individuals will generate new individuals, that will inherit

characteristics that will increase their chances of also being the best individuals of their generation

[Sloss and Gustafson, 2020]. Typically, this iterative process is repeated until a configuration is

found that exceeds the established limit or the number of generations is reached.

Being an evolutionary algorithm approach, the Random-Key Genetic Algorithm (RKGA) [Bean,

1994] simulates the evolution of a population over generations, where each individual is a candi-

date solution for the optimization problem. RKGA introduces two fundamental elements to create

operators that are independent of the problem: the encoder, responsible for mapping the input

to the domain [0, 1], and the decoder, responsible for converting the values back to the original
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domain. The Biased Random Key Genetic Algorithm (BRKGA) [Gonçalves and Resende, 2011] is

an evolution of the RKGA, introducing a bias in the set of the best individuals of the population in

the current generation. During crossing over, these individuals are more likely to pass their genes

to their offspring.

II.2.1 Encoder and decoder

In RKGA, a solution γ is represented as a codified vector in the range [0,1] of n elements, and

γ̄ is the solution in the original domain. In our case, each position of γ is a hyperparameter.

Applying a min-max normalization (Eqn. II.1) permits keeping all hyperparameters in the same

range of values, γi means the i-th component of γ, Ui and Li specific maximum and minimum values

of γ respectively. It’s also useful because it can work with different problems just necessitating a

particular decoder.

γi =
γi − Li

Ui − Li
(II.1)

The purpose of the decoder is to convert a proposed solution to the original domain to be further

evaluated by the objective function. This is done by applying Eqn. II.2. Here, the round function

converts a real number to the closest integer.

γi = round(γi ∗ (Ui − Li) + Li) (II.2)

The encoder and decoder transformations are schematically represented in Figure II.5. The

original domain X is represented on the left side, in this case, each hyperparameter is a component.

The right side represents the image set Y , the codified vector. In short, the encoder is a function

f : X → Y and the decoder is the inverse function f−1.
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Figure II.5: BRKGA hyperparameters representation
Legend: A real-valued combination of n hyperparameters can be mapped to the [0, 1]n space by

the encoder, and be brought back by the decoder. Prepared by the author

II.3 Artificial Neural Networks

Computers are able to learn without being explicity programmed using machine learning [Mitchell

and Mitchell, 1997], differently from what occurs in a conventional algorithm where rules are strictly

written.

Natural computing, a line of computer science research, develops algorithms inspired by nature

or biology as a source of inspiration, for example the ant colony algorithm used in routing problems

on a graph Brabazon et al. [2015]. Besides trying to reproduce intelligent behavior, the structure of

the solutions can be inspired by humans, for example in Artificial Neural Network (ANN) that are

motivated by how the brain works and how synapses occur between neurons. They are composed

from diverse layers consisting of simple processing nodes called neurons, each neuron has a set of

connections to others neurons. Each layer process the input and pass to next layer until the last

layer called output.

ANN has inumerous hyperparameters to be optimized, for example: number of layers, determines

the depth of network and it’s capacity to model complex patterns from data; number of neurons,

number of neurons in each layer, more neurons can allow model learn complex patterns from data

but a excessive amount can make model overfit [Srivastava et al., 2014]; learning rate, size of step

of gradient algorithm; regularization rate, prevents model to overfit controlling the regularization

term added to the cost function [Aggarwal et al., 2018].
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Chapter III Related Work

In Florea et al. [2019], an enhanced version of Random Search was developed to optimize the

hyperparameters of machine learning algorithms. Unlike traditional methods, their version used a

probability of change linked to each hyperparameter. In this new method, at each iteration, only

the hyperparameter with the highest probability of change is changed, instead of all of them.

Showing that pure Random Search is still a reasonable approach, Farag et al. [2021] used it to

optimize hyperparameters of two networks, ResNet and Xception Net, to diagnose COVID-19 from

chest X-ray images.

Following Farag et al. [2021], Shahin et al. [2021] also focused on a solution to identify COVID-

19, but using Electrocardiogram data in several Convolutional Neural Network (CNN) models. In

one of them, VGG16, they applied Grid Search, successfully enhancing its results, increasing the

accuracy, and decreasing the loss. In Lee et al. [2021] work, a genetic algorithm is used to optimize

a Convolutional Neural Network (CNN) architecture, in a dataset used for Alzheimer’s disease

diagnostics. A genetic algorithm is used to optimize a Ling-Short Term Memory (LSTM) to predict

the next word in a Nature Language Processing (NLP) domain [Gorgolis et al., 2019].

When talking about Bayesian Optimization, Atteia et al. [2022a] used it to optimize the hy-

perparameters of a Convolutional Neural Network (CNN) designed to detect leukemia in its early

stages. Still in the health sector, Şahin et al. [2022] also Bayesian Optimization to enhance a CNN,

designed to identify skin cancer.

Loshchilov and Hutter [2016] propose the use of CMA-ES to optimize hyperparameters of deep

neural networks. Comparing against Bayesian Optimization and some variations, the results show

comparable results with a lower computational cost.

Genetic Algorithm is the core of our method and also was used by Mohan and Badra [2023] to

improve their model, outperforming other models using fewer computational resources. Liashchyn-

skyi and Liashchynskyi [2019] compares the three most popular algorithms for hyperparameter

optimization (Grid Search, Random Search, and Genetic Algorithm) to construct a Convolutional

Neural Network (CNN) using a neural architecture search approach. The genetic algorithm was the

most successful approach in experiments realized.

The research carried out by Japa et al. [2022], from which this work is developed, also uses

Genetic Algorithm. A version called HBRKGA is presented with the addition of an exploitation
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method at the end of each evolutionary step.

Table III.1 summarizes the related works according to each hyperparameter optimization tech-

nique covered in the study. Some works present the study of one or more techniques separated, this

research and Japa et al. [2022] cover all cited strategies to comparision.

Table III.1: Summary of related works by strategy

Author Grid
Search

Random
Search

Bayesian
Optimiza-

tion
CMA-ES Genetic

Algorithms

Florea et al. [2019] ✓
Farag et al. [2021] ✓
Atteia et al. [2022b] ✓
Şahin et al. [2022] ✓
Loshchilov and Hutter [2016] ✓
Lee et al. [2021] ✓
Mohan and Badra [2023] ✓
Liashchynskyi and Liashchynskyi [2019] ✓ ✓ ✓
Japa et al. [2022] ✓ ✓ ✓ ✓ ✓
This dissertation ✓ ✓ ✓ ✓ ✓
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Chapter IV Metodology

This chapter presents the methodology developed by the authors. In Section IV.1, Adaptive

HBRKGA is presented, having its exploration step further explained in Section IV.2. Section IV.3

presents the use of CMA-ES to improve final solutions.

IV.1 Adaptive HBRKGA

In Japa et al. [2022], the authors proposed an HBRKGA, a strategy using an exploitation step to

improve BRKGA performance after each generation. The main idea is to explore the neighborhood

of individuals in a population changing some individuals. A variation of HBRKGA to optimize

hyperparameters is proposed, where multiple methods can be used in the exploitation step. For

each method in the exploitation step, a probability of being called is defined, which is used to select

which method is called at a given time. These probabilities are updated following the adaptive step

presented in Boudia et al. [2007].

The proposed method’s pseudo-code is shown in Algorithm 1. The inputs are: disturbance ratio

ϵ, the number of exploitation steps, the available exploitation methods β and k, which determines

every how many generations the probabilities of the exploitation methods to be chosen will be

updated. Lines 1-6 are initialization steps, such as generating the initial population and computing

the fitness function for all individuals. The core loop starts at line 7, where each iteration represents

one generation of the genetic algorithm. The selection of best individuals, i.e. selection of individuals

from the elite set, occurs at line 8. The remainder individuals of the population are generated at

lines 9-10 with crossover and mutation operators. The loop starting at line 12 computes the fitness

of every individual of the current population by applying the objective function F . Our main

contribution happens at lines 15, 16 and 18 where an exploitation method is selected, executed and

updated, respectively. Details of these steps are presented in Algorithm 2. Further, the current

population is refreshed and at the final, the highest individual found is returned.

This approach involves using these two strategies listed above to improve the results of HBRKGA.

Instead of applying the same exploitation step after each generation of BRKGA, is introduced an

adaptive probability of choice based on fitness obtained by each exploitation strategy. In the begin-

ning, a uniform distribution is used and, based on the candidate’s solutions found, each exploitation



25

Algorithm 1 Adaptive HBRKGA
Input: ϵ, steps, β, k
Output: Best found γ
1: Generate initial population P with p randomly generated γ’s of n keys each;
2: Iter ← 0;
3: for γ in P do
4: γ.score← F(γ̄);
5: end for
6: Sort γ’s in P by their score;
7: while stopping criteria not satisfied do
8: P ∗ ← Select some individuals γ;
9: Pc ← Crossover individuals from P ∗;

10: Pm ← Generate mutants from P ∗;
11: P ∗ ← P ∗ ∪ {Pc} ∪ {Pm};
12: for γ in P ∗ do
13: γ.score← F(γ̄);
14: end for
15: Em ← Select exploitation from β;
16: P ∗ ← exploitation(P ∗, ϵ, Em,F(∗));
17: if Iter mod k = 0 then
18: β ← Update probabilities from β;
19: end if
20: P ← P ∗;
21: Sort γ’s in P by their score;
22: Iter ← Iter + 1;
23: end while
24: return γ with highest score in P ;

strategy improves their probability to be chosen, as shown in Algorithm 2, which input parameters

are: exploitation methods set β, best fitness γ∗, a list of scores obtained using each exploitation

method γ and a variational factor θ.

The loop starting at line 2 will compute the best average cost by exploitation method using

fitness, score, count and the variational factor. Finally, the line 9 will update each exploitation

method probability to be selected after the next generation of BRKGA.

Algorithm 2 Update exploitation method probabilities
Input: β, γ∗, γ, θ
1: σ ← 0;
2: for βi in β do
3: score(βi)← score(βi) + γ(βi)
4: avg(βi)← score(βi)/counter(βi);
5: Q(βi)← (γ∗/avg(βi))

θ;
6: σ ← σ +Q(βi);
7: end for
8: for βi in β do
9: P (βi)← Q(βi)/σ;

10: end for
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IV.2 Exploitation step

The exploitation step is a crucial component in the proposed method as it aims to improve

the performance of the algorithm by exploring the neighborhood of current solutions in search of

better ones. In this research, the authors have implemented two different exploitation methods: the

Random Walk and the Bayesian Walk.

The Random Walk method, as the name suggests, explores the neighborhood of the current

population by making random movements. In this method, after receiving the current population

γ, a new population γ̄ is generated by stochastically exploring the neighborhood defined in the

interval (0, γi(1 + ϵ)], where ϵ determines how far from the current population the exploration will

take place.

The Bayesian Walk, on the other hand, is based on Bayesian optimization and uses a probabilistic

model of a surrogate function, in this case, a Gaussian Process. The main idea behind this method

is to use all the information available from previous evaluations to generate the most promising

individuals to explore, rather than simply relying on gradients or Hessian approximations to improve

its performance [Snoek et al., 2012].

IV.3 CMA-ES

CMA-ES is a black box optimization algorithm that uses a multivariate normal distribution

to generate candidate solutions and updates its parameters across generations to sample solutions

from regions with the potential to contain good solutions [Nomura et al., 2021].

Genetic algorithms simulate the evolution of a population over generations [Goldberg, 2002].

With the selection of the fittest individuals, naturally, the final population consists of good in-

dividuals. The CMA-ES strategy was used after the evolution step in an attempt to enrich the

individuals of the last population found by BRKGA. The main idea behind this approach is present

a population that evolved across a couple of generations and make a warming start in CMA-ES

improving the results obtained previously. In Nomura et al. [2021], a similar approach related to

CMA-ES uses prior knowledge to create an enhanced version.
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Chapter V Experimental Evaluation

In this chapter, an overview of the validation process for the proposed hyperparameter opti-

mization strategy is provided. Six publicly accessible datasets widely used from various application

domains were utilized to conduct the experiments.

V.1 Datasets

A total of six datasets of classification tasks were used in experiments, MNIST [LeCun, 1998],

Rectangles [Larochelle et al., 2007], COSMOS [Scoville et al., 2007] and MNIST variants (MNIST-

IB, MNIST-RanB, MNIST-RotB) Larochelle et al. [2007]. A short explanation of these datasets is

provided below.

1. MNIST: it is a set of handwritten digit image data, having 70,000 examples between the

training set and the test set [LeCun, 1998]. The images in the dataset amount to 784 features,

each image having a size of 28x28 pixels.

2. Rectangles: it’s a dataset with images containing rectangles drawn in them. The objective

of this dataset is to discriminate between tall and wide rectangles in images of 28x28 pixels

dimensions.

3. COSMOS (Cosmic Evolution Survey): it’s a dataset with information about more than 500000

astronomical objects and 90 attributes with their photo-metric measures. The same dataset

and pre-processing steps as cited in [Machado et al., 2016] was used.

4. MNIST with image background (MNIST-IB): MNIST variant with background produced with

piece of internet images Larochelle et al. [2007].

5. MNIST with random background (MNIST-RanB): MNIST dataset with random background

producing noise in the digits Larochelle et al. [2007].

6. MNIST with rotation and background (MNIST-RotB): MNIST-RandB with rotated digits

Larochelle et al. [2007].
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V.2 Objective function F(∗)

In general terms, the objective of a supervised classification problem is to minimize a function JΘ

using a function also called hypothesis, that receives an input (xi, yi) and evaluates h(xi). Using a

loss function C(h(xi), yi) the classifier’s performance is evaluated and parameters Θ can be updated.

Cross-entropy was used as loss function, softmax activation function as the output layer and ADAM

as optimizer [Kingma and Ba, 2015] for training the neural network.

At every execution of F(∗), the model is trained using the hyperparameters passed as input,

and the value of the F-measure is returned as a measure of the model’s quality.

It should be noted that a simple architecture of a neural network may not be effective for complex

data, but it is sufficient to evaluate the impact of hyperparameters on the model’s performance,

allowing for the identification of poor and good hyperparameter settings.

V.3 Experimental settings

The experiments ran on a computer with an AMD RyzenTM 5 5600X 3.70 GHz processor and

32GB RAM, also equipped with a GeForce RTX 3060 GPU with 12GB of RAM. BRKGA’s Python

implementation developed in Andrade et al. [2021] was used to develop A-HBRKGA. The PyTorch

framework [Paszke et al., 2019] was used to build the artificial neural network (ANN) models.

To validate the approach, a multilayer perceptron was employed as the neural network, fully

connected with three hidden layers. The hyperparameters selected to be optimized were the number

of neurons in each layer, the learning rate, and the regularization rate. The range of values used for

the experiments was based on previous studies and is summarized in Table V.1. The parameters

used to parametrize BRKGA were also summarized in Table V.2. The stopping criteria was defined

as 9 generations, each population had 6 individuals, the number of elites and mutant set was set

to 2 and 1 respectively. Bias, the probability of an offspring inheriting a gene from an elite parent,

was set to 0.7, exploitation steps are limited to three iterations and the perturbation ratio was set

to 0.15, which is used to limit the neighborhood explored at the exploitation step.

The proposed approach, A-HBKRGA, was compared to several baseline optimization strategies,

including Grid Search and Random Search implemented from scratch, Bayesian Optimization1 and

CMA-ES2 which are publicly available. To ensure fairness in the comparison, the total number of

evaluations for each method was approximated.
1https://github.com/fmfn/BayesianOptimization
2https://github.com/CyberAgentAILab/cmaes
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Table V.1: Range of values of hyperparameters used by dataset

Dataset
Neurons
in 1st
layer

Neurons
in 2nd
layer

Neurons
in 3rd
layer

Learning
rate

Regularization
rate

Cosmos [5, 15] [5, 30] [5, 45] [10−6, 10−1] [0, 10−3]
Rectangles [1000, 2000] [2000, 4000] [2000, 6000] [10−6, 10−1] [0, 10−3]
MNIST and variations [1000, 2000] [2000, 4000] [2000, 6000] [10−6, 10−1] [0, 10−3]

Table V.2: Parameters used in the experiments.

Parameter Value
Max. number of generations (stopping criteria) 9
Population size p 6
Number of elites pe 2
Number of mutants pm 1
Bias ρ 0.7
steps 3
Perturbation ratio ϵ 0.15

V.4 Experimental results

In this section, the performance of A-HBRKGA is compared to other optimization techniques

through various evaluation metrics. Subsection V.4.1 presents the evaluation metrics used to com-

pare the results, Subsection V.4.2 compares model performance, the score obtained after optimiza-

tion, in Subsection V.4.3 we explore the time performance, ie., time taken to run each technique.

Additionally, an ablation study is presented in Subsection V.4.4 to provide further insight into the

results.

V.4.1 Evaluation Metrics

In a classification problem, there are four possible situations to label an instance:

• True positive (TP): classifier gives the positive label correctly;

• False positive (FP): classifier gives the positive label incorrectly;

• True Negative (TN): classifier gives the negative label correctly;

• False Negative (FN): classifier gives the negative label incorrectly.

In this evaluation, the performance of the classifiers is measured using metrics that provide

information about the accuracy of the classifiers [Sokolova and Lapalme, 2009]. The metrics used

were precision, recall and F-measure.
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Precision is calculated as the ratio of correctly classified positive examples to the total number

of examples labeled as positive (Eq. V.1).

Precision =
TP

TP + FP
(V.1)

Recall is calculated as the proportion of correctly classified positive examples to the total number

of actual positive examples (Eq. V.2).

Recall =
TP

TP + FN
(V.2)

F-measure or F1-score is a metric that combines precision and recall. Its values range in the

closed interval [0, 1] and the closer to 1, the better the result. It was chosen as the main evaluation

metric because all datasets we used have multiple classes, and it is not affected by imbalanced

classes. The F-measure is calculated for each class present and the mean is used as the final

evaluation metric.

F1 = 2× Precision× Recall
Precision + Recall

(V.3)

V.4.2 Model performance comparison

As one can observe from Table V.3, the proposed method, A-HBRKGA, achieved the highest

scores in three of datasets tested and in the two remaining the scores are very close. Specifically,

A-HBRKGA outperformed other methods in terms of F1-score, with a stable standard deviation

which, proves that the results were consistently better.

In the Cosmos dataset, Bayesian Optimization achieved the highest score with other methods

with very near results. This is probably the impact of simplest dataset used in experiments. A-

HBRKGA outperformed competitors in Rectangles dataset followed by Bayesian Optimization.

In MNIST and MNIST-RotB datasets, A-HBRKGA come behind Bayesian Optimization with a

difference of only 0.0035 and 0.0055 respectively. In MNIST-IB and MNIST-RanB datasets, the

same behaviour was observed, A-HBRKGA gather highest scores followed by Bayesian Optimization.

This is notable, as it highlights the adaptability of A-HBRKGA to different types of datasets,

comparing to its non-adaptive counterpart.

The Grid Search method, however, performed poorly with the exception of the Cosmos dataset.

This is likely due to the pre-defined search space, which may not be optimal for all datasets.

Summarizing, the results presented in Table V.3 demonstrate the effectiveness of A-HBRKGA

as a powerful method for hyperparameter optimization, achieving the highest scores across most

datasets tested. It highlights the adaptability of A-HBRKGA and its ability to explore the hyper-
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parameter space effectively, thus yielding better results than other methods such as Grid Search,

Bayesian Optimization and CMA-ES and HBRKGA.

Table V.3: Results of the experiments ran for every method

Method
Dataset

Cosmos Rectangles MNIST MNIST-IB MNIST-RanB MNIST-RotB
avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std

Random Search 0.9853± 0.0009 0.9778± 0.0070 0.9444± 0.0109 0.6178± 0.1037 0.6484± 0.1121 0.3050± 0.0324
Grid Search 0.9845± 0.0012 0.7590± 0.0176 0.7097± 0.0114 0.3852± 0.0205 0.3118± 0.0235 0.2085± 0.0134
BO 0.9857± 0.0009 0.9807± 0.0077 0.9549± 0.0064 0.6943± 0.0266 0.7061± 0.1041 0.3228± 0.0263
CMA-ES 0.9853± 0.0014 0.9320± 0.0667 0.9018± 0.0840 0.4466± 0.1516 0.4454± 0.2080 0.2378± 0.0558
HBRKGA 0.9853± 0.0010 0.9682± 0.0128 0.9431± 0.0108 0.6076± 0.1272 0.6782± 0.1123 0.2940± 0.0406
A-HBRKGA 0.9856± 0.0012 0.9830± 0.0052 0.9514± 0.0084 0.7060± 0.0160 0.7334± 0.0425 0.3173± 0.0406

Legend: For every method, the average F1 score (avg) and standard deviation (std) are presented.
Every experiment has been repeated a total of 30 times.

V.4.3 Time performance comparison

Table V.4 presents the average execution time for 30 runs of each method, with the best (lowest)

results highlighted in bold for each dataset. Looking exclusively to time performance, no one method

dominates all others. In Cosmos and MNIST datasets, CMA-ES was the fastest method. Grid

Search was very efficient in MNIST-RanB dataset. In Rectangles dataset, A-HBRKGA superates

the concorrents. Further, in MNIST-IB and MNIST-RotB datasets, HBRKGA obtained the best

average time.

Genetic algorithms do not rely on all previous data and can be executed in constant time Lan

et al. [2022]. In contrast, Bayesian Optimization requires access to all previous data in order to take

informed decisions about the next step in the optimization process. This characteristic makes A-

HBRKGA more efficient than Bayesian Optimization for this situation, which explains the difference

between Bayesian Optimization and A-HBRKGA.

Regarding the difference between HBRKGA and A-HBRKGA, the explanation lies in the ex-

ploitation methods used by each methodology. While HBRKGA relies only on Random Walk for

all generations, in A-HBRKGA this is not fixed. The adaptive mechanism of A-HBRKGA allows

for the selection of different exploitation methods, such as Bayesian Walk, which can greatly reduce

the execution time. The main difference between Random Walk and Bayesian Walk is the number

of runs required for each member of the population. In Random Walk, the algorithm runs multiple

times, one for each member of the population. On the other hand, in Bayesian Walk, the whole

population is fed to the Bayesian Optimizer, which in turn returns a new population.

The implementation of the adaptive mechanism in A-HBRKGA allows for the selection of the

most appropriate exploitation method for each generation, based on the current state of the opti-
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mization process. This flexibility in the exploitation method can greatly improve the efficiency of

the optimization process and explains the difference in time between HBRKGA and A-HBRKGA.

The details of how time differs from both exploitation mechanisms will be discussed further in the

ablation study of the next subsection.

The results obtained demonstrate the effectiveness of using genetic algorithms as a starting point

for exploring hyperparameter optimization. A-HBRKGA, in particular, proves to be a powerful

improvement, showing a significant reduction in execution time compared to other methods. These

findings highlight the potential of genetic algorithms as a robust and efficient approach for solving

complex optimization problems.

Table V.4: Time performance of the experiments ran for every method

Method
Dataset

Cosmos Rectangles MNIST MNIST-IB MNIST-RanB MNIST-RotB
avg std avg std avg std avg std avg std avg std

Random Search 00:03:26 00:00:02 00:18:42 00:00:33 01:48:09 00:02:36 01:03:20 00:05:40 01:17:37 00:08:35 01:00:40 00:02:41
Grid Search 00:03:45 00:00:01 00:16:13 00:00:28 01:28:25 00:03:18 00:52:24 00:01:41 00:50:30 00:01:38 00:51:40 00:01:24
Bayesian Optimization 00:03:41 00:00:07 00:16:48 00:02:12 02:20:19 00:18:43 01:03:48 00:06:12 01:24:28 00:13:22 01:03:33 00:04:47
CMA-ES 00:03:21 00:00:02 00:12:46 00:00:39 01:15:39 00:06:24 00:50:30 00:03:21 01:00:10 00:04:21 00:49:22 00:02:15
HBRKGA 00:04:09 00:00:02 00:13:20 00:00:55 01:25:28 00:07:28 00:46:31 00:06:43 00:53:42 00:05:39 00:45:11 00:04:38
A-HBRKGA 00:04:25 00:00:09 00:11:17 00:01:37 01:17:03 00:11:26 00:48:39 00:07:10 00:55:31 00:07:59 00:46:12 00:06:11

Legend: For every method, we show the average time in format h:m:s (avg) and standard deviation
(std). Every experiment has been repeated a total of 30 times.

V.4.4 Ablation study

The purpose of an ablation study is to evaluate the contribution of individual components or

features of a system by removing or modifying them and then measuring the impact on performance

Reddy [1974]. In this study, we conducted a comparison of A-HBRKGA against variants of the

BRKGA method. The entries with a "+" sign (such as BRKGA+BW and BRKGA+RW) indicate

that the traditional BRKGA method has been modified to include the specified exploitation method

(Bayesian Walk or Random Walk) as a surrogate function. Following the same principle, when a "+"

sign is followed by CMA-ES, indicates that it was used as final action to optimize hyperparameters.

Table V.5 presents the results of the ablation study. The results are presented in terms of

average F1 score (avg), standard deviation (std), and average time (time). The results are based

on 30 executions using the same parameters as shown in Table V.2. The highest F1 scores and the

lowest times for each dataset are highlighted in bold for easy comparison.

As we can see from Table V.5, our proposed method, A-HBRKGA+CMA-ES, consistently pro-

duces the highest F1-score among all the variants of BRKGA, while traditional BRKGA always

has the lowest execution time. This is to be expected, as the inclusion of an additional surrogate

function in every iteration of BRKGA leads to an increase in execution time.
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When comparing the execution time of BRKGA, BRKGA+BW and BRKGA+BW+CMA-ES,

we can see that the inclusion of the Bayesian Walk surrogate function and CMA-ES has only

a minimal impact on execution time. For all datasets, BRKGA+BW and its enhanced version,

BRKGA+BW+CMA-ES, consistently improves F1-score, even though it increases execution time,

indicating that it is possible to achieve high-quality solutions by sacrificing a small amount of time.

HBRKGA and HBRKGA+CMA-ES follows a similar pattern, where it outperforms traditional

BRKGA in terms of F1-score but has a higher execution time. The difference in time between

Random Walk and Bayesian Walk is more pronounced, making the trade-off less favorable.

A-HBRKGA and A-HBRKGA+CMA-ES, on the other hand, are able to effectively balance this

trade-off by producing high-quality solutions while maintaining a moderate increase in execution

time. Its execution time is never as fast as traditional BRKGA, but the solutions produced are

consistently better among all variants.

Our results demonstrate that using genetic algorithms as a starting point for exploring hyper-

parameter optimization can be a robust and efficient approach. The ablation study highlights the

effectiveness of incorporating different exploitation methods and implementing an adaptive mech-

anism to select the most appropriate method, as we were able to achieve significant improvements

in the F1-score compared to traditional BRKGA by trading-off a bit of execution time. Our study

confirms that exploitation methods can significantly improve the performance of BRKGA and that

our adaptive strategy further enhances the effectiveness of HBRKGA (BRKGA+RW) as reported

in Japa et al. [2022]. Additionally, the addition of a final optimization step using CMA-ES was

beneficial by increasing the average score. This behavior was consistently observed in all BRKGA

variants and datasets.

Table V.5: Results of the experiments ran for every method in the ablation study

Method
Dataset

Cosmos Rectangles MNIST MNIST-IB MNIST-RanB MNIST-RotB
avg ± std time avg ± std time avg ± std time avg ± std time avg ± std time avg ± std time

BRKGA 0.9839± 0.0012 00:00:40 0.8970± 0.1043 00:03:04 0.8673± 0.1361 00:23:36 0.2729± 0.1463 00:14:28 0.3730± 0.1924 00:17:41 0.1744± 0.0451 00:12:51
BRKGA + CMA-ES 0.9846± 0.0016 00:00:51 0.8958± 0.0919 00:03:52 0.9276± 0.0288 00:26:14 0.3271± 0.1519 00:20:25 0.3400± 0.1769 00:20:30 0.2063± 0.0651 00:14:55
BRKGA + BW 0.9850± 0.0012 00:04:23 0.9823± 0.0095 00:11:32 0.9514± 0.0086 01:12:08 0.6980± 0.0114 00:47:02 0.7453± 0.0107 00:54:39 0.3250± 0.0349 00:45:50
BRKGA + BW + CMA-ES 0.9854± 0.0011 00:04:59 0.9847± 0.0052 00:12:50 0.9534± 0.0058 01:17:15 0.6998± 0.0123 00:55:26 0.7479± 0.0139 01:01:51 0.3287± 0.0127 00:51:22
HBRKGA 0.9853± 0.0010 00:04:09 0.9682± 0.0128 00:13:20 0.9431± 0.0108 01:25:28 0.6076± 0.1272 00:46:31 0.6782± 0.1123 00:53:42 0.2940± 0.0406 00:45:11
HBRKGA + CMA-ES 0.9848± 0.0012 00:04:44 0.9673± 0.0155 00:15:02 0.9489± 0.0071 01:33:51 0.6489± 0.0752 00:53:34 0.6743± 0.1059 01:03:08 0.3091± 0.0327 00:49:42
A-HBRKGA 0.9854± 0.0012 00:04:25 0.9830± 0.0052 00:11:17 0.9514± 0.0084 01:17:03 0.7060± 0.0160 00:48:39 0.7334± 0.0425 00:55:31 0.3173± 0.0406 00:46:12
A-HBRKGA + CMA-ES 0.9856± 0.0010 00:04:57 0.9853± 0.043 00:12:56 0.9573± 0.0064 01:20:06 0.7102± 0.0110 00:56:25 0.7561± 0.0160 01:00:52 0.3317± 0.0139 00:50:58

Legend: For every method, we show the average F1 score (avg), F1 score’s standard deviation (std)
and average time in format h:m:s (time). Every experiment has been repeated a total of 30 times.

To verify that results are statistically significantly, Wilcoxon non-parametric test [Rey and

Neuhäuser, 2011] was used to determine if there is a significant difference between paired obser-

vations from the two groups analyzed in each comparision. The significance level α was set to

0.05. The techniques presented in Table V.3 and Table V.5 were compared against the results of

A-HBRKGA and A-HBRKGA+CMA-ES and resulting p-values are shown in Table V.6 and Table
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V.7 respectively. The cases where no statistically significance difference between distributions was

observed are highlighted in boldface.

In Table V.6 and Cosmos, the simplest dataset used in the experiments, there is insufficient

evidence to reject the null hypothesis in 7 of 10 comparing techniques. Looking to other datasets,

the methods that use Bayesian Optimization achieve near scores. In MNIST-RanB, MNIST-RotB

p-values are very close to significance level α that minor parameter modification in input may take

A-HBRKGA achieve better results and consequently change the outcome of the Wilcoxon test.

Table V.6: p-values resulting from applying the Wilcoxon test to compare techniques to A-HBRKGA

Dataset RS GS BO CMA-ES BRKGA

Cosmos 0.2429 0.0026 0.3492 0.7000 0
Rectangles 0.0021 0 0.1687 0 0
MNIST 0.0026 0 0.1473 0.0001 0
MNIST-IB 0 0 0.0175 0 0
MNIST-RanB 0.0001 0 0.2367 0 0
MNIST-RotB 0.0523 0 0.9193 0 0

Dataset BRKGA + CMA-ES BRKGA + BW BRKGA + BW + CMA-ES HBRKGA HBRKGA + CMA-ES

Cosmos 0.0384 0.1460 0.7611 0.3818 0.0577
Rectangles 0 0.7231 0.2382 0 0
MNIST 0 1 0.3184 0.0066 0.2054
MNIST-IB 0 0.0221 0.1579 0 0.0001
MNIST-RanB 0 0.0879 0.0879 0.0040 0.0013
MNIST-RotB 0 0.1094 0.3492 0.0035 0.2621

In Table V.7, the interpretation of results of A-HBRKGA+CMA-ES is very similar to the one

done previously to A-HBRKGA. In MNIST and MNIST-IB datasets, the p-values obtained from

comparison of BRKGA+BW and BRKGA+BW+CMA-ES lower than α suggests powerful evidence

to reject the null hypothesis and come to the conclusion that there is a significant difference between

the groups. This is an interesting result, in addition to the lower time required to execute, A-

HBRKGA+CMA-ES achieved better results compared to Bayesian Optimization. Compared to the

remaining techniques, the p-values results confirm that A-HBRKGA and A-HBRKGA+CMA-ES

achieved competitive hyperparameter optimizations.
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Table V.7: p-values resulting from applying the Wilcoxon test to compare techniques to A-
HBRKGA+CMA-ES

Dataset RS GS BO CMA-ES BRKGA BRKGA + CMA-ES

Cosmos 0.2621 0.0009 0.4771 0.7303 0 0.0087
Rectangles 0.0002 0 0.0036 0 0 0
MNIST 0 0 0.2449 0 0 0
MNIST-IB 0 0 0.0047 0 0 0
MNIST-RanB 0 0 0 0 0 0
MNIST-RotB 0.0003 0 0.1731 0 0 0

Dataset BRKGA + BW BRKGA + BW + CMA-ES HBRKGA HBRKGA + CMA-ES A-HBRKGA

Cosmos 0.0577 0.5028 0.4161 0.0262 0.6554
Rectangles 0.1225 0.9468 0 0 0.0695
MNIST 0.0026 0.0201 0 0.0002 0.0173
MNIST-IB 0.0002 0.0043 0 0 0.2231
MNIST-RanB 0.2129 0.2894 0 0 0.0327
MNIST-RotB 0.8236 0.2206 0 0.001 0.1460



36

Chapter VI Conclusion and Future Work

In this research A-HBRKGA, an improved version of the HBRKGA algorithm was proposed

by incorporating an adaptive exploitation component after each evolutionary step, the adoption of

an additional optimization step with CMA-ES was explored too. Experiments were conducted to

evaluate the performance of this method on classification problems using artificial neural networks

and the results were compared with those of traditional optimization approaches such as Grid Search,

Random Search, Bayesian Optimization, and CMA-ES. The focus of the study was to develop

solutions that optimize hyperparameters while balancing performance and execution time. The

results showed that the proposed method was effective in reducing the time spent while achieving

better average scores, making it a viable strategy for optimizing hyperparameters and improving

the performance of artificial neural networks.

Possible future work includes testing other exploitation techniques, such as using alternative

surrogate functions for Bayesian Optimization and other acquisition functions. As the addition

of CMA-ES as an additional optimization step had a positive impact, other techniques can also

be explored. The use of multiple populations and refinement of the best individuals can also be

considered.
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