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RESUMO

Analyzing Flight Delay Prediction Under Concept Drift

Lucas Giusti Tavares

Advisors:
Jorge de Abreu Soares e Eduardo Soares Ogasawara (Co-advisor)

Resumo da Dissertação submetida ao Programa de Pós-graduação em Ciência da Computação do
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ como parte dos
requisitos necessários à obtenção do grau de mestre.

Atraso é um dos indicadores mais cŕıticos para sistemas de transporte aéreo. Atrasos de voos
impõem um desafio que impacta qualquer sistema de transporte aéreo. Nesse contexto, a previsão
de voos atrasados pode ser uma ferramenta essencial para tratar desse problema de forma efe-
tiva. A presente dissertação investiga o desempenho de previsão das estratégias ativa e passiva de
tratamento de drift na aviação em diferentes escalas. Duas diferentes escalas foram consideradas:
system-based (SB) e airport-based (AB). Na SB, todos os aeroportos no sistema aéreo são consider-
ados. De maneira oposta, no AB, cada aeroporto é estudado separadamente. Especificamente, esse
trabalho propôs e respondeu duas perguntas de pesquisa: (i) Como estratégias de tratamento de
drift influenciam o desempenho da previsão de atrasos?; e (ii) Diferentes escalas podem influenciar
os resultados das estratégias de tratamento de drift? Foi observado que estratégias de tratamento de
drift são relevantes. Seu impacto varia de acordo com a escala utilizada. A avaliação experimental
foi realizada usando um dataset que integra dados de clima e voos do sistema aéreo do Brasil. Além
disso, as estratégias passiva e ativa mostraram melhores escores de recall. Em relação ao f1, as es-
tratégias tiveram resultados similares, com a estratégia passiva mostrando resultados ligeiramente
melhores. Esses resultados podem estar relacionados com a alta incidência de drifts. Nesse caso,
estratégias que sempre retreinam modelos de aprendizado de máquina oferecem melhores resultados
que aqueles que treinam somente uma vez. Entretanto, testes extensivos são recomendados.

Keywords: Flight delays, concept drift, machine learning, classification

Rio de Janeiro,

October 2021



ABSTRACT

Analyzing Flight Delay Prediction Under Concept Drift

Lucas Giusti Tavares

Advisors:
Jorge de Abreu Soares e Eduardo Soares Ogasawara (Co-advisor)

Abstract of dissertation submitted to Programa de Pós-graduação em Ciência da Computação -
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ as partial fulfill-
ment of the requirements for the degree of master.

Delay is one of the most critical indicators for flight transportation systems. Flight delays im-
pose a challenge that impacts any flight transportation system. In this context, the prediction of
delayed flights may be an essential tool for effectively addressing this problem. This dissertation
investigates the prediction performance of different drift handling strategies in aviation under dif-
ferent scales. It considers two different scales: system-based (SB) and airport-based (AB). In (SB),
all airports in the flight system are considered together. Conversely, in AB, each airport is studied
separately. Specifically, this work proposed and answered two research questions: (i) How do drift
handling strategies influence the prediction performance of delays?; and (ii) Do different scales
change the results of drift handling strategies? It was observed that drift handling strategies are
relevant. Their impact varies according to the scales used. The experimental evaluation was done
using a dataset that integrates weather and flight data from the Brazilian system. Moreover, the
passive and active strategies revealed better recall scores. For f1 scores, the strategies had similar
results, with the passive strategy showing slightly better results. These results may be related to
the high prevalence of drifts. In this case, strategies that always retrain machine learning mod-
els offer better results than those that train only once. However, extensive testing is recommended.

Key-words: Flight delays, concept drift, machine learning, classification

Rio de Janeiro,

October 2021
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Chapter I Introduction

Delay is one of the most critical indicators for flight transportation systems. Flight delays

impose a challenge that impacts any flight transportation system. In the United States (US), it is

estimated that a 10% decrease in flight delays would mean a US$ 8 billion (year base 2013) increase

in Gross Domestic Product (GDP) Peterson et al. [2013]. In this context, the prediction of delayed

flights may be an essential tool for effectively addressing this problem.

The development of machine learning models makes it possible to identify potentially delayed

flights or critical periods before happening, enabling better planning. For that reason, many pre-

dictive models have been developed to achieve the task Rong et al. [2015]; Kim et al. [2016]; Yu

et al. [2019]. Commonly, flight data is combined with weather information from departure and

arrival locations to help predict flight delays Du et al. [2018]; Wu and Law [2019].

From the machine learning point of view, predicting delay may be a regression or classification

task. In the former, the goal is to predict the time (usually measured in minutes) that a flight will

delay. In the latter, the goal is to predict whether the flight is going to delay Kim et al. [2016]; Gui

et al. [2020a]. The literature specialized in flight delay prediction provides many different models

that have been developed with good results for both tasks. Specifically, for classification, which

is the focus of the present study, random forest and deep recurrent neural network models have

shown promising results in the US and China datasets Rong et al. [2015]; Yu et al. [2019].

Large flight systems (such as the US, China, Europe, and Brazil) have challenges that impact

flight delays. The relation of delays with input variables, such as destination or weather, may vary

according to time and space Sternberg et al. [2016]. Thus, the proportion of delays may vary from

time to time. Such a variation may occur due to punctual events such as storms and strikes. Other

variations are disruptive, such as the FIFA World Cup in 2014. It led to an increase in the airports’

capacity throughout most of the Brazilian Flight System and a significant flight change.

Nevertheless, even when there is no perceived change in the size of the flight system, the

distributions of each feature and the relationship between system features and delays may vary.

These relationship variations lead to a scenario called concept drift Iwashita and Papa [2019]. When

the variables change but do not interfere with how delay occurs, there is no concept drift. Generally,

a concept drift is a (statistically significant) difference between the joint probability of input and

output variables observed in different dataset samples.
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Previous studies indicate that concept drift may impact predictive models Gama et al. [2014];

Webb et al. [2016]; Iwashita and Papa [2019]. Some studies have tested algorithms that retrain the

aviation models if drift is detected or used algorithms that may adapt to concept drift, like recurrent

neural networks Khamassi and Sayed-Mouchaweh [2014]; Pesaranghader and Viktor [2016]; Kim

et al. [2016]. Moreover, the amount of data used to train each model (so-called scale) varies across

past studies: models trained from flights related to a single airport or the entire flight system. To

the best of our knowledge, no study considered different system scales.

This dissertation investigates the prediction performance of active and passive drift handling

strategies in aviation under different scales. It considers two different scales: system-based (SB) and

airport-based (AB). In SB, all airports in the flight system are considered together. Conversely,

in AB, each airport is taken into account separately. Specifically, two research questions were

proposed and answered: (i) How do drift handling strategies influence the prediction performance

of delays? (ii) Do different scales change the results of drift handling strategies? This dissertation

proposed Stealthy, a framework to evaluate different drift detection methods and drift handling

strategies under different time windows and scales to answer these questions. For that, we also

used the Brazilian flight system dataset. It is an integrated database containing flight operations

data provided by the Brazilian National Civil Aviation Agency (ANAC) ANAC [2017] and airport

weather data provided by Automated Surface Observing Systems (ASOS) ASOS [2019]. The main

contributions to the state-of-the-art of the present work were the following:

• Always retraining the models may offer better recall with similar precision scores.

• Training one model for each airport show generally better predictive performance;

• Training with higher periods (1, 2, and 3 years) showed good results, but windows longer

than one year are not significantly better for prediction performance;

• Random Forests and Neural Networks were significantly better than Naive Bayes;

• Important performance indicators like precision, recall, and f1 were relevant to understand

prediction performance. However, other studies did not use these indicators.

• Extensive testing is recommended;

Besides this introduction, this dissertation is organized as follows. Chapter II presents the

general background for delay prediction and concept drift. Chapter III presents the related work.

Chapter IV discusses the methodology (Stealthy Models) used for drift analysis over SB and AB.

Chapter V presents experimental evaluation. Finally, Chapter VI presents some concluding remarks

and points out future work.
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Chapter II Background

The background is divided into two parts. Chapter II.0.1 presents flight delays prediction using

machine learning. Chapter II.0.2 presents concept drift, including drift detection and handling.

II.0.1 Flight Delays Prediction Using Machine Learning

Flight delay is a measure of the actual departure or arrival time minus their respective expected

time. For the classification task of predicting whether a delay will occur or not, a threshold is set

up to establish this binary variable. Most studies use a threshold of 15 minutes. It indicates that

any flight delayed for 15 minutes or more is marked as delayed Gui et al. [2020a]; Guleria et al.

[2019a]; Kim et al. [2016]; Sternberg et al. [2016].

Many studies have been conducted and reported good results in the classification task Belcastro

et al. [2016]; Moreira et al. [2018a]. In this context, Random Forests (RF ) and Neural Networks

(NN) achieved better accuracy. An NN is a bio-inspired computational approach that performs

the processing of information through neurons that are connected through synapses Han et al.

[2011]. Specifically, Multi-Layer Perceptrons associated with Long Short Term Memory Recurrent

Neural Network (LSTM-RNN) and Deep Multilayer Perceptrons seem to show good results during

prediction Gui et al. [2020a]; Kim et al. [2016]; Rebollo and Balakrishnan [2014]. Due to its inter-

pretability, Naive Bayes (NB) is commonly included in the studies, as it encompasses a Baseline

method. NB is a statistical classifier that can predict the probability of a tuple belonging to a

particular class.

In a traditional classification problem, a dataset is separated into training and test sets. The

model is built using the training set. It is common to partition the data set using a cross-validation

strategy to optimize hyperparameters. Once the model is built, it is later evaluated using a test

set Han et al. [2011]. This traditional approach is depicted in Figure II.1.a.

However, for flight delay prediction, the time dimension is relevant. Flights occur continuously

each day as a streaming data source. Even when the entire streaming is stored in a single dataset,

the time stamp of the flight events needs to be considered. It means that training should occur

using past data to predict more recent data. It is depicted in Figure II.1.b, where the i-th batch

(training data) is used to build a model for further evaluation with more recent data at the next

batch (i+ 1) (test data). It is worth mentioning that the i-th batch corresponds to a sample of the
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dataset in the time interval associated with i. While studying concept drift, such methodology is

mandatory Iwashita and Papa [2019].

Figure II.1: Characterization of training and testing during classification: (a) traditional scenario;
(b): streaming scenario

Finally, metrics are used to evaluate the prediction performance of built models. Formally, two

classes (positive and negative) were given: positive tuples corresponding to delays and negative

tuples for those without it. P is the number of positive tuples, and N is the number of negative

tuples. The classes of the test set are compared to the classes predicted by the built model, getting:

True Positives (TP ), True Negatives (TN), False Positives (FP ), and False Negatives (FN) Han

et al. [2011]; Moreira et al. [2018a]. From these measures, it is possible to compute the most widely

used metrics: accuracy (TP+TN
P+N ), precision ( TP

TP+FP ), recall ( TP
TP+FN ), and f1 (2×precision×recall

precision+recall ).

II.0.2 Concept Drift

Consider a classification problem, such that a set of input variables X is used to predict a

class label Y . One of the main challenges when creating machine learning models is handling

concept drift. It refers to a significant change in data distribution that interferes with the relation

between the output class Y and input variables X. Formally, a concept at a time i is defined

as the probability of the joint distribution χ of X and Y . It is described in Equation II.1. A

concept drift between time i and j is defined as a difference (with statistical significance) between

the probabilities pi(χ) and pj(χ). It is described in Equation II.2 Webb et al. [2016].

concepti = pi(χ) = pi(X,Y ) (II.1)

pi(χ) 6= pj(χ) (II.2)

The drifts can also be classified as real or virtual drifts Iwashita and Papa [2019]. Specifically,

real concept drifts are defined by changes in the posterior probabilities p(Y |X), commonly related to

the class boundaries. Conversely, virtual concept drifts happen whenever the conditional probability
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p(X) changes Iwashita and Papa [2019]; Lu et al. [2018]; Hoens et al. [2012]. A visual example is

shown in Figure II.2.

Figure II.2: Examples of types of drifts: (a) initial dataset; (b) virtual concept drift from (a); (c)
real concept drift from (a)

Regarding flight delays, there can be relevant changes in the proportion of delayed flights. Some

periods are more critical than others Gui et al. [2020a]; Sternberg et al. [2016]. For that reason,

detecting and handling drifts is a relevant subject. Drift detection refers to the task of identifying

concept drifts. It enables a specific action to avoid increasing errors in online learning systems

after drift is observed Iwashita and Papa [2019]; Lu et al. [2018]; Webb et al. [2016]. There are two

main categories of drift detection Lu et al. [2018]: (i) data distribution and (ii) error rate. Data

distribution-based methods use statistical inference and analysis of feature distribution to detect

significant output class proportion changes concerning its input variables. Error rate methods use

machine learning algorithms and indicate a drift based on the error rate of prediction results. The

detection of drifts can be based solely on data distribution, the error rate of predictions, or both.

Consider a dataset or a streaming dataset (D) partitioned into batches (time intervals of the

same size). D1 and Dn correspond to the first and last batches of D, respectively. Yet, a batch

sequence b at time i is formally defined as seqi,b(D) = <Di−b+1, · · · , Di>. Indeed, a Batch Sequence

Size (BSS) equals b establishes a sliding window to explore all batch sequences of size b present in

D. It can be used to target both the detection and handling of concept drifts. It can be formalized

as swb(D). It corresponds to a matrix W of size (n − b + 1) by b. Each line wi in W is the i-th

BSS b in D. Given W = swb(D), ∀wi ∈ W , wi = seqi,b(D) Iwashita and Papa [2019]; Lu et al.

[2018].

From these concepts, it is possible to define three strategies to address concept drift: (i) baseline;

(ii) passive; (iii) active. In the baseline strategy, a model is built using the first batch. The

trained model is continuously used. When drift occurs, no action is done, and the trained model

might increase its error when predicting newer batches. Considering BSS equals one (b = 1), it

corresponds to Figure II.3.a, where the first batch (1) is used for training a model (indicated as a
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red square) for predicting all other batches (2 to n).

Figure II.3: Drift handling strategies considering a BSS equal to one (b = 1). (a): baseline; (b):
passive; (c): active

In a passive strategy, it is assumed that drift occurs all the time. Thus, considering again a

BSS equals one b = 1, batch i is used for training the model to predict batch i+ 1. This scenario

corresponds to Figure II.3.b. Models are constantly updated (they are presented in different colors).

The drawback of this approach is that it might retrain models, even if no drift occurred in the

dataset Iwashita and Papa [2019]; Gama et al. [2014].

Finally, in the active strategy, drift detection is applied whenever a new batch is introduced.

If no drift is detected, the previously trained model is still used. However, if drift is detected, a

new model is built using previous batches. Figure II.3.c depicts this scenario for b = 1. A new

model (in orange) is used if drift occurs between batches two and three. Otherwise, the previous

model (presented in red) is preserved. In this strategy, two extreme scenarios may occur. The

same model can be used from the first batch to the last one, resembling the baseline strategy. The

difference is that the decision is because no drift was observed. Conversely, continuous retraining

may occur between each pair of batches, resembling the passive strategy. Again, such a decision is

based on whether drift is observed whenever a new batch is introduced Iwashita and Papa [2019];

Gama et al. [2014].
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Chapter III Literature Review

Two literature reviews were conducted to identify relevant data science studies related to 1)

flight delay classification with the streaming approach; and 2) Brazilian database integration. For

both cases, there were deemed only papers (Journals and Conferences) entirely written in English.

The Scopus Database was selected due to having one of the most extensive and more accurate

scientific bibliographic repositories [Cavacini, 2015]. The queries considered titles, keywords, and

abstracts in February 2021.

III.1 Flight delay prediction with streaming approach

The review task aimed to identify relevant data science studies regarding flight delay classi-

fication with the streaming approach. After analyzing the main keywords related to the subject

and synonyms, the final string used was: (”flight delay”) and ( “classification” or “regression” or

“prediction”) and returned 141 papers, adding two studies through snowballing. The systematic

review flow is shown in figure III.2.

Figure III.1: Flight delay prediction review flow

From the 141 articles found, only 33 were related to the main subject, included after reading

titles and abstracts. Then, eight studies investigating only the regression task and 22 others that

did not use the streaming approach were excluded. Finally, three articles investigated flight delay
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classification with a streaming approach described in the present work.

Regarding training and testing, the majority of studies uses traditional scenario (Figure III.2)

[Chen et al., 2008; Khanmohammadi et al., 2014; Alonso and Loureiro, 2015]. However, this

approach does not consider the possible drifts that are usually present on flight data. Studies that

considered streaming approaches were deeply investigated, particularly those that contained drift

handling strategies [Kim et al., 2016; Khamassi and Sayed-Mouchaweh, 2014; Pesaranghader and

Viktor, 2016; Munoz Hernandez et al., 2019; Wang et al., 2019; Ai et al., 2019; Gui et al., 2020a].

In fact, only the work of Kim et al. [2016], Khamassi and Sayed-Mouchaweh [2014], Pesaranghader

and Viktor [2016] investigated the binary classifier problem.

Kim et al. [2016] used Deep Neural Networks to predict flight delays in U.S. flights using a

BSS of seven and nine days before prediction. An additional Deep Recurrent Neural Network was

trained to classify the critical delay status of each day. Since the scale used was flight routes, these

predictions were added to individual flight routes data and used as input in a Deep Neural Network.

Although the accuracy was above 80% in most experiments, key metrics such as f1, precision, and

recall were not reported. As no specific strategy was used to identify or deal with drifts actively,

we considered this approach a passive strategy.

Khamassi and Sayed-Mouchaweh [2014] proposed a new error active distance-based approach for

drift detection and monitoring named EDIST. Specifically, EDIST compares new data with existing

data and retrains the model if significant changes are found in the distribution. The classifier used

in this case was the Hoeffding Trees, and BSS was statistically adaptive. Active strategies of the

Drift Detection Method (DDM) and the Early DDM (EDDM) are both error-based methods. They

were implemented for comparison reasons. A baseline strategy of training with the first batch and

predicting the remaining data was tested as well. They have applied these techniques to many

synthetic and real-world datasets (including the U.S. flight dataset). However, only the accuracy

was used to report prediction performance.

Finally, Pesaranghader and Viktor [2016] tested many drift detection techniques with Naive

Bayes and Hoeffding Trees. Specifically, their work proposes using the Hoeffding Inequality The-

orem to test the difference in the probability of a given class between two BSS of 25 cases, char-

acterizing an active strategy. DDM, EDDM, Adaptive Sliding Window (ADWIN), Hoeffding Drift

Detection Method (HDDM), and Fast HDDM (FHDDM) active strategies were implemented for

comparison reasons. ADWIN implements statistically adaptive batch sizes, defined whenever a

drift is detected by average comparison. HDDM uses the Hoeffding inequality to compare distribu-

tions of batches. Finally, the proposed FHDDM uses Hoeffding inequality to compare errors from

batches and thus detect drifts. The reported accuracy was around 65% for all experiments with

aviation data. Fast Hoeffding Trees with Adaptive Windowing showed the best results for the U.S.
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flight datasets.

To the best of our knowledge and considering the systematic review presented here, no study

compared active and passive drift handling strategies for delay prediction in aviation. Moreover,

the influence of the scale of the data used to train the models was never investigated as an essential

factor for delay prediction. Besides accuracy, no other prediction performance indicators were

reported as well.

III.2 Flight Database Integration

A second literature review was conducted to identify relevant data science studies regarding

flight database integration. The main keywords and their synonyms were analyzed, and the final

string used was: (flight) AND (database) AND (weather) AND (integration) AND NOT (bird)

AND NOT (mammal) AND NOT (DNA) AND NOT (ran) AND NOT (urine) AND NOT (fertil-

izer) AND NOT (helicopter) AND ( LIMIT-TO ( DOCTYPE, ”ar” ) OR LIMIT-TO ( DOCTYPE,

”cp” ) ), returning 420 papers.

From the 420 articles found, 119 were related to commercial flight subjects and were included

after reading the title and abstract. From those, studies with flights trajectories datasets were

excluded. Only three articles used integrated datasets with commercial flights and weather data

from the U.S., China, India, SE Asia, Germany, and Brazil. Additionally, 28 papers were added

from the first string results, resulting in 31 studies. Moreover, only one study from these results

used an integrated dataset from Brazil.

Figure III.2: Flight Database Integration review flow

Regarding countries, U.S. was the most frequent, with 21 articles using integrated flights

datasets from there. However, all U.S. studies used the same sources to integrate the datasets
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used. From those 32 selected articles, the leading sources were described in the present work. A

summary of the final selected articles is presented in Table III.1.

The U.S. Department of Transportation was the most common source of data for the articles

that used the U.S. flights dataset with 16 citations. Specifically, regarding the other two, one was

a public dataset from Kaggle [Yanying et al., 2019] and the other did not state the source [Nigam

and Govinda, 2018]. Moreover, five articles integrated weather data to original flight data. From

those, four were from National Oceanic and Atmospheric Administration (NOAA) [Chen and Li,

2019; Choi et al., 2016, 2017; Kalyani et al., 2020; Chandramouleeswaran et al., 2018] and one from

World Weather Online (WWO) API [Thiagarajan et al., 2017].

Other countries studied were China with six articles, Brazil with two articles, and one article to

India, Iran, and Germany. One study used data from Southeast Asia that investigated Indonesia,

Vietnam, Cambodia, Malaysia, Singapore, Laos, Myanmar, Thailand, Philippines, Brunie, and

Timor-Leste. Specifically, regarding China articles, the sources were the airports or online websites.

Only two of those used weather data from the same source [Gui et al., 2020b; Liu et al., 2020]. The

two articles that investigated the Brazilian air system used the Civil National Aviation Agency

(ANAC) [Arnaldo Scarpel and Pelicioni, 2018] for flight data. One used weather data from NOAA

[Moreira et al., 2018b] Moreover, Iran flight data source was a non-identified airline and the Iran

Meteorological Organization for weather [Khaksar and Sheikholeslami, 2019]. Germany’s was the

Frankfurt Airport for flights and weather [Rehm and Klawonn, 2005]. The article that investigated

11 countries from Southeast Asia used Automatic Dependent Surveillance-Broadcast (ADS-B) for

flight information [Guleria et al., 2019b].

Finally, it was clear that the primary sources for the flight came from government institutions

that regulate air traffic. Moreover, NOAA weather data was the most frequent source for this

kind of data. To the best of our knowledge and considering the literature review presented here,

only two studies used an integrated dataset with commercial flight and weather data from Brazil

[Moreira et al., 2018b; Sternberg et al., 2016].
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Table III.1: Summary table of selected studies.

Author Year Country Source Weather

Anderson et al 2019 US FAA No
Baluch et al 2017 US BTS No
Chen e Li 2019 US BTS NOAA
Choi et al 2016 US BTS NOAA
Choi et al 2017 US BTS NOAA
Ganesan et al 2010 US ASPM No
Kalyani et al 2020 US BTS NOAA
Manna et al 2017 US BTS No
Meel et al 2020 US BTS No
Natarajan et al 2018 US BTS No
Nigam e Govinda 2017 US N/A N/A
Saadat e Moniruzzaman 2019 US BTS No
Tan et al 2018 US ASA No
Teja et al 2019 US BTS No
Thiagarajan et al 2017 US BTS WWO
Yanying et al 2019 US Kaggle No
Chandramouleeswaran e Krzemien 2018 US BTS NOAA
Fleurquin et al 2013 US BTS No
Sridhar et al 2009 US BTS No
Chen e Yan 2008 China N/A N/A
Ding 2017 China Umetrip.com No
Gu et al 2020 China Shenzhen Airport No
Gui et al 2020 China Tianqihoubau.com Ctrip.com
Liu et al 2020 China Tianqihoubau.com Ctrip.com
Yu et al 2019 China Beijing PEK Airport No
Haripriya e Ramyasree 2020 India N/A N/A
Khaksar e Sheikholeslami 2019 Iran Iran Airline IRIMO
Rehm e Klawonn 2005 Germany Frankfurt Airport Frankfurt Airport
Scarpel e Pelicioni 2018 Brazil ANAC No
Moreira et al 2018 Brazil ANAC NOAA
Guleria et al 2019 SE Asia ADS-B No
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Chapter IV Methodology

This dissertation aims to study drift handling strategies. Specifically, three different active

strategies and one passive strategy were investigated. The selected techniques showed promising

results in past studies but were never evaluated with flight data sets. Therefore, our analysis was

based on this comparison (research question one). A second goal is to investigate drift handling

strategies under the influence of different scales of training data: System-Based (SB) and Airport-

Based (AB). In other words, how the scales interfere with drift handling strategies (research

question two). It is worth mentioning that, to the best of our knowledge, the scale of training data

was never analyzed in previous studies.

In this chapter, the general methodology (named Stealthy Models) used in the present work

is described (Chapter ??). It comprises three steps: 1) Preprocessing; 2) Drift Detection and

Handling; 3) Model training and evaluation. Step 1 (Chapter IV.0.2) explains the preprocessing

methods implemented. Step 2 (Chapter IV.0.3) consists of all drift-related strategies and techniques

implemented. Finally, step 3 (Chapter IV.0.4) shows how the models are trained.The following

subsections explain the general principle of Stealth Models and each step.

IV.0.1 Stealthy Models

Algorithm 1 describes the methodology used for flight delay prediction with concept drift. It

requires seven parameters: D, airport, mlm, t, b, dd, and dh. The parameter D corresponds to the

input dataset. The parameter airport identifies a single airport if the AB scale is used, or nil if the

SB is used. Parameter mlm corresponds to the machine learning method. Parameter t is related to

the time, and b corresponds to the size of the batch sequence. Finally, dd and dh correspond to the

drift detection method and drift handling strategy, respectively. These parameters are described

in Table IV.1.

The first step of Stealthy 1 does the preprocessing (function preprocess). If airport is different

from nil, the dataset D is filtered for that airport. Otherwise, it studies the entire SB. All steps of

data preprocessing are described in Chapter IV.0.2. Line 4 implements a loop through all batches

available within the dataset time frame available.

Lines 5 and 6 computes the drift detection and handling. It considers the drift detection method

(dd), drift handling strategy (dh), and the two batch sequences (Di and Dj). The mechanics of drift
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Algorithm 1 General methodology

1: function Stealthy(D, airport,mlm, t, b, dd, dh)
2: Dp ← preprocess(D)
3: results← ∅
4: for each i ∈ t do
5: train,Di ← checkDrift(Di, airport, t, b, dd, dh)
6: mdl← cloakModel(train,mlm,Dj)
7: results← results ∪ predictEvalDelays(mdl,D, t)
8: end for
9: return results

10: end function

Table IV.1: Parameters used

Name Description [values]

D Dataset with flight and weather data
airport Airport code for AB analysis; or nil, for SB analysis
mlm Machine learning models
t Time (yearly based time slices)
b BSS for training
dd Drift detection method
dh Drift handling strategy

action are described in Chapter IV.0.3. The output of drift action is assigned to train, indicating

if training is required at time t. If required, a machine learning method is trained using the batch

sequence Di (Line 6). The training process is described in Chapter IV.0.4. The output is a trained

model (mdl). The model is stored for the selected airport, mlm, dd, and dh. If no training is

required, previously trained model mdl is retrieved for the selected airport, mlm, dd, and dh. Line

7 adds the results from predictEvalDelays in a dataset. After batches are processed, the dataset

with the results is returned.

IV.0.2 Preprocessing

In our proposed workflow, the first step is to preprocess the data. The function preprocess

expects a dataset with a binary delay feature and a DateTime feature to calculate the weekly

proportion of delays used for drift checking. Then, the week number within the year is created to

group and aggregate by the proportion of delayed flights. Statistical tests for drift detection are

performed using the weekly values of delay proportion.

Regarding data cleaning, the preprocessing function removes cases with negative or too long

durations (more than 19h) as they are considered errors, considering this flight duration in BFS is

not possible. Cases with missing delay values or estimated departure dates are also removed. For

other features, mode imputation is used with categorical ones and mean for numeric data.

Finally, the preprocessing function returns a full preprocessed dataset with a binary delay
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feature. The new feature of the week number is also returned with the dataset. If an airport is

passed, the dataset is reduced to the specific flights that departed from that airport. If nil is passed

as airport, the entire dataset with all airports is returned.

IV.0.3 Drift Detection and Handling

Regarding drift detection and handling, three methods and three strategies for drift detection

and handling, respectively, were implemented. The drift handling strategies were the baseline,

active, and passive drift handling strategies (Figure II.3). The baseline corresponds to training

using the first batch sequence to predict all other batches. The passive strategy trained a model for

each batch sequence to predict the next batch. Finally, the active strategy compared the current

training batch sequence with the previous one to detect a drift. In case of not having drift, the

previously trained model is chosen. Otherwise, a new model is trained using the current training

batch sequence. The prediction of the next batch is made using the chosen model. All drift handling

strategies were tested for the SB and AB scales. The function that implements all drift features

and returns whether a model should be trained and the corresponding training data is described

in Algorithm 2.

For active strategies, we implemented three methods of drift detection based on data distribu-

tion analysis. They evaluate the occurrence of drifts according to the proportion of delays (p(Y ))

presented in two consecutive batch sequences (Di and Di−1). The three methods were (i) mean, (ii)

variance, and (iii) mean/variance. In mean and variance, respectively, the mean and variance

of both training batches sequences were compared for a statistically significant difference. Finally,

in mean/variance, a significant difference in either mean or variance indicates a drift. Normality

was tested with Kolmogorov Smirnov, and Shapiro-Wilk tests Yap and Sim [2011]. Most commonly

used tests for comparison of means and variance were used. Specifically, the mean t-test was used

for normal distributions, and the F test was used for the variance. When distributions were not

normal, the Wilcoxon test was used for the mean, and the Levene test was used for the variance.

The p-value used was 0.05 for all tests.

The function checkDrift (Algorithm 2), shows how drift handling and detection are imple-

mented. First, the two most recent batches considering the t parameter are created from the full

dataset D. Then, the drift detection (dd) and drift handling (dh) parameters are used to check the

presence of drifts between the two most recent batches. Finally, if drift is detected, the train vari-

able is returned True or False otherwise. The variable Di is also returned to be used in trainModel

function.
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Algorithm 2 Drift Detection Function

1: function checkDrift(D, airport, t, b, dd, dh)
2: D ← preprocess(D, airport)
3: Di ← selectBatchesTrain(D, t, b)
4: Dj ← selectBatchesTrain(D, t− 1, b)
5: train← actDrift(dd, dh,Di, Dj)
6: return train,Di

7: end function

IV.0.4 Model training and evaluation

In our proposed approach, a model is set for each step i ∈ t. Algorithm 3 was used for model

training/loading. The function cloakModel receives the parameters from the checkDrift function

as well as the airport (airport), machine learning model (mlm), time (t), BSS (b), drift detection

method (dd) and drift handling strategy (dh). cloakModel is a straightforward function that

trains a new model if train is true, or loads the last model otherwise. The trainModel function

also implements a grid search with a 10% random sample of the batch data used for training to

optimize models hyperparameters.

Algorithm 3 Model Setting Function

1: function cloakModel(train,D, airport,mlm, t, b, dd, dh)
2: if train then
3: mdl← trainModel(mlm,Di)
4: storeModel(mdl, airport,mlm, dd, dh)
5: else
6: mdl← loadModel(airport,mlm, dd, dh)
7: end if
8: return mdl
9: end function

After model training, the predictions are made and prediction performance is evaluated with a

specific function predictEvalDelays (Algorithm 4). This function predicts the next batch (t + 1)

and evaluate the prediction performance. Four performance metrics described at Chapter ?? were

implemented: 1) accuracy; 2) precision; 3) recall; 4) f1.

Algorithm 4 Evaluation Function

1: function predictEvalDelays(mdl,D, t)
2: Dt+1 ← selectBatchTest(D, t+ 1)
3: results← test(mdl,Dt+1)
4: return results
5: end function
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Chapter V Experimental Evaluation

Considering the two main research questions proposed, chapters V.0.2, V.0.3 and V.0.4 are

driven to answer how do drift handling strategies influence the prediction performance of delays.

Chapter V.0.5 answers if different scales change the results of drift handling strategies. Finally,

Chapter V.0.6 shows the results of the Time Efficiency analysis.

V.0.1 Experimental Setup

Considering the general methodology described in Algorithm 1 and parameters described in

Table IV.1, Algorithm 1 describes the entire concept drift analysis. It executes the methodology

considering the cross-product for all possible values of the parameters. The entire experimental

evaluation was executed in one month on an i7 processor with 16 cores with 128GB of RAM and

a Ubuntu 20.04 operating system.

The dataset used was the Brazilian Flights Dataset ?. It is an integrated dataset containing

ANACs flight operations ANAC [2017] with ASOS airport weather data ASOS [2019]. It contains

data from 2000 to 2018. Three features were created. For destination, the state of each airport

was used instead of the airport name. According to international standards for flight delay, the

binary variable for flight delay was set with a 15 minutes limit. The cases where departure delay

was higher than 19 hours or missing were considered errors and excluded from the analysis.

The batches used as test sets varied from 2004 to 2018 for all methods to compare different BSS

for training (b from 1 to 3). The minimum value for BSS is one year to include yearly seasonality

in each trained classifier, as we aim to create models that incorporate seasonal components of

streaming data. The batches started in 2004, so all BSS may predict the same years, considering

that the dataset started in 2000. This approach makes it possible to compare all combinations

within the same period.

For the sake of scale comparison, the data used in this dissertation is filtered for the top ten

airports with the highest number of departing flights, and only domestic flights were evaluated.

Graphical representation of the location of airports is shown in Figure V.1, and descriptive in-

formation is shown in Table V.1. For the SB analysis, the filtered dataset is studied altogether.

Conversely, for AB analysis, each one of the top ten airports is studied separately.

Regarding classifiers, four methods were used: NB, KNN , RF , and NN , as they were fre-
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Figure V.1: Location of ten main Brazilian airports

Table V.1: Top ten Brazilian airports studied

Code City State

SBBR Braśılia
Distrito Federal

(DF)
SBSV Salvador Bahia (BA)

SBCT
São José dos

Pinhais
Paraná (PR)

SBGL Rio de Janeiro Rio de Janeiro (RJ)

SBPA Porto Alegre
Rio Grande do Sul

(RS)
SBKP Campinas São Paulo (SP)
SBGR Guarulhos São Paulo (SP)
SBSP São Paulo São Paulo (SP)
SBCF Belo Horizonte Minas Gerais (MG)
SBRJ Rio de Janeiro Rio de Janeiro (RJ)

quently used in other similar studies (Chapter ??). Each technique was replicated ten times for each

predicted year and BSS with 1/10 of the entire data to reduce the impact of outlier results from RF

and NN, which are not deterministic and optimize execution time through parallelism. Moreover,

the 9/10 for each execution was predicted and evaluated to cross-validate the models. For Naive

Bayes tests, only one model was trained. A grid search was used to find the best hyperparameters

for KNN , NN , and RF .

The hyperparameters were the number of hidden neurons for NN , the number of randomly

selected predictors for RF , and the k parameter for KNN . Cross-validation was used to avoid

overfitting, with the number of folds set to 10, which is the default value Schaffer [1993]. Moreover,

to reduce complexity, the optimized hyperparameters were computed for all batches with 10% of

the batch data.

The entire process was implemented in R for both preprocessing and machine learning methods

Han et al. [2011]; James et al. [2013]. These are available as R packages (caret, nnet, randomForest,

e1071, dplyr, PerformanceAnalysis).
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Experimental evaluation

1: A← {nil, SBBR,SBPA, SBSV, SBGL, SBCT, SBKP, SBGR,SBCF, SBRJ, SBSP}
2: MLM ← {NB,KNN,NN,RF}
3: T ← {2003, · · · , 2018}
4: B ← {1, 2, 3}
5: DD ← {mean, variance,mean/variance}
6: DH ← {baseline, passive, active}
7: results← ∅
8: for each a ∈ A,mlm ∈MLM, t ∈ T, b ∈ B, dd ∈ DD, dh ∈ DH do
9: results← results ∪methodology(D, a,mlm, t, b, dd, dh)

10: end for
11: return results

V.0.2 Comparison of Drift Detection Methods

The entire experimental evaluation execution considered the period from 2004 to 2018. In a

yearly-based analysis, the total number of possible drifts is 15. The number of drifts is shown in

Table V.2 for SB analysis. They are presented according to BSS.

Table V.2: Number of detected drifts for SB by BSS

BSS
(training:test)

mean variance
mean/variance

1:1 9 2 10
2:1 11 5 11
3:1 8 4 8

Considering mean and mean/variance methods, the average number of drifts over the entire

period was 9.33 and 9.66, respectively. These numbers correspond to 62.2% and 64% of all possible

drifts (15), which indicates a high drift prevalence between batches for all BSS sizes. Moreover,

the variance method showed an average of 3.66 (24%). Overall, the results show a high number

of drifts in the dataset. Therefore, most drifts may be related to the increase or decrease of delays

proportions between weeks, but not with the variance changes of this proportion.

V.0.3 Comparison of Drift Handling Strategies

A top-k analysis of the best combinations of parameters (drift handling strategy, drift detection

method, classifier, and BSS) was also executed. First, the best combinations of parameters are

ordered by f1 and divided into groups of drift handling/drift detection combinations. Then, for each

group, the accuracy, recall, precision, f1 and frequency are calculated for each top-k combinations

of each group. The main results are summarized in Figure V.2.

Considering the accuracy (depicted in Figure V.2. A.), it is possible to see that Active strategies

have higher or tied best scores more frequently than all the other strategies. Specifically, the Active

strategy with drift detection based on mean seemed to have higher scores.
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Figure V.2: Results of top-k analysis ranked by f1. Mean performance for accuracy (A), recall
(B), precision (C), f1 (D). Frequency of each drift handling strategy (E).

Regarding the recall (depicted in Figure V.2. B.), Passive and Active strategies showed a

higher performance for almost all k values used when compared to baseline strategy. Specifically,

the Passive strategy showed the best performance throughout all k values. For Active strategies,

all drift detection methods showed similar results. These results may indicate that new delay

mechanisms may arise with time and, for that reason, only the strategies that have some adaptation

to drifts may identify these cases, which may increase recall score.

Regarding the precision (depicted in Figure V.2. C.),Passive and baseline strategies showed

higher precision scores until the k = 25. From there, passive precision decreased, and baseline

showed higher scores. Regarding Active strategies, all drift detection methods had similar scores.

In f1 analysis (depicted in Figure V.2. D.), the passive strategy showed the higher values until

k = 31. Active strategies showed lower values than baseline. These results may indicate that more

retrains may be better for f1 performance for datasets with a high number of drifts. Specifically,

considering recall and precision scores, the main difference may be in identifying new mechanisms

of delayed flights, which may be possible with passive and active strategies.

The most frequent strategies among top-k were passive and baseline (depicted in Figure V.2.

E.). Specifically, for the top-10, the difference was 10% and decreasing for higher values of k. These

results may indicate that the baseline can offer high-scoring predictions more frequently. However,

passive strategies may show higher performance scores. These results indicate that preserving

baseline is essential to monitor the performance of active and passive strategies.

Although it was possible to think accuracy was good for active strategies, passive strategies

showed good recall scores, and baseline strategies showed good precision. However, considering

most past studies, if we analyzed only the accuracy, significant results about active and passive
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predictive performance would not be known.

V.0.4 BSS and Classifiers

Regression Modeling

To analyze the prediction performance of all parameters used in Algorithm 1, we conducted

multiple linear regressions for each airport with the Drift Strategy-Detection combination, classifier,

and BSS to estimate F1. After running all experiments, each result was stored as a row with columns

for each category of each parameter. Specifically, each category of each categorical variable was

considered a binary feature (classic one-hot encoding), and the Baseline Drift Handling Strategy,

Naive Bayes Classifier, and one-year BSS were used as intercept (all zero columns). The final table

used to train the linear regression had ten columns as shown in Table V.3.

Table V.3: Binary features used to train the linear regression model.

Feature Parameter Used as reference

Baseline Drift Handling *
Passive Drift Handling

Active based on Mean Drift Handling
Active based on Variance Drift Handling

Active based on Mean/Variance Drift Handling

BSS1 BSS *
BSS 2 BSS
BSS 3 BSS
BSS 4 BSS

Naive Bayes Classifier *
K-Nearest Neighbors Classifier

Random Forests Classifier
Neural Networks Classifier

With the one-year BSS used as a reference, positive or negative betas mean higher positive or

negative impacts on f1 when compared to one year BSS. This interpretation may be used for Drift

Handling and Parameters as well. Considering i independent variables (all parameters used to

simulate the combinations), the linear regression would have i+ 1 betas (one for each independent

variable x) that are combined in a linear equation (Equation V.1) to estimate the dependent variable

y (f in our case). These betas are optimized using a technique called least squares, indicating the

amount of change in f1 when that value is used. The linear regression equations are shown below

Groß [2012]. This analysis made it possible to understand the impact of each technique on f1

scores.

f1 = (β0) + (β1)x1 + (β2)x2 + ...(βi)xi (V.1)

Finally, each coefficient value is tested to check if it could be significant or by chance Groß
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[2012]. Significant betas may indicate that the corresponding parameter has a significant impact

over f1 compared to its reference option.

Comparison of BSS

The Betas results of linear regression models are shown in Figure V.3. Regarding BSS, the

linear regression analysis showed that only SBSV, SBSP, SBRJ, and SBBR had significant betas

for BSS greater than one. In those cases, all the values were negative, meaning that using a BSS

higher than one would mean a lower f1 score. Specifically, the decreases caused by these BSS

options would be around one percent in f1. These results may indicate that increasing the size

may not be relevant to the f1 score, and the one-year size may be the best choice considering the

values we tested. These results are shown in Figure V.3.

Figure V.3: Betas from Linear Regressions modeled for each BSS parameter used. ∗ = p < 0.05.
∗∗ = P < 0.01

Comparison of Classifiers

Using the same Regression analysis from Chapter V.0.4 to understand the influence of each

classifier in f1, the NB classifier was used as a reference. Among classifiers, KNN, RF, and NN

were always significant when compared to the NB reference. Specifically, the KNN showed similar

results to reference NB, with small positive and negative Betas. NN and RF were almost always

better for f1 than NB and KNN. The Beta for NN was negative only in SBPA airport, but all

other cases showed significant positive values. Considering an RF/NN comparison, the difference

in Betas was minimal, indicating that both may impact f1 in very similar ways.
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Figure V.4: Betas from Linear Regressions modeled for each classifier parameter used. ∗ = p < 0.05.
∗∗ = P < 0.01

These results may indicate that the classifier used may be necessary when predicting flight

delays in BFS. Specifically, more complex models (NN and RF) may have better results. The

differences between NN and RF classifiers were minor, and it may not be possible, with the present

results, to ascertain that one of them has better results.

Considering the other two classifiers (NB and KNN), the results were similar. Specifically,

although the Betas from KNN were always significant, they were only positive with four airports

(SBRJ, SBGR, SBCF, SBBR) and BFS. These results may indicate that between NB and KNN

classifiers, it is not clear which of those could give better results.

V.0.5 Comparison of BS and AB approaches

As shown in Table V.4, the average number of drifts for the AB scale was very similar to SB.

The most sensitive methods were also mean and mean/variance, with 8.6 (57% of all possible

drifts) and 9.1 (61% of all possible drifts). The variance method was again less sensitive to drifts

and showed a 4.4 average drifts (29.3% prevalence). These results indicate that the AB scale may

not influence the number of drifts detected compared to the SB scale.

For a more in-depth analysis, Figure V.5 presents the metrics for all airports. Six airports

showed better results than the BS approach. The AB approach seemed to improve prediction

performance for SBRJ, SBCF, SBKP, SBPA, SBSV, and SBSP. Moreover, SBGL, SBCT, SBGR,

and SBBR showed similar f1 results. SBBR was the only case with worse results than BFS. These

results may indicate that performance improvements with the AB approach may be more likely to
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Table V.4: Number of Drifts by each Airport, Drift Detection Method, and BSS.

Airport
mean variance mean/variance

1 2 3 1 2 3 1 2 3

SBBR 8 8 9 3 4 5 8 8 9
SBCF 9 10 9 2 4 5 9 10 9
SBCT 8 8 8 1 4 5 8 8 8
SBGL 8 10 9 2 4 6 8 10 9
SBGR 12 8 6 6 7 5 12 10 6
SBKP 11 11 10 5 8 4 12 13 10
SBPA 10 10 9 5 5 7 12 11 11
SBRJ 6 4 3 3 5 3 8 6 3
SBSP 9 7 7 3 3 3 11 7 7
SBSV 10 11 10 4 5 6 10 11 11

Mean 9.1±
1.7

8.7±
2.2

8.0±
2.2

3.4±
1.6

4.9±
1.5

4.9±
1.3

9.8±
1.8

9.4±
2.1

8.3±
2.5

occur and that a BFS model may be a good baseline for delay prediction.

Figure V.5: Prediction performance metrics for airports.

Finally, by analyzing the data from Figures V.4, V.5 and Table V.2, it is possible to understand

that, generally, the best scale of data to use may be the AB when it comes to model performance.

However, the SB scale may help point toward airports needing more investigations in model train-

ing, being useful as a baseline model.
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V.0.6 Time Efficiency Evaluation

To analyze the time efficiency, a new regression model was trained with the execution time as a

dependent variable instead of f1. This approach made it possible to have similar insights about the

importance of each technique used to time efficiency. Considering execution time, the baseline was

the fastest option since it only trains once. Moreover, only four airports showed significance for drift

strategy/detection method combinations. Specifically, the Passive was the category that increased

the execution time the most. These results indicate that, although the Passive and Active strategies

may train more than once, the overall increase in execution time was not significant compared to

baseline for most airports.

Figure V.6: Betas from Linear Regressions modeled for each Drift Handling parameter used. ∗ =
p < 0.05. ∗∗ = P < 0.01

Considering Execution Time, the regression analysis show that the training time tends to be

more significant as the BSS increases. This result is expected considering that the number of data

points increases. However, considering that BSS higher than one does not significantly increase the

prediction performance, an essential gain in execution time is possible.

Regarding execution performance, all models increased the execution time significantly when
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compared to NB. Specifically, NN was the slower option. Moreover, the Random Forests model

shows betas of a quarter of NN’s. These results may indicate that RF can be faster than NN,

which is an essential game-changer since these two classifiers showed similar results in prediction

performance.

Figure V.7: Betas from Linear Regressions modeled for each classifier parameter used. ∗ = p < 0.05.
∗∗ = P < 0.01
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Chapter VI Conclusions

In this paper, we analyzed different types of drift handling strategies in aviation. Two research

questions were answered to achieve the main objective of this study: (i) How do drift handling

strategies influence the prediction performance of delays? (ii) Do different scales change the results

of drift handling strategies? We analyzed different strategies and scales and compared performances

with linear regressions and a top-k analysis.

It was observed that drift handling strategies are relevant. Their impact varies according to

the scales used. The experimental evaluation was done using a dataset that integrates weather and

flight data from the Brazilian system. Moreover, the passive and active strategies showed better

recall scores. For f1 scores, the strategies had similar results, with the Passive strategy showing

slightly better results. It may be related to the high prevalence of drifts. In this case, strategies

that always retrain machine learning models offer better results than those that train only once.

However, extensive testing is recommended. Nonetheless, choosing machine learning models may

have a higher impact on f1 than drift handling strategies.

As limitations, the first one is the drift detection methods used in the experimental evaluation.

They were focused only on changes P (Y ). Future studies may consider testing error-based drift

handling strategies, investigating ensemble drift detection methods, implementing more robust

classifiers (CNN, LSTM, and others), check drift handling strategies under different thresholds for

flight delays, and evaluate other metrics such as the ROC curve.
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