
HBRKGA: A POPULATION-BASED HYBRID APPROACH TO HYPERPARAMETER

OPTIMIZATION FOR NEURAL NETWORKS

Marcello Alberto Soares Serqueira

Dissertation submitted to the Graduate Pro-
gram of the Federal Center for Technological
Education of Rio de Janeiro, CEFET/RJ, as
partial fulfillment of the requirements for the
degree of master.

Advisor: Eduardo Bezerra, D.Sc.
Co-advisor: Pedro González, D.Sc.

Rio de Janeiro,

November 2020

HBRKGA: A POPULATION-BASED HYBRID APPROACH TO HYPERPARAMETER

OPTIMIZATION FOR NEURAL NETWORKS

Dissertation submitted to the Graduate Program of the Federal Center for Technological
Education of Rio de Janeiro, CEFET/RJ, as partial fulfillment of the requirements for the
degree of master.

Marcello Alberto Soares Serqueira

Examining jury:

Presidente, Eduardo Bezerra, D.Sc., CEFET/RJ

Coorientador, Pedro González, D.Sc., CEFET/RJ

Prof. Diego Brandão, D.Sc., CEFET/RJ

Prof. Igor Machado, D.Sc., IC/UFF

Rio de Janeiro,

November 2020

Ficha catalográfica elaborada pela Biblioteca Central do CEFET/RJ

Elaborada pela bibliotecária Tania Mello – CRB/7 nº 5507/04

 S486 Serqueira, Marcello Alberto Soares
 Hbrkga: a population-based hybrid approach to hyperparameter
 optimization for neural networks / Marcello Alberto Soares
 Serqueira — 2020.
 51f : il. color. , enc.

 Dissertação (Mestrado) Centro Federal de Educação
 Tecnológica Celso Suckow da Fonseca , 2020.
 Bibliografia : f. 47-51
 Orientador: Eduardo Bezerra
 Coorientador: Pedro Gonzalez

 1. Aprendizado de máquina. 2. Algoritmos genéticos.
 3. Estimativa de parâmetros. 4. Redes neurais. I. Bezerra, Eduardo
 (Orient.). II. Gonzalez, Pedro (Coorient.). III. Título.

 CDD 006.31

DEDICATION

This work is dedicated to my family, my girlfriend, my

friends and my teachers who teach me so much over

the years studying at CEFET/RJ.

ACKNOWLEDGMENTS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Brasil (CAPES) - Código de Financiamento 001

Agradece-se ao CNPq pelo financiamento parcial desta pesquisa.

Agradece-se também as contribuições dos Professores Eduardo Bezerra e Pedro

González.

RESUMO

Nos últimos anos, grandes quantidades de dados estão sendo geradas e a ne-
cessidade de recursos computacionais continua crescendo. Este cenário levou a um
ressurgimento do interesse em redes neurais artificiais. Um dos principais desafios no
treinamento de modelos eficazes de redes neurais é encontrar uma boa combinação de
hiperparâmetros a serem usados. De fato, a escolha de uma abordagem adequada para
pesquisar o espaço do hiperparâmetro influencia diretamente a precisão do modelo resul-
tante da rede neural. Abordagens comuns para busca de hiperparâmetros são a Busca em
Grade, a Busca Aleatória e Busca por Otimização Bayesiana. Existem também métodos
baseados em população, como a CMA-ES. Neste projeto, apresentamos o HBRKGA,
uma nova abordagem baseada na população para a optimização de hiperparâmetros.
O HBRKGA é uma abordagem hı́brida que combina o Algoritmo Genético de Chaves
Aleatórias Viciadas com uma técnica de Random-Walk para pesquisar o espaço de hiper-
parâmetros de forma eficiente. Foram realizados vários experimentos computacionais
em oito conjuntos de dados diferentes para avaliar a eficácia da abordagem proposta.
Os resultados mostraram que o HBRKGA conseguiu encontrar configurações de hiper-
parâmetros que superaram (em termos de qualidade preditiva) os métodos de base em
seis dos oito conjuntos de dados, mostrando também tempo de execução razoável.

Palavras-chave: Aprendizado de Máquina; Otimização de Hiperparâmetros; Algoritmos
Genéticos; Redes Neurais

ABSTRACT

In recent years, large amounts of data have been generated, and computer power
has kept growing. This scenario has led to a resurgence in the interest in artificial neural
networks. One of the main challenges in training effective neural network models is finding
the right combination of hyperparameters to be used. Indeed, the choice of an adequate
approach to search the hyperparameter space directly influences the accuracy of the result-
ing neural network model. Common approaches for hyperparameter optimization are Grid
Search, Random Search, and Bayesian Optimization. There are also population-based
methods such as CMA-ES. In this paper, we present HBRKGA, a new population-based
approach for hyperparameter optimization. HBRKGA is a hybrid approach that combines
the Biased Random Key Genetic Algorithm with a Random Walk technique to search the
hyperparameter space efficiently. Several computational experiments on eight different
datasets were performed to assess the effectiveness of the proposed approach. Results
showed that HBRKGA could find hyperparameter configurations that outperformed (in
terms of predictive quality) the baseline methods in six out of eight datasets while showing
a reasonable execution time.

Keywords: Machine Learning; Hyperparameter Optimization; Genetic Algorithms; Neural
Networks

LIST OF FIGURES

Figure 1 – The Grid layout for hyperparameter optimization problem. Each

point represent a solution of a combination of hyperparameters

that is executed sequentialy. This strategy finds the best solution

(red point) after running a sequential path. 8

Figure 2 – The Random layout for hyperparameter optimization problem.

Each point represents a solution with random hyperparameters

values that is randomly generated. This strategy finds the best

solution (red point) after some random solutions trials. 9

Figure 3 – The prior (left) and posterior (right) function from Gaussian Pro-

cess. As the points are observed, the Gaussian process is fitted,

making it possible for the acquisition functions to evaluate new

solutions. Image adapted from [Rasmussen and Williams, 2006]. 10

Figure 4 – Kernels examples to Gaussian Process. Image created using the

source code https://bit.ly/2LcSq6x. 11

Figure 5 – Perceptron model presented by Rosenblatt [1958]. 14

Figure 6 – Example of the basic architeture of MLP. 16

Figure 7 – Dataset splitted into training, validation and test subsets.. 17

Figure 8 – Plot example of gradient descent on the function z = x2 + 2y2. 18

Figure 9 – Activation function plots. The top left represents the sigmoid,

followed by the TanH on the side. At the bottom the ReLU. 21

Figure 10 – Example of mapping (i.e., encoding or decoding) between a vector

of hyperparameter values (γ) and a vector of BRKGA key values

(γ̄). 27

Figure 11 – HBRKGA overview. Individuals of the current generation p are cre-

ated according to BRKGA rules. Then each individual is possibly

refined in the Random-Walk procedure. 31

https://bit.ly/2LcSq6x

Figure 12 – MNIST and its variations. 33

Figure 13 – Tall and wide rectangle example. 34

Figure 14 – Fashion-MNIST images example. 34

Figure 15 – F1 mean evolution curve of each method for each dataset. 39

Figure 16 – HBRKGA behavior with (HBRKGA(3)) and without (HBRKGA(0))

the Random-Walk component. HBRKGA(3) reached the mean

F1 metric for 10 runs 0.98± 0.00285 while HBRKGA(0) reached

0.975± 0.00195. 43

LIST OF TABLES

Table 2 – Hyperparameter range values for each dataset and its variations. 36

Table 3 – HBRKGA parameters settings. 37

Table 4 – Average F1 results for 10 experimental runs for each dataset. The

best results are presented in bold face. The last line presents the

average results considering all ten runs. 38

Table 5 – p-values resulting from applying the Wilcoxon test (α = 0.05) to

compare the baseline methods (Grid Search, Random Search,

Bayesian Optimization, and CMA-ES) to HBRKGA. 40

Table 6 – Average time results (in seconds) for 10 experimental runs. The

best results are presented in bold face. The last line (labelled AVG)

presents the average results considering all ten runs. 41

LIST OF ALGORITHMS

Algorithm 1 – RandomWalk(γ̄,nmov,A,X , SA) 28

Algorithm 2 – HBRKGA(qind, qe, qm, n, φa,nmov,A,X , SA) 30

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

BRKGA Biased Random Key Genetic Algorithm

GD Gradient Descent

MLP Multilayer Perceptron

MNIST Modified National Institute Of Standards And Technology

MSE Mean Square Error

PCA Principal Components Analysis

RELU Rectified Linear Unit

RKGA Random-key Genetic Algorithms

SGD Stochastic Gradient Descent

TANH Hyperbolic Tangent

CONTENTS

I Introduction 1

I.1 Contextualization 1

I.2 Motivation 2

I.3 Objectives 3

I.4 Methodology 3

I.5 Chapters Organization 5

II Background 6

II.1 Hyperparameter Optimization Strategies 6

II.1.1 Grid Search 7

II.1.2 Random Search 8

II.1.3 Bayesian Optimization 9

II.1.4 Covariance Matrix Adaptation Evolution Strategy 11

II.2 BRKGA 12

II.3 Artificial Neural Networks 14

II.3.1 Perceptron 14

II.3.2 Multilayer Perceptron 15

II.3.3 Gradient Descent 17

II.3.4 Common Neural Network Hyperparameters 19

III Related Work 23

IV Hybrid Biased Random-Key Genetic Algorithms 25

IV.1 Problem Statement 25

IV.2 Encoding and decoding candidate solutions 26

IV.3 Random-Walk procedure 27

IV.4 HBRKGA main procedure 29

V Experiments 32

V.1 Datasets 32

V.1.1 MNIST 32

V.1.2 Rectangles 33

V.1.3 Fashion-MNIST 34

V.1.4 The Cosmic Evolution Survey 35

V.2 Evaluation Metric 35

V.3 Experimental Settings 36

V.4 Experimental Results 37

V.4.1 Predictive Quality 38

V.4.2 Computational Performance 41

V.5 Ablation Study 42

VI Conclusion 44

VI.1 Retrospective Analysis 44

VI.2 Contributions 45

VI.3 Future Work 45

Referências Bibliográficas 46

1

Chapter I Introduction

I.1- Contextualization

Artificial Neural Networks (ANN) are an old approach to Machine Learning that

have witnessed a renewed interest both from industry and academia in recent years

[Goodfellow et al., 2016a; LeCun et al., 2015]. This interest is motivated by cases of

success in several application domains, such as audio recognition, image recognition, and

language translation. A particular advancement in the field of ANN in the last decade is

related to the fact that the research community has been gradually learning to deal with

the engineering problem of training neural networks comprised of several hidden layers.

This renaissance of neural networks has been called Deep Learning [LeCun et al., 2015].

A prerequisite to training a neural network model is to come up with a particular

combination of values of hyperparameters, such as the number of hidden layers, the

number of artificial neurons in each, the learning rate, the activation functions to be used,

to name a few. Only after a particular set of hyperparameters has been chosen can the

training process tune the parameters (i.e., the weights) of the ANN. Many hyperparameters

have continuous domains, which accelerate the exponential growth of possible values

combination. The huge multidimensional space resulting from combinations of several

hyperparameters is an even more significant challenge in the Deep Learning era. So

much so that the area of automatic machine learning (AutoML) has emerged to study

automation and optimization of machine learning models. AutoML aims to join and to

automate the whole process of machine learning (hyperparameter tuning, architectures,

optimization algorithms) for the creation of accurate models without the need for deep

statistical knowledge and programming [He et al., 2019].

A critical aspect of AutoML is hyperparameter tuning. There are several techniques

to perform a search in the hyperparameter space. In general, these techniques work as

a procedure that runs an outer loop in the learning process: this procedure suggests

a combination of hyperparameter values, which are then used to optimize the set of

parameters in the neural network. These techniques usually do not present any assumption

2

for performing the search; only a fixed range of values is defined by the user to be explored.

Two popular approaches to tuning hyperparameters are Grid Search and Ran-

dom Search. Bergstra and Bengio [2012] performed Random Search experiments in

comparison to the results of the experiments obtained by Larochelle et al. [2007]. They

showed that in most datasets, Random Search was able to overcome Grid Search, both in

accuracy and in computational performance. Thus far, Random Search has shown to be

an efficient alternative to the Grid Search technique.

One downside of both Grid Search and Random Search is that they do not try

to improve based on previously tested hyperparameters combinations. Hence, in recent

years more intelligent methods have been explored to perform this optimization. Among

the most covered is Bayesian Optimization [Snoek et al., 2012]. The method is different

from Random and Grid Search because it allows for ANN’s optimization without the

need to define the search space manually with high precision. Unfortunately, Bayesian

Optimization is computationally expensive, since its time complexity is cubic on the number

of samples seen before [Snoek et al., 2015].

A recent alternative to hyperparameter tuning is the family of population-based

methods [Simon, 2013]. These are evolutionary algorithms that aim to evolve individuals

in a hyperparameter configuration population by applying operations such as crossover

and mutation [Hutter et al., 2019]. Loshchilov and Hutter [2016] applied the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) with Bayesian Optimization, and some of

its variations, and achieved comparable results with Bayesian Optimization, and also with

a lower computational cost.

I.2- Motivation

The problem of hyperparameters optimization of machine learning algorithms

has become very important in recent years [LeCun et al., 1998; Larochelle et al., 2007;

Bergstra and Bengio, 2012]. The demand for accurate automated methods grows as the

amount of data increases. Studies with the objective of increasing the efficiency of these

algorithms are fundamental to automate machine learning process.

Several factors are addressed in a predictive model generation process: pre-

3

processing, hyperparameters optimization, experimental evaluation, etc. One of the main

needs nowadays is to automate this process in such a way that the scientist or user gives

as few manual inputs as possible to generate this model. A hyperparameter optimization

algorithm manages most of these current needs.

I.3- Objectives

In this work, we propose a new population-based approach to searching in ANN’s

hyperparameter space. As a starting point to our approach, we use a well-known

population-based optimization algorithm, Biased Random Key Genetic Algorithm (BRKGA)

[Martinez et al., 2011]. We devise a hybrid algorithm called HBRKGA by adding a Random-

Walk procedure to refine the candidate solution generated by BRKGA. In the experiments,

we compared HBRKGA to several other optimization strategies, namely, Grid Search,

Random Search, Bayesian Optimization and CMA-ES. We used eight different datasets

in our validation experiments. HBRKGA was able to increase the F1 metric up to 1.2%

compared to the others methods in the experiment and has also shown a reasonable

execution time.

This work has two contributions. The first is the application of a hybrid population-

based strategy with Random-Walk to the hyperparameter optimization problem in MLP

ANNs. Also, we created an abstract data type (presented in Section IV.2) to help during

the mapping of the values of the domain of hyperparameters (decoded solution) and the

keys values of BRKGA (encoded solutions), making it easier to reuse the method for other

hyperparameters with another subrange of values.

I.4- Methodology

To support the experimental results of each optimization strategy, a evaluation of

performance in different datasets is necessary to provide better support to a conclusion

of the results obtained. For this reason, 8 datasets were selected in total (presented in

4

Section V.1) to give this basis, with some of them being used in important works in the

area of hyperparameter optimization in the last years [Larochelle et al., 2007; Bergstra

and Bengio, 2012]. The datasets were divided into training, validation and test.

With the datasets selected, the process of hyperparameter optimization starts with

the appropriate choice of hyperparameters and the values explored in each of them. In

order to have an ANN MLP with three hidden layers, some hyperparameters were chosen

that are commonly used in literature: the number of first, second and third layer neurons,

learning rate and regularization rate. Each one of them has distinct characteristics that

directly influence the training for model generation.

We performed an ablation study to verify the behavior of the addition of a new

component (Random-Walk) in the BRKGA algorithm. The analysis was performed by

comparing the mean and standard deviation of ten executions of HBRKGA(0) (without the

Random-Walk component) and HBRKGA(3) (with the Random-Walk component) in one

dataset. This study showed that the Random-Walk component was able to improve the

result over the algorithm without perturbance in the solutions.

Each search strategy performs the optimization taking into account a specific

dataset and the hyperparameters to be optimized. The model is trained with each solution

generated by the strategies and applied to the validation set, where the F1 metric is

calculated to measure the predictive quality of this model. This process was executed 10

times to obtain the average and standard deviation of F1. The execution average time in

seconds (and standard deviation) for the strategies optimization was also calculated to

measure the computational performance.

An important evaluation to be done after the experiments for comparison is the use

of statistical tests. With this, we can use statistical significance in the analysis. We use

Wilcoxon’s non-parametric test to calculate the statistical significance taking into account

the set of 10 runs of each method compared to HBRKGA to have a basis for the conclusion

in the several datasets studied.

5

I.5- Chapters Organization

The rest of this work is organized as follow. Chapter II presents the concepts

and fundamentals of Artificial Neural Networks, definitions of hyperparameters and the

optimization methods. Chapter III expose some releated works with hyperparameter

optimization methods. Chapter IV shows the proposed algorithm HBRKGA. Chapter V

presents the discussions of the results obtained during the experiments. Finally, Chapter

VI presents the conclusions.

6

Chapter II Background

This chapter approaches the fundamentals and concepts used in this work. Sec-

tion II.1 describes some strategies used for the hyperparameter optimization problem.

Section II.2 presents BRKGA which is used as a starting point for defining the proposed

strategy. Section II.3 details the concepts of Multilayer Perceptron (MLP) Neural Network

that was the architecture used on the experiments.

II.1- Hyperparameter Optimization Strategies

One of the main objectives of a learning algorithm is to find a function that can

reduce the Artificial Neural Network (ANN) error rate. This function will be generated

according to a set of parameters [Bergstra and Bengio, 2012]. The parameters are directly

linked to the learning of weights in the training. However, a Neural Network has other

features that will influence the algorithm’s learning ability. These features are called

hyperparameters. Some examples of hyperparameters are number of neurons per layer,

learning rate, number of layers, etc.

Bengio [2012] defines a hyperparameter of a learning algorithm as a variable set

prior to the application of this algorithm to the data and it’s not being directly selected by

learning. The hyperparameters are directly linked to the performance of the algorithm

in model generation. Due to this fact, it’s optimization is fundamental to obtain good

results. Hyperparameters optimization is a problem of optimizing a loss function on Neural

Network [Bergstra et al., 2011]. To reduce this loss, each value of hyperparameter should

be stipulated in the validation and training steps.

In most cases, there are no basic theories regarding the value that should be

indicated to the hyperparameter. This is due to the fact that different sets of data require

different ranges of exploitation in these values of hyperparameters [Bergstra and Bengio,

2012; Bergstra et al., 2011]. The exploration of these bands used to be done in such a

way that the scientist himself indicated a value of hyperparameter and on trial and error

7

set the values manually. This technique is known as Manual Search [LeCun et al., 1998].

The manual search becomes exhausting and demands skilled scientist time to

define the value of the hyperparameters. Usually the choices of these values are made

by trial and error. In order to automate this process several search algorithms are being

studied, such as the Grid Search and the Random Search. These methods will be

presented on Section II.1.

In order to optimize the hyperparameters of Neural Networks, currently a vast

amount of trial and error are currently required to obtain acceptable values for each

of them. Methods that aim to automate the processes are presenting themselves as

essential for the generation of a good model. The next subsections presents some of

these methods: Grid Search (Section II.1.1), Random Search (Section II.1.2), Bayesian

Optimization (Section II.1.3), BRKGA (Section II.2) and CMA-ES (Subsection II.1.4).

II.1.1 Grid Search

Grid Search performs a search by considering a multi-dimensional grid of hyper-

parameter combinations. The ranges for each hyperparameter in the grid are usually

user-defined. Grid Search then computes a Cartesian product corresponding to the possi-

ble hyperparameter combinations [Bergstra and Bengio, 2012]. Since there may be some

hyperparameters that can assume infinitely many values, the user must also define a step

used to jump from one hyperparameter value to another. When done by a specialist in the

domain in question, these sampled values can result in satisfactory learning models.

This technique has a trivial implementation and is easy to parallelize: each com-

bination of hyperparameter values can be tested in parallel. However, the amount of

hyperparameter combinations grows exponentially with the number of hyperparameters

[Bellman, 1961; Bergstra and Bengio, 2012]. As a result, Grid Search may exploit many

unimportant areas if the input grid is not carefully designed by a domain expert. This

problem causes a waste of computational resources since there is no rule to explore the

hyperparameters space. Bergstra and Bengio [2012] show that different datasets will

have their particularity when performing hyperparameter optimization, therefore different

spaces should be explored. Figure 1 shows the Grid Search process until finding the best

8

Figure 1 – The Grid layout for hyperparameter optimization problem. Each point represent
a solution of a combination of hyperparameters that is executed sequentialy. This strategy
finds the best solution (red point) after running a sequential path.

hyperparameter solution in red.

II.1.2 Random Search

Random Search takes as input a bound hyperparameter subspace. The bounds for

such subspace are also user-provided. Then it takes random samples from this bounded

domain, which are used as the hyperparameter combinations to be tested [Zabinsky,

2009]. It helps to get solutions to large-scale problems instead of using combinatory

optimization like Grid Search, to avoid exploring less relevant areas in the hyperparameter

subspace.

Compared to Grid Search, Random Search proves to be more efficient in the

sense that it does not combine all selected values contained in a user-defined grid

to perform hyperparameter optimization. Instead, it randomly explores regions of the

hyperparameter subspace that could have a better relevance in the hyperparameter space.

This behavior makes it less computationally costly than Grid Search [Bergstra and Bengio,

2012]. Figure 2 shows the Random Search process until finding the best hyperparameter

solution in red.

9

Figure 2 – The Random layout for hyperparameter optimization problem. Each point
represents a solution with random hyperparameters values that is randomly generated.
This strategy finds the best solution (red point) after some random solutions trials.

II.1.3 Bayesian Optimization

Both Random Search and Grid Search do not have a disciplined basis for opti-

mizing hyperparameters. They perform a search in a trial and error manner. Smarter

hyperparameter search algorithms are able to evaluate a decision comparing to prior

samples in the hyperparameter space. One of these methods is Bayesian Optimization.

This method is able to make assumptions about the hyperparameter space based on

prior samples to assist on choosing the next samples [Brochu et al., 2010]. Bayesian

optimization is able to construct a probabilistic model for a function f(x) to explore the

possible values of this function, using information obtained from previous iterations to

generate a search model Snoek et al. [2012].

According to Snoek et al. [2012], there are two components to be defined in

Bayesian optimization. The first is the function that will express the assumption about the

function to be optimized. Usually the Gaussian Process is used to obtain samples through

this function, but there are also other models that can be explored [Dewancker et al.].

The second component is the acquisition function, used to determine the next point to be

explored during fits in the Gaussian Process. Some alternatives to this component are

Probability of Improvement (most likely point to improve the current best result), Expected

Improvement (the point that most improves the current best result of a function to be

optimized), and Upper Confidence Interval (maximum or minimum point in the confidence

interval during the Gaussian Process). These methods are able to evaluate the best next

point taking into consideration the probability of it being the maximum or the minimum.

10

Figure 3 – The prior (left) and posterior (right) function from Gaussian Process. As the
points are observed, the Gaussian process is fitted, making it possible for the acquisition
functions to evaluate new solutions. Image adapted from [Rasmussen and Williams, 2006].

According to Rasmussen [2004] a Gaussian Process is a generalization of Gaus-

sian Probability Distribution. It generates a non-parametric model of probability to be able

to estimate the unknown values of a function. Initially, n multivariate random samples are

generated, where each of these is considered a different process.

As the real points of a case study are observed by the Gaussian Process, a

posterior function is generated with prior function adjustments. Figure 3 shows this

process. The crushed lines on the right are the known points of a given function, making

the uncertainty in this area equal to zero. For points that have not yet been observed,

the uncertainty increases, as can be seen in the gray areas on the plot. Generally, the

prediction function is constructed through the mean of these Processes.

In Multivariate Random Distributions, it is necessary to use a covariance matrix to

obtain the distance between points. This concept is the same as the standard deviation in

a univariate normal distribution. There are several ways to calculate the distance between

these points and to obtain this matrix. In the Gaussian Process, this function is called the

kernel [Snoek et al., 2012].

A Gaussian Process requires a specific kernel choice that best fits the data. The

evaluation of these functions becomes computationally costly in a high-dimensional, multi-

sampled dataset. Some examples of kernels used in the Gaussian Process are Linear,

Exponential, Gaussian, Matern, etc. These methods directly affect the distribution of data

during the creation of the prior function. Figure 4 shows some samples from kernels used

in the Gaussian Process.

11

Figure 4 – Kernels examples to Gaussian Process. Image created using the source code
https://bit.ly/2LcSq6x.

II.1.4 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic opti-

mization method belonging to the evolutionary algorithm family [Hansen, 2006]. CMA-ES is

a derivative-free strategy used to help in non-linear and non-convex problems [Loshchilov,

2014]. Solutions are generated from normal multivariate sampling distribution, where

the covariance matrix and mean are taken into account. CMA-ES proved to be a good

alternative to Bayesian Optimization in the hyperparameter optimization problem. It is

able to achieve comparable results and with less computational resources [Loshchilov and

Hutter, 2016].

During each iteration (generation) of the algorithm, new candidates are generated

from the samples from multivariate distribution. According to Hansen [2016] the sample of

a CMA-ES generation g with population size λ is done according to Equation (1). x(g+1)
k is

https://bit.ly/2LcSq6x

12

the k-th offspring from generation g+ 1, mg is the mean of the distribution in the generation

g, σ is the step size (perturbance mutation) in generation g and Cg is covariance matrix

in generation g. N (0, Cg) is the normal distribution with zero mean and the standard

deviation of the covariance matrix C of the generation g.

x
(g+1)
k = mg + σgN (0, Cg) (1)

The recombination process is done for the adaptation of the covariance matrix

C, generating a new value for the mean mg+1. Usually, this change is done through the

combination of the best individuals weighted in the current population. mg+1 is updated

following Equation (2). µ the parent population size (usually the top individuals), wi is

the positive weight coefficients using weighted intermediate recombination, x(g+1)
i:λ is the

i-th best individuals from g + 1 and cm is the learning rate. This informations are used to

estimate (re-estimate) the covariance matrix through techniques like Rank-µ-Update e

Rank-One-Update [Hansen, 2016].

mg+1 = mg + cm

µ∑
i=1

wi(x
(g+1)
i:λ −m(g)) (2)

II.2- BRKGA

Genetic algorithms (GA) [Goldberg and Holland, 1988] are methods which simulate

the evolution of a population over a certain number of generations. Each individual in

a population represents a candidate solution to a given optimization problem. These

algorithms apply the concept of survival of the fittest individuals to find good quality

solutions to optimization problems.

To escape from local optima and search in the solution space, a population evolves

in a number of generations. A solution to the optimization problem is represented by the

individuals or chromosomes. The genes encode the solutions in a finite chain of bits or

integers. It permits the representation of reproduction between two parents. The fitness

criterion in the selection of good individuals is expressed by an objective function.

A new population is generated from the combination of elements belonging to the

13

current population at each generation of GA. It is performed by three principal operators:

reproduction, crossover and mutation. The new population is acquired as follows: i)

The next population is sampled from a small percentage of the best individuals in the

actual population; ii) crossover applies deterministic or probabilistic operators to randomly

selected parents, generating offspring for the next generation; and iii) a random mutation

of gene positions is performed to avoid local optima [Whitley, 1994].

Random-key Genetic Algorithms (RKGA) were proposed by Bean [1994]. In this

method, vectors of decimal numbers whose values belong to the [0, 1] domain represent

the chromosomes. Each vector is given as input to a deterministic algorithm called

decoder, which associates it with a solution of the optimization problem. The RKGA is

an enhancement of the classic Genetic Algorithms, and its main objective is to mitigate

GA’s operators difficulty in dealing with feasible solutions. Thus, the representation of the

problem parameters through random keys allows the development of operators that are

problem independent.

Gonçalves and Resende [2011] developed the Biased Random Key Genetic Al-

gorithm (BRKGA) based on RKGA. The main difference between BRKGA and RKGA is

the biased way of how parents are chosen in reproduction operator. To BRKGA obtain a

new individual, the method combine an individual randomly chosen from an elite set (pe)

of the current population set (p) and another of a non-elite set (p \ pe) of individuals, in

which |pe| < |p| − |pe|. A single individual can be selected more than one time and then

can produce more than one offspring.

BRKGA needs |pe| < |p| − |pe|, the probability of an elite individual being selected

for reproduction (1
|pe|) is greater than that of a non-elite individual (1

|p|−|pe|). So, elite

individuals have greater probability of passing forward their characteristics to next genera-

tions. Moreover, the crossover concept in BRKGA is the Parameterized Uniform Crossing

[Spears and De Jong, 1995] with Pre(i) > 0.5, where Pre(i) is the probability that the i-th

offspring inherits from an elite individual.

The BRKGA has been successfully applied to several optimization problems such

as Packaging [Gonçalves, 2007], Routing [Martinez et al., 2011], Traveling Salesman

Problem Variants [Snyder and Daskin, 2006; Samanlioglu et al., 2008] and Transmission

Network Expansion Planning [Gonzalez and Brandão, 2018]. This work is an opportunity

to apply this algorithm to reduce the number of manual inputs in all Neural Networks

problems.

14

II.3- Artificial Neural Networks

The ANN is one of the most popular and studied machine learning algorithms in

fields like pattern recognition. It works similarly to the animal nervous system, having

many types of layers consisting of processing nodes called neurons. Each layer processes

input information and passes it to the next layers until the output.

II.3.1 Perceptron

One of the first ANN models was presented in the 1950s and it’s called perceptron.

The purpose of the perceptron is to associate relevance weights to a data input with the

goal of generating a binary output after a process inside a neuron. Figure 5 shows an

example of the perceptron model. The variables x1, x2 and x3 represent the input data,

w1, w2 and w3 are the weights and β is the process output.

Figure 5 – Perceptron model presented by Rosenblatt
[1958].

The β value is calculated by a hyperparameter called activation function that

defines the type of processing inside of a neuron. In this binary neuron, the activation

function will define the output value taking into account the Equation (3), where β = 1 case

α ≥ 0 and β = 0 case α < 0. Posteriorly the bias (b) term was added in this equation to

15

help to get better learning. The bias value helps to shift the activation function output.

α =
∑
i

xipi (3)

Many other activation functions were presented before the idea of perceptron. One

of the main is the logistic function or sigmoid [Funahashi, 1989]. The sigmoid function

changes the nature of the neuron used in an ANN. The neuron sigmoid don’t have a

binary β output, it has a value 0 ≤ β ≤ 1. These output values suggest better learning

than the perceptron. The values between 0 and 1 can express how close the classifier

is in a binary pattern like A or B. Also, the sigmoid is a non-linear function and allows

the Backpropagation algorithm to build classifier models of datasets that aren’t linearly

separable.

II.3.2 Multilayer Perceptron

Since the perceptron and the activation by a logistic function, many other types

of Neural Networks were developed with many other research base. One of them is the

architecture MLP that uses many perceptron neurons connected together and divided into

3 types of layers: input, hidden and output [Gardner and Dorling, 1998; Han et al., 2011].

This layers is represented by the Figure 6 where x1, x2 and x3 are the input data and β1

and β2 the possibles output for the binary classifier case.

Each layer has a fundamental job in the learning process. The input layer rep-

resents the data input that will be passed to the next layer. Commonly the data pass

for a preprocessing before being given as input. After this, the data goes to the hidden

layer. The hidden layer is composed of a set of neurons that will process the data with

the concepts previously presented in the perceptron section and the data passes to the

next layer. The passes of information processed by the neuron to the next layers is called

Feedforward Network. The hidden layer receives its name because we can’t observe the

values of each input/output of the neurons [Goodfellow et al., 2016b]. Finally, in the output

layer, the final classification is given by taking the processing in the previous layer. As in

perceptron, each node has one weight in each connection. With appropriate weights and

16

Figure 6 – Example of the basic architeture of MLP.

transfer function, a MLP with just one hidden layer can approximate any function between

the input and output [Gardner and Dorling, 1998; Hornik, 1991].

One of the main characteristics of MLP is to generate a model from a given dataset

by working on weights adjustments. It’s able to learn from examples [Miller, 1993]. This

technique can be adjusted to different problems with a model generation in a step called

training. In the training step the input dataset is passed to the algorithm and the bias and

weights in each connection are adjusted according to the output of each time the MLP is

processed.

When there is a difference between the real input and the predicted output, the

error value is computed. This error is used to adjust the weights with the main goal of

minimizing the global error rate from the Neural Network [Gardner and Dorling, 1998].

One of the main advantages is the ANN tolerance to noise from the input data. The noise

is some kind of error or incomplete data that makes it difficult to classify [Han et al., 2011].

This idea of map the output taking into account the class provided by the input is called

supervised learning.

With the weights adjustment problem in training step, many solutions were pre-

sented to minimize the error rate. One of the most used is the backpropagation [Werbos,

1974; Rumelhart et al., 1988]. The backpropagation algorithm iteratively processes the

17

data by comparing the input value with the output. The weights are initialized with small

random values for each neuron connection and updated in order to reduce an error metric

between the real data and predicted. Commonly is used mean square error for this metric.

The adjustments are made with the back of the unit processed for the previous layer in

an attempt to not let the error propagate. At one point the ANN will no longer be able to

significantly reduce the error and will converge and the learning process stops [Han et al.,

2011].

The training model is applied to an apart data called test. The test step is used

to evaluate the ANN performance. Other fraction of this set is called validation that is

responsible to validate the model generated on training step and to adjust the hyperpa-

rameters. As an example, the data could be splitted in: training 80%, test 10% and 10% for

the validation set. The Figure 7 shows this split applied to a collected data.

Figure 7 – Dataset splitted into training, validation and test subsets..

II.3.3 Gradient Descent

During the ANN training step, the weights require a constant update after each

iteration in the dataset. Each update aims to reduce the error in the values of the weights

referring to each input. The most famous way to do that is by using the method Gradient

Descent (GD) [Snyman, 2005]. The GD tries to reach the minimum value of a function.

18

In case of convex functions, the GD converges to global optimum [Li et al., 2018]. But in

most cases of ANN, the loss function is non-convex that generates local minimums.

The Figure 8 shows the process to minimize the value of function z = x2 + 2y2.

Each blue arrow is a step with GD that follows the global minimum at the center. In the

ANN case, the search is for a value that minimizes the error rate in each iteration.

z = x2 + 2y2

x

y

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 8 – Plot example of gradient descent on the function z =
x2 + 2y2.

The gradient method has some techniques to conduct a search for a minimum in

a function. Two commonly used is the traditional GD and a variation called Stochastic

Gradient Descent (SGD) [Snyman, 2005; Bengio, 2012]. The SGD updates the weights at

each iteration in a random sample in a batch while the GD updates only when all input set

is iterated [Bottou and Cun, 2004]. It causes a GD to have a higher computational cost

than the SGD when applied to a large dataset.

Equation (4) and (5) show how a parameter vector θ is updated in GD and SGD,

respectively [Bottou and Cun, 2004; Bengio, 2012; Bottou, 2012]. The variable z represents

an example of input-output pair (x, y) of iterations t on the samples, εt is a hyperparameter

known as learning rate and δL
δθ (z, θ) is a gradient vector. The SGD takes one random

sample zt of an set with n examples, while the GD process n completely.

θ(k) = θ(k − 1)− 1

n
εk

n∑
i=1

δL

δθ
(zi, θ(k − 1)) (4)

19

θ(t) = θ(t− 1)− 1

t
εt
δL

δθ
(zt, θ(t− 1)) (5)

Beyond GD and SGD, there are many other optimization functions based on the

gradient model. One of these is Adam [Kingma and Ba, 2014] (according with Kingma

and Ba [2014], the name is derived from adaptive moment estimation). The Adam is a

stochastic optimizer that works with some differences compared to SGD: it adapts the

learning rate value instead of keeping it fixed. This update is performed by estimates two

gradient moments: the first moment using the average and the second moment using

the variance. This method is well compatible when processing a large amount of data,

besides being more efficient than SGD from the computational point of view [Kingma and

Ba, 2014].

II.3.4 Common Neural Network Hyperparameters

In the context of training neural network models, there are several hyperparameters

to be explored. They can be separated into two groups: hyperparameters that will deal

with the optimization of the parameters vector of a ANN and hyperparameters that will

handle the structure of the model [Bengio, 2012]. Some of the main hyperparameters will

be described in more detail below, following the model presented by Bengio [2012], divided

into: 1. hyperparameters used on gradient model and 2. architecture hyperparameter.

1. Gradient Model’s Hyperparameter

(a) Learning rate - The learning rate εt (Equation 5) is one of the most important

hyperparameters to a good ANN. It defines how fast or slow convergence will

occur in the stochastic gradient descent iterations random examples. If this

value is too high, the average loss of the network will increase [Bengio, 2012].

High values cause divergence while low values cause faster and imprecise

convergence. Bengio et al. [2012] present an efficient way of starting the search

in this hyperparameter with a high value and decrease it until there is no more

divergence in the training. They also indicate a search range of less than 1 and

greater than 10−6 with 0.01 being a value that usually works well.

20

(b) Learning Rate Scheduler - The idea of this hyperparameter is to control the

learning rate over time. Starting a schedule by changing the higher the learning

rate quickly improves the result of an expected function. Then make small

changes with smaller bands in the learning rate [Senior et al., 2013].

(c) Mini-batch sizes - The batch is usually defined as the number of instances in

the set of training. The gradient descent iteration performs throughout all this

set which can be costly. The mini-batch technique is to split the training instance

into blocks of smaller sizes, resulting in a good impact on the computational

performance [Bengio, 2012]. Generally, a very high value in this hyperparameter

can cause an overfitting [Bengio, 2012].

(d) Epoch - After the ANN iterates on all training set, it completes one epoch. The

epoch is the number of complete scans in the training. Usually, several epochs

are needed to make sure that the learning process finds a good combination of

model parameters.

2. Neural Network architecture hyperparameters

(a) Number of hidden layers and neurons - Larochelle et al. [2009] experiments

show that a setup that works well for most cases is to match the number of

neurons in each hidden layer. For simpler situations, a ANN with some hidden

layers will reach good results. This value should be increased for more complex

cases like Deep Learning. The Deep Learning uses the hierarchical concept

features. This model needs many hidden layers for a high level of abstraction.

(b) Activation function - As already seen, the activation function of a neuron

has an important role in network performance. It expresses how the data is

processed internally in a neuron. Besides the function sigmoid briefly presented,

there are others that can be explored such as Hyperbolic tangent (TanH) [Karlik

and Olgac, 2011] and Rectified Linear Unit (ReLU) [Nair and Hinton, 2010].

These functions are presented in Equations (6), (7) and (8), respectively.

f(α) =
1

1 + e−α
(6)

f(α) =
eα − e−α

eα + e−α
(7)

21

f(α) = max(α, 0) (8)

These activation functions have different output values. The sigmoid range is

(0, 1), TanH (−1, 1) and ReLU [0,∞). The TanH curve is similar to sigmoid. The

difference is tangential being centered at 0 (generating better training) while the

sigmoid does not. In addition, both present a linear form at their shapes, making

inputs with great distances between them generate outputs with few differences

or even the same value. This problem is known as vanishing gradient. That’s

why the use of ReLU has gained much popularity in recent years. In addition to

being centered at 0, it does not have a point to occur the vanishing gradient,

generating better results in general. The curve of each activation function are

shown in Figure 9.

Figure 9 – Activation function plots. The top left represents the sigmoid, followed by the
TanH on the side. At the bottom the ReLU.

(c) Cost function - The cost function is used to measure the network error in the

input-output mapping. It’s value indicates how good or bad the result was at the

output layer of the network. A main goal of optimization is to decrease this error

rate generated by this function. Some functions used are Cross Entropy and

Mean Square Error (MSE). The Equations (9) and (10) refer to MSE and Cross

Entropy, respectively [Bishop, 2006]. The value ŷ is the ANN output value, y is

22

the real class value and N is the number of samples in the training data.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (9)

H(y, ŷ) = −
∑
i=1

y(x) log(ŷ(x)) (10)

(d) Regularization - In some cases, the setting of the network can be overdone

upon a particular set of data, impairing performance in a real situation such

as in test set. This is known as overfitting [Bengio, 2012]. To avoid it, a

regularization coefficient λ can be added to a cost function. There are two types

of regularization: L1 and L2. The L1 adds the term λ1
∑

i |θi| to the function,

while L2 adds the term λ2
∑

i θ
2
i [Bengio, 2012]. The values of λ1 and λ2 must

be defined according to the degree of importance of regularization for the case.

The terms of regularization must be chosen with attention, some cases can

generate a chaotic behavior [Van Den Doel et al., 2012].

(e) Initial weights value - The weights are usually initialized at a small random

value. This technique works well on networks with a single hidden layer, but

it may occur problems with deep ones. According to Bengio [2012], weights

need to be initialized in a way that can break the symmetry between the hidden

layers of the ANN. It helps the neurons of the same layer do not receive and

propagate the same signal.

(f) Preprocessing - The data preprocessing has an important role in network

performance. In addition to containing steps that may reduce data noise, such

as data cleaning and normalization, this step allows dimensionality reduction

with the use of methods such as Principal Components Analysis (PCA) [Bengio,

2012; Machado et al., 2016]. Fewer dimensions in the input data represent

faster and therefore more accurate training.

23

Chapter III Related Work

Several works explore the space of hyperparameters in order to try to optimize

some kind of learning algorithm. Manual optimization technique, Grid Search, Random

Search and Bayesian optimization are used to get the maximum performance of different

algorithms in different areas. Learning methods like Deep Belief Networks (DBN) [Bergstra

and Bengio, 2012], Support Vector Machine (SVM) [Larochelle et al., 2007], ANN MLP

[LeCun et al., 1998] and Random Forests [Machado et al., 2016] are used together with

these optimization techniques to optimize different types of hyperparameters.

Larochelle et al. [2007] explore the hyperparameter space through the Grid Search

method. The experiments are made with several datasets like Modified National Institute

of Standards and Technology (MNIST) and other images sets. They explore methods

like SVM with two kernels variations, a Neural Network with one hidden layer, a DBN and

Stacked Autoassociators (SAA). The results show that deep networks like DBN have a

better performance compared with shallows architectures.

Snoek et al. [2012] show methods for hyperparameter search by Bayesian Opti-

mization. The Bayesian Optimization takes into account samples of the Gaussian Process

to performs an optimization. Due to this, it has characteristics that must be explored like

acquisition function and parallelism techniques that are presented by the authors. They

briefly show the experimental results applied to the CIFAR-10 dataset and generated a

model with one of the smallest errors until then.

Bergstra and Bengio [2012] perform experiments with Random Search in compari-

son with the results obtained by Larochelle et al. [2007] experiments. They show for most

of datasets that the Random Search statistically equal the Grid Search on four datasets

and better in one only with a small fraction of computational time, this makes the Random

Search superior, both in accuracy and in execution time. But they concluded that Random

Search does not overcome the Grid Search when the grid space of hyperparameters is

generated by a specialist.

Machado et al. [2016] evaluate an exploratory process in many classifiers methods

using a Grid Search to star/galaxy separation problem. A one layer Neural Network,

Random Forest, SVM, k-Nearest Neighbor and Naive Bayes are compared in this work.

24

A workflow for preprocessing and classify the data is used within the Hadoop plataform

to execute the hyperparameter optimization. The results show a better result for Neural

Network and Random Forest both in purity and computational efficiency metrics.

Loshchilov and Hutter [2016] compared the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) against Bayesian Optimization and some variations in the acquisition

function and in the optimizer. The results show that CMA-ES has comparable results

taking into account the validation set error in some Bayesian Optimization variations and

also with a lower computational cost.

Author GS RS BO CMA-ES

[Larochelle et al., 2007] X X X
[Bergstra and Bengio, 2012] X X
[Snoek et al., 2012] X X X
[Machado et al., 2016] X X X
[Loshchilov and Hutter, 2016] X X
This dissertation

Table 1 – Summary of related works by method.

Table 1 summarizes the related works according to each hyperparameter optimiza-

tion strategy covered in the study. To the best of out knowledge, there is no work in the

literature that uses BRKGA meta-heuristics for hyperparameter optimization in a machine

learning context, as proposed in this dissertation.

25

Chapter IV Hybrid Biased Random-Key Genetic Algorithms

This chapter presents the whole basis used for the creation of the HBRKGA

algorithm, an adaptation of the BRKGA framework [Toso and Resende, 2015]. It is

organized as follows. Firstly, Section IV.1 provides a formal description of the problem

of hyperparameter optimization in a machine learning context. Section IV.2 discusses

the adaptation of the framework to the problem of hyperparameter optimization of neural

networks. Section IV.3 shows the concepts of the Random Walk component. Section IV.4

describes the HBRKGA main procedure.

IV.1- Problem Statement

Let ΓA be the set of possible hyperparameter combinations for a learning algo-

rithm A. Consider the general optimization problem of finding γ? ∈ ΓA, the best set of

hyperparameters for A. Here, best is defined using a function f : ΓA → < that provides an

estimate of the predictive performance of A on some validation set X . This optimization

problem can be formalized as:

γ? = argmin
γ∈ΓA

f(γ;A,X) (11)

The variable γ is a vector sampled from hyperparameter space ΓA. The goal of

the optimization problem is to find a γ that minimizes f . With currently existing methods

for hyperparameter search, there is no way to guarantee that the optimal value of γ can

be found. However, methods with an approximate approach (such as the ones in evidence

in this work) can generate satisfactory models.

26

IV.2- Encoding and decoding candidate solutions

In general, each hyperparameter of a learning algorithm A has its corresponding

range of values and data type. Furthermore, a given strategy for hyperparameter search

may be able to search only a particular subrange of values of a hyperparameter. To cope

with this, we define an abstract data type to be used in the procedures presented hereafter.

Let us denote an instance of this abstract data type by SA. The data part of SA holds a list.

Each entry in this list corresponds to one hyperparameter of A, in which it’s considered

subrange and data type are stored.

The operations min(SA, i) and max(SA, i) are defined for such an abstract data

type. These operations return the minimum and maximum values for the i-th hyperpa-

rameter, respectively (i.e., its considered subrange). Another operation defined in the

context of SA is dt(SA, i). This function returns the data type of the i-th hyperparameter.

A final operation we define for this abstract data type is round(SA, i, v). This operation

returns the value that is closest to v ∈ < considering two constraints: the returned value

(1) has the same data type as the i-th hyperparameter and (2) it is inside the close interval

[min(SA, i),max(SA, i)].

Given the definition of the abstract data type provided above, we encode a solution

in a vector γ̄ of n random keys, in which n corresponds to the number of hyperparameters

in A. This way, a value for the i-th hyperparameter, γi (1 ≤ i ≤ n), is mapped to its

corresponding key γ̄i using Equation 12.

γ̄i = round
(
SA, i,

γi −min(SA, i)

max(SA, i)−min(SA, i)

)
(12)

Figure 10 illustrates the process of encoding and decoding candidate solutions

through the transformation represented by Equation 12. Figure 10a shows the data part of

an instance SA of the abstract data type described in this section. This instance represents

information about five hyperparameters. Figure 10b shows the mapping between values of

γ (vector of hyperparameters) and γ̄ (vector of random keys) according to the information

in the instance SA shown in Figure 1a.

27

SA

([0; 100], int)

([0; 3], f loat)

([0; 50], int)

([0; 60], int)

([−1; 1], f loat)

(a) SA data part.

0.5

0.6

0.5

0.5

70

1.5

30

33.5

0

0.7

γ γ

(b) Mapping between γ and γ̄.

Figure 10 – Example of mapping (i.e., encoding or decoding) between a vector of hyper-
parameter values (γ) and a vector of BRKGA key values (γ̄).

IV.3- Random-Walk procedure

A crucial component of HBRKGA is its Random-Walk procedure, whose pseu-

docode is presented in Algorithm 1. Since it is impossible to analyze every solution in the

neighborhood of γ̄, in this work we chose to blindly explore the space in a small neighbor-

hood. Hence, the Random-Walk phase performs a stochastic search in the neighborhood

of a given individual γ̄ of the current population, looking for a better candidate solution. In

particular, a sequence of perturbations is generated from the original decoded solution

and the best one is returned as the new best solution. Below, we provide details of such

the Random-Walk phase.

Algorithm 1 receives γ̄ as an input parameter, a candidate solution for the optimiza-

tion problem containing n random keys. In line 2, the algorithm decodes the solution from

BRKGA domain (random keys) to the HBRKGA domain (hyperparameter values). The

decoded solution is then passed to the Evaluate procedure (line 3) along with a learning

algorithm A and a dataset X . This procedure corresponds to apply A (using the values

in γ as hyperparameters) to fit a model to X . This procedure returns a solution with its

numeric value (i.e. score) that reflects the quality of the fitted model.

The amount of steps to be performed in the random walk is determined by the input

28

Algorithm 1 – RandomWalk(γ̄,nmov,A,X , SA)

1 begin
2 Map γ̄ to γ using Equation 12;
3 γtemp.score← Evaluate(γ,A,X);
4 γtemp ← γ;
5 for 1 to nmov do
6 γtemp ← Movement(γtemp, SA);
7 γtemp.score← Evaluate(γtemp,A,X);
8 if γ.score < γtemp.score then
9 γ ← γtemp;

10 γ.score← γtemp.score;

11 Map γ to γ̄ using Equation 12;
12 return γ̄;

parameter nmov (line 5). The higher the value of nmov, then the higher the amount of

pertubations created and a higher processing time. At each step a movement is performed

(line 6) in the hyperparameter space. The definition of movement here corresponds to

applying a perturbation to one of the components of the input vector. The component to

which the perturbation is to be applied is chosen uniformly at random. The neighborhood

considered in the exploration for the selected component γi is the closed interval [0, γi(1 +

ε)], according to Equation (13). The small positive constant number ε is a hyperparameter

of HBRKGA. We use the round function here (Section IV.2) to cope with the case in which

the value resulting from the perturbation has an incompatible data type (e.g. a floating

point value when γi only assumes integer values).

γi ← round (SA, i, γi + (1− 2× Bernoulli(0.5))× Unif(0, γi(1 + ε)) (13)

At each Random-Walk step, the resulting perturbed hyperparameters vector is

evaluated (line 7) in order to keep track of the best current candidate solution (lines 8-10).

At the end (line 11), the algorithm encodes the refined solution back to the BRKGA domain

(random keys) before returning it to HBRKGA main procedure.

29

IV.4- HBRKGA main procedure

Now that the Random-Walk phase has been described, we can proceed to present

the main procedure of our proposed population-based approach to hyperparameter search.

Algorithm 2 presents the pseudo-code for HBRKGA. The purpose of this algorithm is

to find γ?, the best possible configuration of hyperparameter values for a given learning

algorithm A.

A random initial population p of individuals is generated (line 3). Each individual

p[i] (1 ≤ i ≤ qind) in the population is a vector of random keys. Each component in such a

vector is a random value drawn from a standard uniform distribution: p[i, j] ∼ Unif(0, 1).

The main loop of the algorithm starts at line 4. This loop is controlled by a stopping

criterion. There are several alternative stopping criteria to use. Examples are the maximum

number of generations, maximum runtime or until a specific value for the fitness function is

reached. The inner loop starting at line 5 performs the Random-Walk phase (Algorithm 1)

for each individual. As a result, the i-th individual in p is (potentially) changed to one of its

neighbors, if it is the case that the latter evaluates better than the former.

Line 7 partitions the current population p into two subsets pe and pē in such a way

that |pe| = qe and |pē| = qind − qe. To form pe, the individuals in the current generation

are first sorted according to their scores. Then, the top qe individuals from the current

generation are selected to form the elite set pe.

Line 9 generates qm mutant individuals. The mutants replace a fraction of the

actual population with new random individuals with n random keys. The mutants are

created following a random uniform distribution. These individuals are important since they

help the optimization process to escape local minima [Gonçalves and Resende, 2011].

The loop between lines 11-17 starts the reproduction operator. One random parent

a from pe and another one b from pē are selected. Then the inner loop in line 14 is executed

for each key n. A random variable X is generated to define which parent (a or b) the

offspring c will inherit the characteristics of a specific key. The parent is selected according

to a Bernoulli distribution with parameter φa. This selection is biased towards the parent in

the elite set (i.e., there is a greater probability of the parent in the elite set to be selected).

30

Algorithm 2 – HBRKGA(qind, qe, qm, n, φa,nmov,A,X , SA)

1 begin
2 Initialize score of the best solution found: γ?.score←∞;
3 Randomly generate a population p with qind n-dimensional vectors of

random keys;
4 while stopping criterion not satisfied do
5 for i← 1 to qind do
6 p[i]← RandomWalk(p[i],nmov,A,X , SA)

7 Partition p into two sets: pe and pē;
8 Initialize population of next generation: p+ ← pe;
9 Generate set pm of mutants, each mutant with n random keys;

10 Add pm to population of next generation: p+ ← p+ ∪ pm;
11 for i← 1 to qind − (qe + qm) do
12 Select parent a at random from pe;
13 Select parent b at random from pē;
14 for j ← 1 to n do
15 Draw random variable X ∼ Bernoulli(φa)

16 c[j]←

{
a[j] if X = 1,

b[j] if X = 0.

17 Add offspring c to population of next generation: p+ ← p+ ∪ {c};
18 Update population: p← p+;
19 Find best solution in p: γ+ ← argmin1≤i≤qind

(p[i].score);
20 if γ+.score < γ?.score then
21 γ? ← γ+;

22 return γ?;

After being created, the offspring c is added to the next generation p+.

After the reproduction process, the population p is updated from p+ in line 18.

Finally, find the best solution y+ in the current population to update γ? (only if γ+.score <

γ?.score) between lines 19-21. Here, the score method is used to get the quality metric of

the model. The best solution (γ?) is finally returned (line 22).

Figure 11 presents a birds-eye view of HBRKGA. Initially, HBRKGA receives a

hyperparameter space SA and sends an individual solution to decode the individual γ̄

to a value γ mapped to the domain in question. Using a Random Walk, a local search

like method is applied nmov times to the solution γ. After that, γ is encoded and the

best individual in the current population γ+ is returned to the HBRKGA framework, as

presented in Algorithm 2. This process is repeated for each generation, until the return of

the final best solution γ?.

31

BRKGA

For each γ ∈ p

γ → γ

Movement(γ, SA)

γ → γ
p

γ γ

γγγ+

γ?

Figure 11 – HBRKGA overview. Individuals of the current generation p are created
according to BRKGA rules. Then each individual is possibly refined in the Random-Walk
procedure.

32

Chapter V Experiments

This chapter describes the computational experiments we performed to validate

our proposed hyperparameter optimization method. We perform experiments on eight

publicly available datasets coming from several different application domains. We start

by providing details about the datasets (Section V.1), evaluation metrics (Section V.2),

and experimental settings (Section V.3). Further, we describe the main results of the

experiments for each dataset (Section V.4) and summarize the results of ablation studies

(Section V.5).

V.1- Datasets

To perform our validation experiments, we used eight datasets in total. Six of

them are provided by Larochelle et al. [2007]. These are the original version and variants

of MNIST, one of the most popular datasets in the image recognition and classification

areas. We also reuse the Rectangles dataset from Larochelle et al. [2007]. We also

used the Fashion-MNIST dataset [Xiao et al., 2017]. Finally, to provide a better basis for

experimental results, we have added COSMOS, an unbalanced dataset [Fadely et al.,

2012; Machado et al., 2016].

V.1.1 MNIST

MNIST is a set of handwritten digit image data, having 60,000 examples in the

training set and 10,000 examples in the test set [LeCun, 1998]. The images in the dataset

have a size of 28x28 pixel, totalizing 784 features. Several studies have already done using

this dataset [Bergstra and Bengio, 2012; Larochelle et al., 2009], one of the objectives

of these studies being to achieve the smallest possible error in the identification of these

33

digits.

Larochelle et al. [2007] present a study with many factors of variations on top

of MNIST, such as rotated digits and the addition of noise in the background of the

images. With these variations, it is possible to observe several factors in the classification.

These datasets are also used by Bergstra and Bengio [2012] to perform Random Search

experiments. The MNIST variations that we selected are shown below and can be

observed in some examples in Figure 12. We follow the split: 12,000 images for training

(the last 2,000 examples were used in the validation set) and 50,000 images for the test.

1. MNIST rotated (MNIST-R): the images suffered slight rotation in the digits, trying to

reproduce different writing styles.

2. MNIST with a random background (MNIST-RanBack): adding a random background

in the digit images. This factor produces noises in the digits.

3. MNIST with image background (MNIST-IB): a background was produced with pieces

of 20 images taken from the Internet.

4. MNIST with rotation and background (MNIST-RotBack): the combination of the first

two MNIST variations that were presented, resulting in rotate digits with some noise

in the background.

Figure 12 – MNIST and its variations.

V.1.2 Rectangles

In addition to MNIST and its variations, we selected one more case from Larochelle

et al. [2007], the rectangles images. The objective of the rectangles dataset is the

discrimination between tall and wide rectangles. Like MNIST, it has 28x28 pixel dimensions.

34

The Figure 13 shows an example of the label tall and wide. The training set has 1000

images and the validation set has 200. The test set has 50000 images.

Figure 13 – Tall and wide rectangle example.

V.1.3 Fashion-MNIST

The Fashion-MNIST dataset provided by Xiao et al. [2017] contains 60,000 training

examples and 10,000 test examples in 28x28 grayscale images divided by 10 categories

of fashion products: t-shirt, trouser, pullover, dress, coat, sandals, shirt, sneaker, bag

and ankle boots. These classes are balanced over this dataset. It is an alternative to

the MNIST benchmark for machine learning algorithms with more complex tasks for the

correct classification. For the validation set, we use 10% of the training set. Figure 14

shows some examples of images from this dataset.

Figure 14 – Fashion-MNIST images example.

35

V.1.4 The Cosmic Evolution Survey

The Cosmic Evolution Survey [Scoville et al., 2007] is a catalog with information

about more than 500000 objects and 90 attributes with its photometric measure. We used

the same dataset and preprocessing in Machado et al. [2016], which takes into account

feature selection, outliers removal, data cleaning, normalization and test/validation split. t

covers a star/galaxy classification problem that is a hard task due to an unbalanced amount

between star (386,957 objects after preprocessing that represents 98.55% of the total in

the dataset) and galaxies (5,542 objects after preprocessing). We used five photometric

features and its related error in the measure as the input for the ANN, totalizing 10 features

and a target label for star/galaxy classification.

V.2- Evaluation Metric

In the experiments presented in this paper, we restrict ourselves to classification

problems. Hence, we selected the metric F1-score to measure models’ quality in all the

evaluated hyperparameter search methods. The F1 metric (Eq. 14) is computed as the

harmonic mean of two other metrics, precision and recall [Han et al., 2011]. Precision is

the percentage of examples predicted by the model as belonging to a given class that

genuinely belong to that class (Eq. 15). Recall is the percentage of examples of a given

class correctly classified as so by the model (Eq. 16).

F1 =
2πρ

π + ρ
(14) π =

TP
TP + FP

(15) ρ =
TP

TP + FN
(16)

In the equations above, TP, FP, and FN are the true positive, false positive, and

false negative counts. The F1 score ranges from 0 to 1. A good model is expected to

achieve an F1 value close to 1, while models with low predictive quality tend to produce

an F1 score near 0. Since all the datasets we use in our experiments present multiple

classes, we simply average the F1-scores for each class and calculate a mean F1-score

as the final evaluation metric.

36

V.3- Experimental Settings

We ran the experiments on a computer with an Intel(R) Core(TM) i7-6700 CPU

3.40GHz processor, 32GB RAM, equipped with a GeForce GTX 1080 GPU. The ANN

algorithm was developed using the Tensorflow library [Abadi et al., 2016]. As a basis to

develop HBRKGA, we used a BRKGA implementation provided by Toso and Resende

[2015]. We implemented the abstract data type described in Section IV.2 to cope with

the problem-dependent mapping procedure for converting a vector of random keys into

hyperparameter values and vice-versa.

Inspired by previous similar experimental work, namely Bergstra and Bengio [2012]

and Larochelle et al. [2007], we selected five hyperparameters in a range of values to

be explored by the methods presented. They are based on an ANN with three hidden

layers architecture. The reused hyperparameters and their values are presented in three

initial lines in Table 2. In particular, we chose the following hyperparameters: number of

neurons in first, second, and third hidden layers, learning rate, and regularization rate. For

the COSMOS dataset, we defined the range proportionally, since this dataset has a much

lower number of input features.

Table 2 – Hyperparameter range values for each dataset and its variations.

Dataset Neurons
Layer 1

Neurons
Layer 2

Neurons
Layer 3

Learning
rate

Beta

MNIST [1000, 2000] [2000, 4000] [2000, 6000] [10−6, 10−1] [0, 10−3]

Rectangle [1000, 2000] [2000, 4000] [2000, 6000] [10−6, 10−1] [0, 10−3]

COSMOS [5, 15] [5, 30] [5, 45] [10−6, 10−1] [0, 10−3]

We use the optimization strategies described in Section II.1 as baseline for com-

parison to HBRKGA. We implemented Grid Search and Random Search from scratch. We

used publicly available implementations for Bayesian Optimization1 and CMA-ES2.

We keep track of the number of solutions produced by each optimization strategy in

each run of experiments for time comparison between them. The Grid Search optimization

generates 240 combinations of different hyperparameters values to run in each dataset.

This number results from combining the following values: 2 values for the first layer, three
1https://github.com/fmfn/BayesianOptimization
2https://github.com/CMA-ES/pycma

https://github.com/fmfn/BayesianOptimization
https://github.com/CMA-ES/pycma

37

values for the second layer, four values for the third layer, five values for the learning rate,

and two values for the regularization rate (denoted Reg in Table 2). Due to that, and to

make fair comparisons, we limited the maximum number of searches (i.e., a generation of

hyperparameters) in each strategy to 240, already including the initial solution performed

by Bayesian Optimization, CMA-ES, and HBRKGA. In this work, we configure HBRKGA

parameters according to Table 3. In Bayesian Optimization, we use Upper Confidence

Bound as the acquisition function with 20 random initial points and 220 optimization steps.

Finally, at CMA-ES we use 10 generations with 24 individuals.

Parameter Value

Max. number of populations (stopping criteria) 10
Population size (qind) 6
Elite set size (qe) 2
Mutant set size (qm) 1
Offspring probability (φa) 70%
Steps in Random-Walk (nmov) 3
Perturbation ratio (ε) 15%

Table 3 – HBRKGA parameters settings.

We use cross-entropy as loss function, with a softmax activation function as output

layer. In each hidden layer, the ReLU activation function is used. To save computational

resources, we used an early stopping technique. The goal is to stop the network training

process when the value for the loss function does not decrease for a number of consecutive

epochs. We configured the training process to generate a maximum of 300 epochs. If in

13 consecutive epochs a certain the loss function does no decreased in the validation

set, the training is automatically stopped, the best model found is returned. We also use

ADAM [Kingma and Ba, 2014] optimizer for training the ANNs.

V.4- Experimental Results

For each dataset, we performed ten runs of experiments for each hyperparameter

optimization strategy covered in this work. We then computed statistical summaries for the

F1 metric and the execution time (in seconds). We divide the presentation of the experi-

mental results into two parts. In the first part, we describe results related to the predictive

38

quality of the classification models produced using each search strategy (Section V.4.1). In

the second part, we present computational performance results concerning each strategy

(Section V.4.2).

V.4.1 Predictive Quality

Table 4 presents the results obtained by taking the mean and standard deviation

of the best F1 value found in each of the ten trials of experiments in the validation set for

each dataset. We observe an increase in the mean of HBRKGA compared to Bayesian

Optimization, CMA-ES, Random Search, and Grid Search in 6 of 8 datasets. The CMA-ES

method was able to outperform HBRKGA results on MNIST-IB and matched the HRBKGA

results on MNIST-RotBack. The most significant difference in the mean of F1 between the

HBRKGA and the second-best method occurred in the COSMOS and MNIST-R datasets.

In these cases, HBRKGA increased the mean F1 value by 0.006 and 0.009, respectively.

Only in MNIST-RandBack, the Bayesian Optimization method was able to overcome the

CMA-ES.

To summarize, HBRKGA obtained the best average F1, followed by CMA-ES and

Bayesian Optimization. In this global metric, Grid Search and Random Search achieved

the worst F1 averages among the methods tested. It is also possible to observe that the

CMA-ES presented the lowest global mean in the standard deviation value.

Table 4 – Average F1 results for 10 experimental runs for each dataset. The best results
are presented in bold face. The last line presents the average results considering all ten
runs.

GS RS BO CMA-ES HBRKGA

avg std avg std avg std avg std avg std

MNIST 0.958 0.0047 0.962 0.0025 0.960 0.0029 0.962 0.0009 0.965 0.0014
MNIST-R 0.877 0.0020 0.877 0.0175 0.879 0.0037 0.882 0.0021 0.891 0.0017
MNIST-IB 0.729 0.0121 0.741 0.0104 0.742 0.0158 0.748 0.0093 0.746 0.0082

MNIST-RotBack 0.358 0.0051 0.345 0.0049 0.359 0.0046 0.365 0.0050 0.365 0.0039
MNIST-RandBack 0.727 0.0033 0.708 0.0031 0.735 0.0391 0.731 0.0101 0.736 0.0154
Fashion-MNIST 0.859 0.0007 0.860 0.0010 0.865 0.0037 0.865 0.0019 0.867 0.0035

Rectangles 0.965 0.0051 0.972 0.0045 0.975 0.0034 0.977 0.0036 0.981 0.0031
COSMOS 0.757 0.0161 0.761 0.0126 0.761 0.0049 0.771 0.0107 0.777 0.0129

0.778 0.0061 0.778 0.0070 0.784 0.0097 0.787 0.0054 0.791 0.0062

39

(a) Rectangles (b) MNIST

(c) MNIST-R (d) MNIST-RandBack

(e) MNIST-IB (f) MNIST-RotBack

(g) Fashion-MNIST (h) Cosmos

Figure 15 – F1 mean evolution curve of each method for each dataset.

40

Figure 15 shows the average F1 value of the solutions found by the algorithms over

time. The evolution of both Grid Search and Random Search (green and orange lines) is

quick since they reach their corresponding maxima earlier than the other strategies. After

this, they remain practically constant over time. However, in most cases the maximum

found by these strategies is lower than the ones found in other strategies. A possible

reason for this is that those two strategies do not have a way to escape local mimima.

On the other hand, Bayesian Optimization, CMA-ES and HBRKGA (red, blue and purple

lines) present, in most of the datasets studied, a constant evolution in the value of F1

along with the generated solutions. This common characteristic of these methods was

determinant factors for the overall better results they presented. Also, it is possible to

notice that Grid Search and Random Search strategies, despite not being able to produce

the best solutions, need approximately 100 solutions to find their best F1 average result,

which seems to be faster (but not more effective) than Bayesian Optimization, CMA-ES

and HBRKGA, which find their best at approximately 160 solutions for all datasets. The

Fashion-MNIST and COSMOS datasets presented the fastest and slowest convergences,

respectively.

Table 5 – p-values resulting from applying the Wilcoxon test (α = 0.05) to compare the
baseline methods (Grid Search, Random Search, Bayesian Optimization, and CMA-ES)
to HBRKGA.

GS RS BO CMA-ES

MNIST 0.00017 0.00068 0.00072 0.00015
MNIST-R 0.00017 0.01862 0.00016 0.00017
MNIST-IB 0.02323 0.31500 0.48100 0.90350

MNIST-RotBack 0.00147 0.00021 0.00713 0.93230
MNIST-RandBack 0.06352 0.00018 0.9370 0.47230
Fashion-MNIST 0.00018 0.00018 0.08095 0.06954

Rectangles 0.00017 0.00026 0.00735 0.00638
COSMOS 0.01709 0.01395 0.00357 0.14850

We used the Wilcoxon non-parametric test [Wilcoxon, 1992] to verify whether the

results are statistically significantly different from each other. We set the significance level

α = 0.05. The set of 10 runs of Grid Search, Random Search, Bayesian Optimization and

CMA-ES were compared against the results of HBRKGA runs. The resulting p-values are

presented in Table 5. The cases in which there was no observed a statistically significant

difference between the distributions are highlighted in boldface. This occurred in some

41

methods in the datasets MNIST-IB, MNIST-RotBack, MNIST-RandBack, Fashion-MNIST

and COSMOS, especially with Bayesian Optimization and CMA-ES. For all the other

methods and datasets, in the conditions studied, the results of HBRKGA are statistically

significantly different than other methods.

V.4.2 Computational Performance

The computational performance results of each method are presented in Table 6,

which shows the mean execution time and their respective standard deviations for the ten

experimental runs. The smallest results found are highlighted in each line. Random Search

was able to outperform the other methods in 4 out of 8 datasets. Bayesian Optimization

showed the highest processing time in all the experiments performed. It is also possible to

highlight that HBRKGA surpassed other methods in the MNIST-RandBack and MNIST-

RotBack datasets, which were the MNIST variants with the lowest result in the F1 metric.

The values of hyperparameters generated as a solution for each case directly influences

the learning time of ANN. Higher learning rate values can make the model converge faster,

while smaller values can make the learning time longer. Grid Search gets the best result

for Fashion-MNIST and Rectangles datasets.

Table 6 – Average time results (in seconds) for 10 experimental runs. The best results
are presented in bold face. The last line (labelled AVG) presents the average results
considering all ten runs.

GS RS BO CMA-ES HBRKGA

AVG STD AVG STD AVG STD AVG STD AVG STD

MNIST 11050 214 10836 303 32298 884 13199 386 14474 474
MNIST-R 13544 199 11213 288 28950 710 14323 308 15864 380
MNIST-IB 14284 120 13621 356 33020 1950 15666 250 19843 312

MNIST-RotBack 19823 286 19862 258 44985 2232 23425 569 19253 1807
MNIST-RandBack 25143 580 24540 856 49779 2232 25203 667 21988 513
Fashion-MNIST 56811 126 59390 241 109471 10396 59560 847 57214 2094

Rectangles 2281 50 2357 98 9563 374 5563 185 6407 305
COSMOS 2238 66 1157 167 8011 898 3658 401 3726 353

AVG 18146 205 17872 230 39509 2459 20074 451 19846 779

To summarize, Random Search obtained the best average time followed by Grid

42

Search. CMA-ES and HBRKGA presented comparable results, with a small advantage in

the processing time of HBRKGA. BO showed the highest average processing time. It is

also possible to observe that the Random Search and Grid Search strategies presented

the lowest global mean in the standard deviation value.

V.5- Ablation Study

In general, in an ablation study, the goal is to understand the behavior of a system

by removing/changing some components of it and observing the impact. In this section,

we describe an ablation study we conducted using the rectangle dataset (Section V.1)

to evaluate the impact of the Random-Walk component in the behavior of HBRKGA.

The seed was fixed in HBRKGA(0) (without applying Random-Walk) and HBRKGA(3)

(using Random-Walk with three steps) algorithms, where the solutions were sent to the

generation and quality evaluation of the model in ANN without a fixed seed. This process

was repeated ten times in each algorithm.

The total number of solutions at the end of runs were kept the same in both

algorithms, taking into account the adjustment by Random-Walk that increases the number

of solutions in each generation. For HBRKGA(0), ten generations were used (the first

reserved for a random initial solution) with a population size 24, generating 240 solutions

in total. For the HBRKGA(3), the generations were reduced to 6 with a population size

of 10, but adding 3 Random Walk steps in each population individual generated by the

algorithm.

Figure 16 presents the results obtained in comparative experiments. The mean of

F1, inside each bar, indicates an advantage for HBRKGA(3), which increased the mean

result obtained by HBRKGA(0) in the conditions studied. It is also possible to verify that

HBRKGA(3) showed more variance in F1 than HBRKGA(0), however, it maintained a

better result taking into account the upper limit or the lower limit of the interval. These

variations can be caused by ANN factors, like weights initialization and the hyperparameter

value behavior generated by both algorithms.

43

HBRKGA(0) HBRKGA(3)
0.9

0.92

0.94

0.96

0.98

Figure 16 – HBRKGA behavior with (HBRKGA(3)) and without (HBRKGA(0)) the Random-
Walk component. HBRKGA(3) reached the mean F1 metric for 10 runs 0.98 ± 0.00285
while HBRKGA(0) reached 0.975± 0.00195.

44

Chapter VI Conclusion

VI.1- Retrospective Analysis

In this work we presented a new evolution-based approach to calibrate hyperpa-

rameters in a machine learning context, more specifically in an MLP ANN. HBRKGA,

the proposed hybrid method, combines a genetic algorithm (BRKGA) with a Random-

Walk technique, with the goal of finding higher quality hyperparameter configurations.

We performed several experiments in the context of artificial neural networks for solving

classification problems.

The experiments conducted in this work comparing HBRKGA to other approaches

(Grid Search, Random Search, Bayesian Optimization and CMA-ES), HBRKGA produced

better average F1 values (measured in a separate validation dataset) in 6 out of 8 datasets.

By using the Wilcoxon test, we found HBRKGA to be statistically significantly better than

the other methods in three datasets while being highly competitive in the other datasets.

The second measurement during the experiments was in relation to the execution

time of each strategy. The results show that Random Search and Grid Search provide

the shortest average execution time compared to HBRKGA, CMA-ES and Bayesian

Optimization. The Bayesian Optimization showed by far the longest average processing

time.

We also performed an ablation study to assess the impact of the Random-Walk

component. In particular, we compared the full-blown variant of HBRKGA with the one in

which we removed the Random-Walk component. It was possible to observe a statistically

significant difference in the average F1 values, with the same experimental conditions for

both variants. We conclude that the Random-Walk component, albeit simple to implement,

is a crucial part of HBRKGA, allowing it to inherit nice properties of Random Search

already identified in previous work [Bergstra and Bengio, 2012].

45

VI.2- Contributions

The experiments applying the proposed HBRKGA strategy to the hyperparameter

optimization problem proved to be a good alternative to more conventional methods such

as Grid Search, Random Search and Bayesian Optimization. With this, the availability of

source code can help to provide an option to these methods with an acceptable processing

time to generate the solutions.

All source code and datasets used are publicly available. The source code from

the HBRKGA strategy used in the validation experiments is publicly available at https:

//github.com/MLRG-CEFET-RJ/HBRKGA. Also, all datasets used in the experiments of

this work (MNIST and variations, rectangles, COSMOS and Fashion-MNIST) can be

downloaded at https://doi.org/10.5281/zenodo.4252922.

VI.3- Future Work

There are several ways to continue the work we started in this work. There are

several machine learning algorithms that also need hyperparameter tuning to perform an

efficient task, such as Support Vector Machine (SVM) and Random Forest. Therefore, we

plan to investigate the application of HBRKGA to other machine learning methods and

tasks.

This work explored the tuning of hyperparameters specifically in fully connected

neural networks. We will investigate the use of HBRKGA in tuning hyperparameters of

particular ANN architectures, such as convolutional neural networks and recurrent neural

networks.

We will also investigate new alternatives to perform the perturbation in HBRKGA

instead of Random-Walk; one possibility is to add the points generated and evaluated

in HBRKGA to Bayesian Optimization, using these previously known solutions for new

acquisitions during the Gaussian Process.

Another point to be studied is the use of the proposed strategy in the general

AutoML context. AutoML has the objective of reducing the inputs of a user as a whole in the

https://github.com/MLRG-CEFET-RJ/HBRKGA
https://github.com/MLRG-CEFET-RJ/HBRKGA
https://doi.org/10.5281/zenodo.4252922

46

machine learning process. This reduction of inputs is not only restricted to hyperparameter

optimization but also points such as the automatic selection of the best preprocessing

technique in the dataset and choice of the architecture used for model generation [He

et al., 2019].

47

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization.

ORSA Journal on Computing, 6:154–160.

Bellman, R. (1961). Adaptive control processes: a guided tour princeton university press.

Princeton, New Jersey, USA.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architec-

tures. In Neural networks: Tricks of the trade, pages 437–478. Springer.

Bengio, Y. et al. (2012). Deep learning of representations for unsupervised and transfer

learning. ICML Unsupervised and Transfer Learning, 27:17–36.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb):281–305.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-

parameter optimization. In Advances in Neural Information Processing Systems, pages

2546–2554.

Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128:1–58.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421–436. Springer.

Bottou, L. and Cun, Y. L. (2004). Large scale online learning. In Advances in neural

information processing systems, pages 217–224.

Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian optimization

of expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning. arXiv preprint arXiv:1012.2599.

48

Dewancker, I., McCourt, M., and Clark, S. Bayesian optimization primer. SigOpt. https:

//sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf.

Fadely, R., Hogg, D. W., and Willman, B. (2012). Star-galaxy classification in multi-band

optical imaging. The Astrophysical Journal, 760(1):15.

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural

networks. Neural networks, 2(3):183–192.

Gardner, M. W. and Dorling, S. (1998). Artificial neural networks (the multilayer percep-

tron)—a review of applications in the atmospheric sciences. Atmospheric environment,

32(14):2627–2636.

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learning.

Machine Learning, 3:95–99.

Gonçalves, J. F. (2007). A hybrid genetic algorithm-heuristic for a two-dimensional orthog-

onal packing problem. European Journal of Operational Research, 183:1212–1229.

Gonçalves, J. F. and Resende, M. G. C. (2011). Biased random-key genetic algorithms for

combinatorial optimization. Journal of Heuristics, 17:487–525.

Gonzalez, P. H. and Brandão, J. (2018). A biased random key genetic algorithm to solve

the transmission expansion planning problem with re-design. In 2018 IEEE Congress

on Evolutionary Computation (CEC), pages 1–7. IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016a). Deep learning. MIT press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016b). Deep Learning. MIT Press. http:

//www.deeplearningbook.org.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Hansen, N. (2006). The CMA evolution strategy: A comparing review. In Towards a new

evolutionary computation, pages 75–102. Springer.

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772.

He, X., Zhao, K., and Chu, X. (2019). AutoML: A survey of the state-of-the-art. arXiv

preprint arXiv:1908.00709.

https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

49

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning: methods,

systems, challenges. Springer Nature.

Karlik, B. and Olgac, A. V. (2011). Performance analysis of various activation functions

in generalized mlp architectures of neural networks. International Journal of Artificial

Intelligence and Expert Systems, 1(4):111–122.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies for

training deep neural networks. Journal of Machine Learning Research, 10(Jan):1–40.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An empir-

ical evaluation of deep architectures on problems with many factors of variation. In

Proceedings of the 24th international conference on Machine learning, pages 473–480.

ACM.

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss

landscape of neural nets. In Advances in Neural Information Processing Systems,

pages 6389–6399.

Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale op-

timization. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 397–404.

Loshchilov, I. and Hutter, F. (2016). CMA-ES for hyperparameter optimization of deep

neural networks. arXiv preprint arXiv:1604.07269.

50

Machado, E., Serqueira, M., Ogasawara, E., Ogando, R., Maia, M. A., da Costa, L. N.,

Campisano, R., Guedes, G. P., and Bezerra, E. (2016). Exploring machine learning

methods for the star/galaxy separation problem. In Neural Networks (IJCNN), 2016

International Joint Conference on, pages 123–130. IEEE.

Martinez, C., Loiseau, I., Resende, M. G. C., and Rodriguez, S. (2011). Brkga algorithm for

the capacitated arc routing problem. Electronic Notes in Theoretical Computer Science,

281:69–83.

Miller, A. (1993). A review of neural network applications in astronomy. Vistas in astronomy,

36:141–161.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814.

Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures

on machine learning, pages 63–71. Springer.

Rasmussen, C. E. and Williams, C. (2006). Gaussian Processes for Machine Learning.

The MIT Press.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1.

Samanlioglu, F., Ferrell, W. G., and Kurz, M. E. (2008). A memetic random-key genetic

algorithm for a symmetric multi-objective traveling salesman problem. Computers &

Industrial Engineering, 55:439–449.

Scoville, N., Aussel, H., Brusa, M., Capak, P., Carollo, C., Elvis, M., Giavalisco, M., Guzzo,

L., Hasinger, G., Impey, C., et al. (2007). The cosmic evolution survey (cosmos):

overview. The Astrophysical Journal Supplement Series, 172(1):1.

Senior, A., Heigold, G., Yang, K., et al. (2013). An empirical study of learning rates in deep

neural networks for speech recognition. In Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, pages 6724–6728. IEEE.

51

Simon, D. (2013). Evolutionary Optimization Algorithms. Wiley.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. In Advances in neural information processing systems,

pages 2951–2959.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,

Prabhat, M., and Adams, R. (2015). Scalable bayesian optimization using deep neural

networks. In International conference on machine learning, pages 2171–2180.

Snyder, L. V. and Daskin, M. S. (2006). A random-key genetic algorithm for the generalized

traveling salesman problem. European Journal of Operational Research, 174:38–53.

Snyman, J. (2005). Practical mathematical optimization: an introduction to basic

optimization theory and classical and new gradient-based algorithms, volume 97.

Springer Science & Business Media.

Spears, W. M. and De Jong, K. D. (1995). On the virtues of parameterized uniform

crossover. Technical report, DTIC Document.

Toso, R. F. and Resende, M. G. C. (2015). A c++ application programming interface for

biased random-key genetic algorithms. Optimization Methods and Software, 30:81–93.

Van Den Doel, K., Ascher, U., and Haber, E. (2012). The lost honour of l2-based regular-

ization. Large Scale Inverse Problems, Radon Ser. Comput. Appl. Math, 13:181–203.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2):65–85.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in

statistics, pages 196–202. Springer.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Zabinsky, Z. B. (2009). Random search algorithms. Wiley Encyclopedia of Operations

Research and Management Science.

	Introduction
	Contextualization
	Motivation
	Objectives
	Methodology
	Chapters Organization

	Background
	Hyperparameter Optimization Strategies
	Grid Search
	Random Search
	Bayesian Optimization
	Covariance Matrix Adaptation Evolution Strategy

	BRKGA
	Artificial Neural Networks
	Perceptron
	Multilayer Perceptron
	Gradient Descent
	Common Neural Network Hyperparameters

	Related Work
	Hybrid Biased Random-Key Genetic Algorithms
	Problem Statement
	Encoding and decoding candidate solutions
	Random-Walk procedure
	HBRKGA main procedure

	Experiments
	Datasets
	MNIST
	Rectangles
	Fashion-MNIST
	The Cosmic Evolution Survey

	Evaluation Metric
	Experimental Settings
	Experimental Results
	Predictive Quality
	Computational Performance

	Ablation Study

	Conclusion
	Retrospective Analysis
	Contributions
	Future Work
	Referências Bibliográficas

