
A DEEP REINFORCEMENT LEARNING APPROACH

TO ASSET-LIABILITY MANAGEMENT

Alan Rodrigues Fontoura

Dissertation submitted to the Graduate Pro-
gram of the Federal Center for Technological
Education of Rio de Janeiro, CEFET/RJ, as
partial fulfillment of the requirements for the
degree of master.

Advisor: Eduardo Bezerra, D.Sc.
Co-advisor: Diego Haddad, D.Sc.

Rio de Janeiro,

July 2020

A DEEP REINFORCEMENT LEARNING APPROACH

TO ASSET-LIABILITY MANAGEMENT

Dissertation submitted to the Graduate Program of the Federal Center for Technological
Education of Rio de Janeiro, CEFET/RJ, as partial fulfillment of the requirements for the
degree of master.

Alan Rodrigues Fontoura

Examining jury:

President, Eduardo Bezerra, D.Sc. (CEFET/RJ) (Advisor)

Diego Barreto Haddad, D.Sc. (CEFET/RJ) (Co-Advisor)

Laura Silva de Assis, D.Sc. (CEFET/RJ)

Aline Marins Paes Carvalho, D.Sc. (IC/UFF)

Rio de Janeiro,

July 2020

Ficha catalográfica elaborada pela Biblioteca Central do CEFET/RJ

Elaborada pela bibliotecária Tania Mello – CRB/7 nº 5507/04

 F684 Fontoura, Alan Rodrigues
 A deep reinforcement learning approach to asset-liability
 management / Alan Rodrigues Fontoura — 2020.
 78f : il. (algumas color.) , enc.

 Dissertação (Mestrado) Centro Federal de Educação
 Tecnológica Celso Suckow da Fonseca , 2020.
 Bibliografia : f. 75-78
 Orientador: Eduardo Bezerra
 Coorientador: Diego Haddad

 1. Aprendizado de máquina. 2. Algorítimos. 3. Redes neurais.
 4. Administração financeira. 5. Investimentos. I. Bezerra, Eduardo
 (Orient.). II. Haddad, Diego. (Coorient.) Título.

 CDD 006.3

DEDICATION

To my mother Tania, my past

To my wife Marcelli, my present

To my daugther Manuela, my future

The loves of my life

ACKNOWLEDGMENTS

I would like to thank all the professors I had at CEFET/RJ. I would like to specially thank

professors Jorge Soares and Kele Belloze, for the great reception I had when I first joined

this institution, and professors Eduardo Bezerra and Diego Haddad, for being excellent

advisors.

I want to thank my superiors and co-workers at both Petros and Petrobras for all the

understanding and help they have given me.

ABSTRACT

A Deep Reinforcement Learning Approach to Asset-Liability Management

Asset-Liability Management (ALM) is a technique to optimize investment portfolios,
considering a future flow of liabilities. Its stochastic nature and multi-period decision struc-
ture favors its modeling as a Markov Decision Process (MDP). Reinforcement Learning is a
state-of-the-art group of algorithms for MDP solving, and with its recent performance boost
provided by deep neural networks, problems with long time horizons can be handled in just
a few hours. In this work, an ALM problem is addressed with an algorithm known as Deep
Deterministic Policy Gradient. Opposed to most of the other literature approaches, this
model does not use scenario discretization, which is a significant contribution to ALM study.
Experimental results show that the Reinforcement Learning framework is well fitted to
solve this kind of problem, and has the additional benefit of using continuous state spaces.

Keywords: ALM; Deep Reinforcement Learning; Deep Deterministic Policy Gradient.

LIST OF FIGURES

Figure 1 – Efficient frontier, as idealized by Harry Markowitz. 21

Figure 2 – ALM Dynamics. 23

Figure 3 – Chi-squared shaped liability example. 24

Figure 4 – Block diagram of the RL framework [Sutton and Barto, 2018]. 26

Figure 5 – Representation of Policy Gradient Trajectories. 30

Figure 6 – Deep Deterministic Policy Gradient. 37

Figure 7 – An example scenario tree, with 4 stages and 12 scenarios. 39

Figure 8 – Estimated liability flow for toy example. 48

Figure 9 – Step method of the custom environment. 55

Figure 10 – Liabilities modeled as proportionate to chi-squared distributions.

(a) over 30 years; (b) over 50 years; (c) over 80 years. 57

Figure 11 – Average episode return for 30-years simulations. 59

Figure 12 – Average episode return for 50-years simulations. 60

Figure 13 – Average episode return for 80-years simulations. 60

Figure 14 – Non-maximal simulations. 62

Figure 15 – Non-maximal simulations - Uniform portfolio. 65

Figure 16 – Non-maximal simulations - MVO portfolio. 67

LIST OF TABLES

Table 1 – Summary of Related Work 43

Table 2 – Simulation results. 61

Table 3 – Mean-Variance Optimization Portfolios. 63

Table 4 – Uniform portfolio results. 64

Table 5 – MVO portfolio results. 66

Table 6 – Percentage of maximum returns. 68

Table 7 – Minimum returns. 69

Table 8 – Average returns - Total. 70

Table 9 – Average returns - Non Maximal. 71

LIST OF ALGORITHMS

Algorithm 1 – REINFORCE 32

Algorithm 2 – Deep Deterministic Policy Gradient 36

LIST OF ABBREVIATIONS

ALM Asset-Liability Management

DDPG Deep Deterministic Policy Gradient

DPG Deterministic Policy Gradient

DR Discount Rate

DRL Deep Reinforcement Learning

FV Future Value

MDP Markov Decision Process

MSP Multistage Stochastic Programming

MVO Mean-Variance Optimization

PV Present Value

RL Reinforcement Learning

CONTENTS

1 Introduction 14

1.1 Contextualization 14

1.2 Motivation 15

1.3 Goals 16

1.4 Methodology 16

1.5 Organization of Chapters 18

2 Fundamentals of Asset-Liability Management 19

2.1 Basic Concepts 19

2.1.1 Present Value and Discount Rate 19

2.1.2 Solvency Rate 20

2.2 Usual Portfolio Optimization 20

2.3 ALM vs. Portfolio Optimization 21

2.4 Asset and Liability Dynamics 22

3 Fundamentals of Reinforcement Learning 25

3.1 Markov Decision Process 25

3.2 Basic Concepts 26

3.2.1 Exploration vs Exploitation 26

3.2.2 Important Equations 27

3.2.3 Main Solution Methods 28

3.3 Policy Gradient Theorem 29

3.3.1 Direct Policy Differentiation 31

3.3.2 REINFORCE 32

3.4 Actor-Critic Methods 33

3.4.1 Deterministic Policy Gradient 33

3.4.2 Deep Deterministic Policy Gradient 34

4 Related Work 38

4.1 Usual Solution Methods 38

4.1.1 Scenario Trees 39

4.1.2 Investment Policies 40

4.1.3 Multistage Stochastic Programming 40

4.2 More recent approaches 42

4.2.1 Robust Optimization 42

4.2.2 Genetic Algorithms 42

4.3 Overall Conclusion 43

5 Deep Reinforcement Learning Model for ALM 44

5.1 ALM Elements 44

5.2 ALM Mapping to MDP 45

5.3 Initial State 45

5.4 Transition Model 46

5.5 Reward Function 47

5.6 Terminal State 47

5.7 Episode 47

5.8 Toy Example 48

6 Experiments 52

6.1 Code 52

6.1.1 Spinning Up 52

6.1.2 Gym 53

6.2 Simulated Data 56

6.2.1 Assets and Liabilities 56

6.2.2 Available Investments 56

6.3 Experimental Settings 57

6.4 Outputs 58

6.5 Policy Testing 59

6.6 Comparisons 61

6.6.1 Selected Portfolios 63

6.6.2 Uniform Portfolio Results 64

6.6.3 MVO Portfolio Results 66

6.6.4 Results Comparison 66

6.6.5 Discussion 71

7 Conclusions 72

7.1 Retrospective Analysis 72

7.2 Contributions 72

7.3 Future Work 73

7.4 Derivative Work 74

References 75

14

1- Introduction

1.1- Contextualization

One of the most studied issues in finance is asset management. Usually seen

as a portfolio optimization problem, there are two conventional approaches to it: trying

either (1) to minimize the portfolio’s chosen risk measure given an expected return, or (2)

to maximize expected return, while not surpassing a certain risk level [Markowitz, 1952].

Asset-Liability Management (ALM), on the other way, is a more complicated matter.

In such a context, the investor’s goal is to fulfill a series of obligations, which may or may

not be stochastic. These obligations (or liabilities) usually are correlated to one or more

of the assets available to the decision-maker. In this scenario, one cannot just aim to

optimize the risk-return relation: investments have to match (or preferably, outperform)

liabilities, respecting their due dates.

Most obvious uses for ALM strategies lie in the financial sector. In banking, ALM

arises as a tool for interest rate and liquidity management (short and long term) [Dermine,

2008]. Its use is crucial for insurance companies to handle uncertainty related to the total

premium received and debts due to indemnity and pension funds, which need to balance

their investments to guarantee participants’ present and future retirements. Nonetheless,

any individual who saves money for a future debt (an individual who wants to pay for his

children’s university) may benefit from these techniques [Rosen and Zenios, 2008].

The structure of an ALM problem is simple: at each time step, there is an asset,

which is the total amount to be invested, and a set of available investments. An allocation

of the asset is chosen among all (or part) of the available investments, and after one

time step, incomes are added to the original amount. The liability of a given time step

is paid (subtracted from the current asset), and a new allocation happens. This process

is repeated until there are no more assets (hence generating a deficit) or liabilities (and

there is a surplus).

The above structure can be modeled as a Markov Decision Process (MDP) [Sutton

and Barto, 2018]. In such a process, there is a current state st, which is observed by

15

an agent. At each time step, this agent selects an action at, based on a policy1 π(at|st)

and the environment transits to a new state st+1, according to a transition probability

p(st+1|st, at). Based on this state-action-next state tuple, the agent receives a reward rt,

provided by the environment. Then, a new current state st+1 is observed, a new action

at+1 is selected, a state transition occurs again, and a reward is given. This process is

repeated, until a terminal condition is met.

Reinforcement Learning (RL) comprises a group of machine learning algorithms

appropriate for MDP solving [Sutton and Barto, 2018]. Its core idea is to find the policy

π(st|at) that maximizes the expected value of the sum of rewards, along the whole process.

In this work, a Reinforcement Learning algorithm is used for the first time to solve

different instances of an Asset-Liability Management problem. In order to do so, an ALM

environment is modeled as a Markov Decision Process. Several debt flows have been

simulated, with different lengths and asset/liability ratios. Results are compared to those

of more basic investment strategies, and it is shown that such a framework is well suited

for this kind of problem, becoming a reasonable option to be considered against more

popular methods, such as those based on Multistage Stochastic Programming (MSP).

1.2- Motivation

As mentioned earlier, the study of asset-liability management problems is of

paramount importance for all sorts of companies, especially in the financial sector. In the

particular case of closed pension funds, an erratic strategy can lead thousands of people

to lose their retirement benefits, with catastrophic consequences. For insurance plans,

bad ALM decisions lead companies to fail to fulfill their obligations, leaving their customers

uncovered in practice.

RL algorithms have never been used to address asset-liability management prob-

lems, to the best of the author’s knowledge. A major contribution of this study is the use

of continuous state spaces, instead of discrete scenario trees, as in most common MSP

approach [Cariño et al., 1994; Hilli et al., 2007; Duarte et al., 2017; de Oliveira et al., 2017;

Consigli et al., 2018]. This is possible due to recent advances in Deep Reinforcement
1Such policy can be stochastic or deterministic

16

Learning (DRL) algorithms, which combine RL techniques with the power of deep neural

networks. Besides, RL enables handling larger state spaces and longer time horizons

more efficiently, as we show in the computational experiments section.

1.3- Goals

The main question that this dissertation tries to answer is: are reinforcement

learning algorithms suitable for solving asset-liability management problems? The author’s

hypothesis is that this type of algorithm generates adequate results when the problem is

modeled properly.

The major goal of this work is to analyze how DRL algorithms perform and behave

at an ALM problem. In order to do so, an environment capable of interaction with such

algorithms was developed.

As minor goals, we can enlist:

• Properly model asset-liability management as a Markov Decision Process, so that it

can be solved with a reinforcement learning algorithm;

• Compare the performance of the chosen algorithm, known as Deep Deterministic

Policy Gradient (DDPG) [Lillicrap et al., 2015], with two other strategies;

• Conduct an experimental analysis (through simulations) of the algorithm’s behavior

for different liability lengths and values.

1.4- Methodology

As previously stated in Section 1.1, the structure of an ALM problem can be easily

modeled as a Markov Decision Process. So, the first thing done was to map ALM elements

into MDP ones. This mapping is thoroughly detailed in Chapter 5.

With the MDP properly set, the Reinforcement Learning literature has been re-

searched to find algorithms suited for such modeling. The fact that both state and action

17

spaces are continuous reduce the set of available algorithms to those who use policy gra-

dient techniques. Among these, those known as actor-critic algorithms are state-of-the-art

nowadays.

After analyzing this reduced set of algorithms, one of them seemed the most suited

for the addressed problem: DDPG, which is detailed in Section 3.4.2. It is a deterministic

algorithm, as its name suggests.

The next step was to write the environment’s code effectively. The Python library

known as OpenAI Gym [Brockman et al., 2016] has been used to such an end. It has tens

of environments already modeled, and a set of tools for creating new, customized ones.

Special attention was given to the choice of the reward function, which is done in this step.

Technical details can be found in Chapter 6.

Fifteen instances for the problem were generated, split into three groups: every

group has a time horizon, and within each of them, five different liability flows, to simulate

increasing levels of difficulty. The higher the liabilities, the harder it is to fulfill all its

obligations.

Then, computational experiments were performed. To do so, an educational Python

package called SpinningUp, developed by the OpenAI group was used, with a few minor

changes. Details of the experiments are shown in Chapter 6.

Results found were presented and analyzed in Chapter 7. Two basic investment

strategies are compared to the proposed approach, using the very same test environment:

the first using a uniform allocation, splitting total assets evenly trough all available invest-

ments; and the second using a technique known as Mean-Variance Optimization (MVO),

as proposed by Markowitz [1952] in his modern portfolio theory.

A uniform strategy for result comparison is a technique used in other works, such

as a recent Master’s dissertation [de Almeida, 2016], while the mean-variance optimization

approach has been the market standard for simple portfolio optimization (not considering

liability flows).

18

1.5- Organization of Chapters

The remaining of this work is structured as follows. Chapters 2 and 3 describe,

respectively, the fundamentals of Asset-Liability Management and Reinforcement Learning.

Chapter 4 lists ALM’s most common solving techniques. Chapter 5 details the proposed

model. Chapter 6 describes the conducted computational experiments, their results, their

analysis, and brings comparisons of given results with other techniques. Finally, the

conclusions, as well as some ideas for future research, are presented in Chapter 7.

19

2- Fundamentals of Asset-Liability Management

According to the Society of Actuaries ALM Principles Task Force [Luckner et al.,

2003], the definition of asset-liability management is as follows:

”Asset-Liability Management is the ongoing process of formulating, implementing,
monitoring, and revising strategies related to assets and liabilities to achieve financial
objectives, for a given set of risk tolerances and constraints”.

In other words, asset-liability management is a technique used to continuously

optimize investment portfolios, trying to match investment returns with a given flow of

future liabilities, while respecting a policy of risks and regulatory constraints.

Section 2.1 summarizes a few basic ALM concepts, Section 2.2 gives a brief

description of usual portfolio optimization, while Section 2.3 compares it to general ALM

idea, and Section 2.4 presents how asset and liability dynamics behave.

2.1- Basic Concepts

An asset is a total amount one has already invested (like bonds, real estate, or

equity) or yet to be invested (cash). A liability flow is nothing more than a series of debts

that must be fulfilled at their proper due dates, like installments of a loan, a mortgage,

or yearly tuition. Available investments are the options one has to invest, which may be

restricted by the local market, regulatory constraints, etc. Based on these concepts, we

define the liability’s present value, the discount rate, and the solvency rate.

2.1.1 Present Value and Discount Rate

As money can (and should) be invested, a debt in the future is different from a

debt today. For example, if someone has to pay $ 1,060 within a year, but can invest their

20

money for a 6% return, he will need only $ 1,000 today. In this example, the original debt,

which will be paid in a year, is called the Future Value (FV), and the amount you need

today is the Present Value (PV) of the debt (see Equation 1). To calculate one from the

other, one has to know (or estimate) the investment’s return: this is the Discount Rate

(DR). If the debt is more than one time period ahead, the future value has to be discounted

once for every period.

PV =
FV

(1 +DR)t
(1)

This operation is known as discounting a flow to its present value. The present

value of a liability flow LPV is the sum of all its single debts, discounted to their present

values, at a proper rate.

LPV =
L1

(1 +DR)
+

L2

(1 +DR)2
+ . . .+

LT
(1 +DR)T

=
T∑
t=1

Lt
(1 +DR)t

, (2)

where LPV represents the liability’s present value, Lt is liability’s installment at time t, and

T is the amount of installments.

2.1.2 Solvency Rate

The ratio between total assets and liability’s present value is known as solvency

rate. In order to keep the risk-return relation of an ALM problem well balanced, it is desired

to keep it always close to 1. A low solvency rate is associated with high deficit probabilities,

while a high value suggests the fund is incurring in too much risk.

2.2- Usual Portfolio Optimization

The modern portfolio theory states how a risk-averse investor can optimize a

portfolio by maximizing its expected return, given a maximum level of a chosen risk

measure (usually, portfolio volatility) [Markowitz, 1952]. According to this theory, higher

returns lead to higher risks, and it is possible to find an efficient frontier (Fig. 1) of optimized

21

Risk

E
x
p

e
x
te

d
 R

e
tu

rn

Efficient Frontier

Figure 1 – Efficient frontier, as idealized by Harry Markowitz.

portfolios for all possible expected returns and their respective risk measures. Each point

on that frontier represents the minimum-variance portfolio for the given expected return.

This approach has been extensively studied by the academy and widely used by

the market ([Dhrymes, 2017; Kaplan, 2017; Aouni et al., 2018], among many others).

However, it is not very useful in the presence of debt flows, since it is short-sighted

(optimizing only for the present moment), and does not consider risk factors for the liability.

In such a situation, an optimization model that takes into account the expected returns on

investments, risk measures, and liability attributes together is needed [Aro and Pennanen,

2017].

2.3- ALM vs. Portfolio Optimization

To illustrate the difference between an ALM problem and a standard portfolio

optimization, imagine the following situation: a person has $ 1.000 to invest, and has to

pay $ 1.080 after two years. He chooses a high-risk investment, which has a 10% loss in

22

the first year (bringing him down to $ 900), and a 20% profit in the second (getting him

back to $ 1.080), and the debt can be honored. On the other hand, if he had to pay $ 540

in each year (so, having a liability flow, instead of a single payment), the first year would

bring him down to $ 900 - $ 540 = $ 360, and the 20% profit of the second year would

apply only upon this difference, leaving him with $ 432, and so, unable to honor his debt.

The context presented above is where ALM comes in hand. Its main goal is to

find an optimal investment strategy that considers assets and liability flows together. The

above example considers stochasticity only in asset returns, but liabilities are usually

highly unpredictable, and somehow correlated with available investments.

In other words, portfolio optimization is concerned with expected returns and

volatility for the whole period, since a loss in a given time step can be recovered in the

future. ALM, on the other hand, considers returns, volatility and debts for every single time

step, because any loss can have a huge impact in future returns.

2.4- Asset and Liability Dynamics

ALM dynamics are pretty simple, as represented in Figure 2. The investor has

an initial asset amount, which will be allocated among n available investments. After a

certain time period, the return of these investments is added to the original amount. When

the time is due, an obligation must be paid, which is that period’s liability. This amount is

subtracted from the total assets, and the process is repeated with the assets left.

To further clarify liability stochasticity and its interaction with asset returns, let us

consider an example scenario: a closed pension fund has gathered one billion monetary

units through the contributions made by its participants. This current amount, At, has to

be invested, and will later be used to pay their retirements. The fund administration should

pay each retired participant until his/her death. To do so, they estimate how much has

to be paid each year, and until when. This estimation is based on the number of living

pensioners, their life expectancy, and how much they receive per year.

For example, suppose in a given year, fund’s administration expects to have 500

pensioners alive, with an average year income of 100,000 monetary units: so, this period’s

liability Lt is estimated in 50 millions. Chosen asset allocation had a 4% return rt; so, total

23

Figure 2 – ALM Dynamics.

amount at next year is calculated by updating the current amount by the year’s return, and

then subtracting current liability (see Equation 3).

At+1 = At · (1 + rt)− Lt = 1, 000, 000, 000 · (1 + 0.04)− 50, 000, 000 = 990, 000, 000 (3)

In the following year, sixty more participants shall retire, and the actuarial table

indicates ten will perish. So, estimated debt for the following year, Lt+1, will be 55 million.

These yearly estimates will grow up to a certain point when the amount of living retired

participants reaches its peak, and then slowly shrink to zero, as they cease living. This

liability behavior tends to be similar to a chi-squared density function, like the one seen in

Figure 3, which is pretty typical for closed pension funds, but not a general rule in ALM

problems.

In the above scenario, a risky investment strategy could lead to losses that would

let lots of pensioners without their incomes. On the other way, a too conservative strategy

may not make enough money to honor fund’s debts. Thus, the choice of an adequate

investment strategy is of paramount importance to the fund’s success. This choice must

simultaneously consider total assets, available investments, and liability flow (Section 2.1).

24

Time Period

L
ia

b
ili

ty
 V

a
lu

e

Figure 3 – Chi-squared shaped liability example.

25

3- Fundamentals of Reinforcement Learning

In machine learning, there are three major groups of algorithms: supervised

learning algorithms try to find patterns in labeled data; unsupervised learning does the

same in unlabeled data; and reinforcement learning, which seeks to find a policy that

maximizes a given metric, i.e., to define what action should be taken in a particular situation

to maximize the probability of something desired to happen.

Reinforcement learning is the group of interest in this work. The goal is to train an

algorithm that, at every time step, given a total asset, a liability flow, and a set of available

investments, returns an allocation that maximizes the probability of all future debts to be

paid.

In order to do so, first thing to be done is model the problem at hand as a Markov

Decision Process, which is described in Section 3.1. In Section 3.2, basic concepts of

the reinforcement learning framework are described. Policy gradient methods, which are

better suited for problems with continuous variables, are shown in Section 3.3, and their

natural evolution, actor-critic algorithms, are described in Section 3.4.

3.1- Markov Decision Process

A Markov Decision Process is defined as “a classical formalization of sequential

decision making, where actions influence not just immediate rewards, but also subsequent

situations, or states” [Sutton and Barto, 2018]. The elements of such formalization are:

• a state space S;

• an action space A;

• an initial state s1 ∈ S with density p1(s1);

• a reward function r : S ×A× S → R;

26

• a transition distribution function with density p(st+1|st, at), which must satisfy the

first-order Markov property: p(st+1|s1, a1, . . . , st, at) = p(st+1|st, at); and

• a terminal condition that, when reached, ends the execution.

A policy function πθ : S → A is defined, to select the actions from a given state. This

policy might be stochastic (defined by πθ(at|st)) or deterministic (defined by at = µθ(st)).

In both cases, θ ∈ Rn is the parameter vector of the function.

3.2- Basic Concepts

Agent

Environment

action At
Rt+1

St+1

reward
Rt

state
St

Figure 4 – Block diagram of the RL framework [Sutton and Barto, 2018].

Reinforcement learning algorithms work through repeated interactions between

the agent (which represents the decision maker) and an environment (which simulates

the problem at hand). The agent observes a state st, and through its current policy, takes

an action at. Based on this state-action pair, the environment returns a new state st+1,

and a reward signal rt+1. The process is repeated until a terminal state is reached. The

sequence s0, a0, r1, s1, a1, r2, . . . generated trough these interactions is called a trajectory

and is denoted by τ .

3.2.1 Exploration vs Exploitation

A fundamental concept is that of the ”conflict” between exploration and exploitation

[Sutton and Barto, 2018]. If an agent always tries to take the best possible known action,

it will fail to explore the solution space. So, there may be an action that seems to be

sub-optimal now but is a better choice in the long run.

27

On the other hand, if the agent is always exploring new possibilities, it will not

exploit what it has learned, hence failing to converge to a satisfying solution. So, every

algorithm tries to balance when it must explore new possibilities, and when it exploits what

is already known.

3.2.2 Important Equations

The return of a trajectory τ , known as G(τ), or cumulative discounted reward, is

defined as the sum of its discounted rewards. Usually, a discount factor1 γ ∈ [0, 1] is used,

to avoid problems with infinite trajectories, and to enforce the fact that current reward is

more important than future ones2. It can be described as Equation 4.

G(τ) = γr1 + γ2r2 + γ3r3 + . . .+ γT rT =
T∑
t=1

γtrt (4)

The main goal of a reinforcement learning algorithm is to find a policy that maxi-

mizes return’s expectation E(G(τ)).

Another important concept is that of value functions. The value function of policy π

and state st, V π(st), represents the expected cumulative discounted reward of state st,

given that policy π is followed by the agent. That is: if one is in state st, and follows policy

π, what is the expected return? Note that, in mathematical terms, V π(st) can be written as

Equation 5.

V π(st) = Eπ(Gt|st) (5)

A similar concept is the action-value function of state st, action at and policy π,

Qπ(st, at). The difference from the value function comes from the fact that the agent takes

an arbitrary action at in its first step, and follows policy π afterward. Or: if one is in state st,

takes action at now, and follows policy π from state st+1 till the end, what is the expected

return? In mathematical terms, Qπ can be described as in Equation 6.

Qπ(st, at) = Eπ(Gt|st, at) (6)

1Although concepts are similar, this is not the rate used to discount a liability to its present value.
2Although not usual, discount factors can be equal to 0 (if the current reward is just as important as future

ones) or 1 (if only current reward is important).

28

At last, the advantage function represents how much one can expect as an excess

return if the agent takes arbitrary action at now instead of following policy π. It is used

to measure how much the expected return will increase (or decrease) if we change the

action that policy π suggests for an arbitrary action. It is given by the difference between

action-value function and value function. Equation 7 calculates the advantage function.

Aπ(st, at) = Qπ(st, at)− V π(st) (7)

3.2.3 Main Solution Methods

The goal of a reinforcement learning algorithm is to find the policy that maximizes

the expectation of cumulative discounted reward, given an initial state s1. There are several

ways of doing this, which can be divided in three major groups:

1. Tabular Methods: better suited for discrete state and action spaces (or spaces

small enough to be discretized and represented as a table). Approximate value

functions are represented as arrays or tables, and their optimal values are calculated

through repeated iterations of Bellman equations, as shown in equations 8 and 9.

V π(st+1) = rt + γV π(st), (8)

Qπ(st+1, at+1) = rt + γQπ(st, at). (9)

The optimal policy is implicit: at any state, the action taken is the one that maximizes

V π or Qπ. An example of a tabular algorithm is Q-Learning [Watkins and Dayan,

1992].

2. Policy Optimization: the policy is explicitly given as a probability distribution

πθ(at|st) (stochastic policy) or as a function at = µθ(st) (deterministic policy). This

approach is suited to continuous state spaces, and both continuous and discrete

action spaces. One of the most known algorithms in this group is REINFORCE

[Williams, 1992].

3. Actor-Critic Algorithms: this is the most used framework nowadays, combining

29

the previous two. Algorithms in this group present two components: an actor,

which works as the agent, just like in policy gradient algorithms, and a critic, which

estimates the action-value function Qπ(s, a), used to update the actor’s parameters.

Asynchronous Advantage Actor-Critic (A3C) is a good example of these algorithms

[Mnih et al., 2016].

The algorithm used in this work, Deep Deterministic Policy Gradient, belongs to

the third group. In order to understand how it works, we first need to understand the Policy

Gradient Theorem.

3.3- Policy Gradient Theorem

The first version of a policy gradient algorithm is known as REINFORCE [Williams,

1992]. Like any other reinforcement learning algorithm, it tries to solve problems modeled

as Markov Decision Processes, as defined in Section 3.1. According to MDP’s elements,

the algorithm takes as inputs:

• an initial state probability distribution p(s0);

• a trajectory τ as a sequence of states and actions, beginning at an initial, random

state s0, and ending when a certain terminal condition is met:

τ = s0, a0, s1, a1, . . . , sT−1, aT−1, sT ;

• a reward function, which maps every state - action - next state tuple into a real value;

R : S ×A× S → R

• a stochastic policy πθ(at|st), with a probability distribution of at conditioned on st,

with parameter vector θ;

• a transition probability function p(st+1|st, at), which is the probability distribution for

st+1, given st and at;

According to these definitions, the probability distribution of a trajectory τ is given

by the product of the probabilities for each of its events, like in Equation 10 [Sutton and

30

−20

−10

0

10

20

0 20 40 60 80

Time Step

C
u
m

u
la

ti
ve

 R
e
w

a
rd

Figure 5 – Representation of Policy Gradient Trajectories.

Barto, 2018].

pθ(τ) = p(s0) · πθ(a0|s0) · p(s1|s0, a0) · . . . · πθ(aT−1|sT−1) · p(sT |sT−1, aT−1). (10)

The goal of a policy gradient algorithm is to find a parameter vector θ∗, for the

policy πθ(at|st), which maximizes the expected cumulative discounted reward, expressed

in Equation 11.

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

γtrt(st, at)

]
. (11)

In Figure 5, we can see a graphical representation of the intuition behind this

theorem3. The image shows three random trajectories. All of them start at the same initial

state s0, but as they are stochastic, they have different outcomes. The red one has a low

return associated; the blue one has a better return, while the green one is the best. Based

on this, the algorithm will try to improve its parameters to maximize the probability of a

better trajectory and minimize others.
3Figure based on policy gradients lecture on Berkeley’s Deep RL course.

http://rail.eecs.berkeley.edu/deeprlcourse/

31

3.3.1 Direct Policy Differentiation

In order to estimate parameter vector θ∗, the policy gradient makes use of the

gradient ascent algorithm. It randomly initializes θ, and then, at every iteration, updates it

in the direction of cost function’s gradient ∇θJ(θt) by a small, arbitrary learning rate α:

θt+1 ← θt + α · ∇θJ(θt) (12)

The cost function that depicts the expected return (Equation 11) should be maxi-

mized. So, we need to find its gradient concerning to θ. Since it is an expectation, it can

be rewritten as an integral, which suits our needs:

J(θ) = Eτ∼pθ(τ) [G(τ)] =

∫
pθ(τ) ·Qπ(s, a) dτ (13)

so that its gradient w.r.t. θ is:

∇θJ(θ) =

∫
∇θpθ(τ) ·Qπ(s, a) dτ (14)

In order to handle this integral, term ∇θpθ(τ) will be replaced, using the following

identity:

∇θpθ(τ) = pθ(τ) · ∇θpθ(τ)

pθ(τ)
= pθ(τ) ∇θ log pθ(τ) (15)

so that the original integral now becomes:

∇θJ(θ) =

∫
pθ(τ)∇θ log pθ(τ) ·Qπ(s, a) dτ = Eτ∼pθ(τ) [∇θ log pθ(τ) ·Qπ(s, a)] (16)

The problem now is to find the gradient of log pθ(τ), since G(τ) does not depend

32

on θ. Using equaton 10, we have:

pθ(τ) = p(s0)
T∏
t=1

πθ(at|st)p(st+1|st, at) (17)

⇒ log pθ(τ) = log p(s0) +
T∑
t=1

log πθ(at|st) + log p(st+1|st, at)

⇒ ∇θ log pθ(τ) = ∇θ

[
log p(s0) +

T∑
t=1

log πθ(at|st) + log p(st+1|st, at)

]

⇒ ∇θ log pθ(τ) =
T∑
t=1

∇θ log πθ(at|st)

The distribution of the initial state and the transition probability distribution do not

depend on θ, so, their gradients are zero. This let us with:

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log pθ(at|st)

)
·Qπ(s, a)

]
(18)

Equation 18 has become known as the policy gradient theorem [Williams, 1992].

3.3.2 REINFORCE

In the same work in which Policy Gradient Theorem was developed, the algorithm

known as REINFORCE, or Monte Carlo Policy gradient, was also proposed [Williams,

1992]. This algorithm defines a stochastic policy πθ(at|st) (usually Gaussian for continuous

action spaces, or a softmax for discrete ones), and arbitrarily initializes a parameter vector

θ. Then, for each episode, it samples a full trajectory through an agent/environment

interaction, and updates θ at every step, as can be seen in Algorithm 1.

Algorithm 1 – REINFORCE
Data: θ,N, T

1 Initialize θ arbitrarily;
2 for episode← 1 to N do
3 for t← 1 to T do
4 θ ← θ + α ∇θ log πθ(st, at) ·Gτ ;
5 end
6 end

33

Despite its substantial theoretical importance, this algorithm is not very useful in

practice, since the estimation of Qπ(st, at) (Equation 6) with a single rollout implies in

extremely high variance, leading to convergence issues.

3.4- Actor-Critic Methods

The main idea behind actor-critic algorithms is to use the policy gradient framework,

described in Section 3.3, with a second function approximator to estimate Qπ(s, a), so,

avoiding the convergence issues of REINFORCE. It is like having an actor (the agent)

making decisions, and a critic (the action-value function estimator) telling it how right

(or wrong) these decisions are. At every iteration, both actor and critic parameters are

updated.

Decisions made by the actor can be either stochastic or deterministic. In the first

case, the action actually taken is randomly chosen according to a probability density

function πθ(at|st) (as described in Section 3.3), while in the second, the action is the

output of a function: at = µθ(st). In order to use this option, it’s mandatory to understand

the deterministic policy gradient theorem.

The policy gradient version, which is used in this work, is the Deterministic Policy

Gradient (DPG), detailed in Section 3.4.1. The specific algorithm used is the Deep

Deterministic Policy Gradient is presented in Section 3.4.2.

3.4.1 Deterministic Policy Gradient

In 2014, the deterministic policy gradient theorem was presented [Silver et al.,

2014]. Until then, it was believed that a deterministic policy gradient did not exist in a

model-free algorithm, but they proved that it exists, and is the expected gradient of the

action-value function.

The authors demonstrate that, in continuous action spaces, when using a determin-

istic policy at = µθ(st), policy parameters should be moved in the direction of the gradient

34

of Q with respect to θ, and applying a simple chain rule to the action.

∇θJ(µθ) = E
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
(19)

The deterministic policy gradient theorem, together with a few other ideas (ex-

plained in Section 3.4.2), form the basis for the algorithm known as Deep Deterministic

Policy Gradient.

3.4.2 Deep Deterministic Policy Gradient

Until 2013, it was believed that non-linear function approximators could not be

used to estimate value or action-value functions, due to several problems [Lillicrap et al.,

2015]. One of them is the dependency between sequential states; another is the change

in data distribution as the algorithm is updated.

To address these problems, an altered version of the Q-learning algorithm [Watkins

and Dayan, 1992] was proposed in [Mnih et al., 2013]. An experience replay buffer was

introduced, where transition tuples (st, at, rt+1, st+1) are stored and randomly sampled,

to minimize correlations. They also introduced a target Q network to provide consistent

targets for the main network’s training. This auxiliary network is used to calculate Q-values

one step ahead, and use them to find targets for the Q-values of the current step, using

one of the Bellman equations:

Q(st, at) = rt +Q(st=1, at+1). (20)

These targets are then used to train the main Q network. The resulting algorithm

reaches desired training stability but works only with discrete action spaces.

These ideas have been adapted to an actor-critic framework, with a deterministic

policy gradient agent [Lillicrap et al., 2015], along with batch normalization [Ioffe and

Szegedy, 2015]. The resulting algorithm is known as Deep Deterministic Policy Gradient

(DDPG).

DDPG makes use of a deep neural network, µ(s|θµ), as the actor, and another

one, Q(s, a|θQ), as the critic. After randomly initializing the parameters of both networks, it

35

creates copies of them, which are called target actor µ′ and target critic Q′, which have

a role identical to the auxiliary Q network [Mnih et al., 2013]. These networks are used

to set targets for critic updates, and are not trained as the main ones. Instead, their

parameters are updated slowly, in the direction of actor and critic learned parameters. This

four networks setup improves training stability, and reduces convergence issues. Besides

that, as the algorithm is deterministic, random noise is applied to every action during

training to ensure the exploration of the solution space.

The pseudocode can be seen in Algorithm 2, and Figure 6 shows its flow chart. It

works as follows:

• Actor and Critic networks are initialized with random weights (lines 1-2)

• Target Actor and Target Critic are initialized, with the same weights of main Actor

and Critic (lines 3-4)

• Replay Buffer is initialized, through n iterations of actor and environment (line 5)

• The main algorithm loop begins (lines 6-21), and runs for an arbitrary number M of

episodes.

• In each iteration, an initial state s1 is observed (line 8) and then an inner loop begins

(lines 9-20):

– For every time step t, action at is selected, based on deterministic policy µ(st|θµ)

and random noise Nt (line 10)

– Based on at, observe rt and st+1 (lines 11-12)

– Store st, at, rt and st+1 in R (line 13)

– A random minibatch is sampled from replay buffer R, to avoid correlation

between sequential agent/environment interactions (line 14)

* st+1 is used as input for target actor, to generate at+1

* With st+1 and at+1 as inputs, target critic calculates Q(st+1, at+1)

– According to the Bellman equation, vector of target values y is calculated,

adding rt+1 with Q(st+1, at+1) (line 15)

– Vector y is used as target labels, to train the main critic network, as a simple

supervised learning problem (line 16)

36

– With this newly updated critic, actor network is updated, trough Deterministic

Policy Gradient theorem (line 17)

– Target critic and target actor are updated, according to new main critic and

actor parameters, and a learning rate, τ (lines 18-19)

– Iterate until the end of the episode

Algorithm 2 – Deep Deterministic Policy Gradient
Data: θQ, θµ,M,N, T

1 Initialize critic network Q(s, a|θQ) with weights θQ

2 Initialize actor µ(s|θµ) with weights θµ

3 θQ
′ ← θQ

4 θµ
′ ← θµ

5 Initialize replay buffer R
6 for episode← 1 to M do
7 Initialize random process N
8 Receive initial observation state s1
9 for t← 1 to T do

10 Select action at ← µ(st|θµ) +Nt
11 Execute selected action
12 Observe reward and next state
13 Store (st, at, rt+1, st+1) tuple in R
14 Sample a random N -size minibatch from R

15 yi ← ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
16 θQ ← arg minθQ

1
N

∑
i(yi −Q(si, ai|θQ))2

17 ∇θµµ|si≈ 1
N

∑
i∇aQ(·)|s=si,a=µ(si)∇θµµ(s|θµ)|si

18 θQ
′ ← τθQ + (1− τ)θQ

′

19 θµ
′ ← τθµ + (1− τ)θµ

′

20 end
21 end

37

Fi
gu

re
6

–
D

ee
p

D
et

er
m

in
is

tic
Po

lic
y

G
ra

di
en

t.

38

4- Related Work

In the Handbook of Asset and Liability Management [Rosen and Zenios, 2008],

ALM solution methods are grouped along two axes: time (single or multiple periods)

and risk factors (static or stochastic). Single period solutions are short-sighted, making

decisions only in the present moment, while multiple period ones take future steps into

account. On the risk factor axis, static solutions consider that uncertainty in the model will

remain constant through time, as opposed to stochastic models.

Single period static models usually try to match assets and liabilities durations1, a

financial technique known as immunization. In doing so, the portfolio is secured against

small changes in interest rates, but not against major ones. Single period stochastic

models are similar, but take risk factor’s volatility into account. The most known and used

technique in this group is the mean-variance optimization [Markowitz, 1952].

Multiple-periods static models are similar to their single period counterparts but

incorporate portfolio rebalancing. One of the very few examples of this group is found

in the Stochastic Optimization Models in Finance [Fama, 1975]. Moreover, due to ALM

problems’ very nature, multiple-periods stochastic models are the most common approach.

This work will focus on them from now on.

4.1- Usual Solution Methods

There are very few analytical solutions to an ALM problem, and all of them on

limited cases [Gulpinar and Pachamanova, 2013]. Most solutions in literature are numerical

and fall under three categories2: dynamic programming, simulation-based, and the most

used, stochastic programming, which focuses on finding an optimal investment policy over

a set of simulated scenarios.

Although being the most used technique, scenario simulation is still challenging.
1An average of the asset’s maturities, weighted by their net present values
2Actually, Gulpinar and Pachamanova [2013] proposed a fourth one, based on robust optimization.

39

Figure 7 – An example scenario tree, with 4 stages and 12 scenarios.

The multi-period nature of an ALM problem makes the number of scenarios needed for a

good solution to increase exponentially for longer time lengths, increasing the problem’s

dimension and its difficulty level. Therefore, most works use state-space approximations

and problem relaxations to generate their scenario trees, described in Section 4.1.1.

Section 4.1.2 elucidates the concept of an investment policy, and a few MSP models

present in the literature are exposed in Section 4.1.3.

4.1.1 Scenario Trees

A scenario tree is generated from a root node (associated with an initial obser-

vation). For each possible outcome of the problem’s random variables, a child node is

attached to the tree [Defourny et al., 2011]. In a multistage schema, this branching process

is repeated for every child node, until a terminal state is reached. This tree generation, as

described, is impossible when we are dealing with continuous random variables, and so,

there is the need to discretize them. The structure of the tree is a sequence of integers

that indicate how many children a node in a given stage has. In Figure 7, we can see a

2-2-3 structure. The product of these numbers gives us the total number of scenarios in

the last stage (12 in the example).

40

4.1.2 Investment Policies

It has been demonstrated that the optimal investment strategy depends mainly

on the investment policy, which determines how much should be allocated in the major

investment groups (stocks, bonds, or cash) [Brinson et al., 1986]. Individual securities

selection, market timing, and costs (the other elements analyzed) had a minimal impact

on the pension funds examined. Therefore, most ALM models try to find the optimal

investment policy, given a particular set of regulatory constraints, using major asset

groups, instead of individual assets.

4.1.3 Multistage Stochastic Programming

Many models address portfolio optimization, with many different approaches, but

the first to incorporate liabilities was created for a Japanese insurance company [Cariño

et al., 1994]. It has become known as the Russel-Yasuda Kasai model, named after the

Frank Russel Company and the Yasuda Fire and Marine Insurance Co. The model utilizes

multistage stochastic programming to define an optimal investment strategy, incorporating

a multi-period approach, as well as risk measures and regulatory constraints. It uses a

scenario generator module, where the decision-maker can define the premises to be used,

like correlation and temporal dependency among assets, depth of the scenario tree, and

the number of nodes in each layer. Technical issues for the discrete scenario generation,

the mathematical approach used, comparisons of algorithms, and a comparison of the

multistage stochastic programming with the previous mean-variance technique used are

provided in a posterior work about the problem [Cariño et al., 1998]. According to the

authors, the model’s major goal is to generate a high-income return, while maximizing long

term wealth. A real-life application of the model returned US$ 79 million of extra income

along its first two years of use, 1991 and 1992.

In the particular case of pension funds, there are several approaches in the lit-

erature. One of them proposed a stochastic programming model for a Finnish pension

insurance company, which pays particular attention to the model’s uncertainty factors:

41

investment returns, cash flows, and technical, regulatory reserves [Hilli et al., 2007]. This

approach utilizes a stochastic model for assets and liabilities, based on infinite sample

spaces [Koivu et al., 2003]. Such an approach leads to infinite-dimensional optimization

problems that are not tractable, being numerically solved trough a discretization process.

According to the authors, this process is fully automated and hidden from the user [Pen-

nanen and Koivu, 2002]. The model was tested against a static fixed-mix strategy3, and

performed well.

A Brazilian case has been studied, and the model proposed is a multistage stochas-

tic programming algorithm with a new method for measuring and controlling equilibrium

risk, e.g., long term solvency risk, or the risk of not paying all benefits until the end of the

plan (becoming insolvent) [Valladão and Veiga, 2008]. The model considers five classes

of assets, loans (in case of cash shortages), transaction costs, regulatory constraints,

market liquidity, and asset inventory. These considerations make the model very realistic.

Chosen scenario tree has 5 stages of one, one, three, five, and ten years length, for a total

of a 20 years time horizon optimization, with a 10-6-6-4-4 structure (5,760 scenarios), and

was based on ”Adjusted Random Sampling” [Kouwenberg, 2001]. Instead of measuring

insolvency risk at the end of each scenario as other methods do, with a regulatory discount

rate, a bootstrapping of the portfolio’s returns is proposed, to find a better discount rate

estimate.

A multistage stochastic programming model proposed for a Dutch pension fund

focused on short-term risk, controlling it using Integrated Chance Constraints [Klein Han-

eveld, 1986], which is a kind of constraint based on probability [Haneveld et al., 2010]. A

good example is Equation 21.

P(Ft+1 ≥ α|(st)) ≥ γt (21)

The above equation states that the probability of solvency rate at next period of

time Ft+1 being greater than or equal to a certain α level (e.g., 105%), given current state

st, must be greater than a certain required reliability level (e.g., γt = 0.95). Scenario tree

used a 10-10-10 structure for a total 1,000 equally probable scenarios and three periods

of time.
3A strategy where a fixed asset proportion is defined, and the portfolio is rebalanced at every time step to

keep it constant. Such strategy, although not realistic, is a good benchmark.

42

4.2- More recent approaches

Recently, a few other approaches were proposed to solve ALM problems.

4.2.1 Robust Optimization

As stated at the beginning of Chapter 4, a new approach has been proposed to

ALM problems: robust optimization, which takes a worst-case approach to optimization

models [Gulpinar and Pachamanova, 2013]. It assumes that the model’s uncertain data

belongs to an uncertainty set and looks for the optimal solution for the worst values in

this set. The risk level of the model can be controlled by varying shape and size of

uncertainty’s set. Although it has no need to use scenario trees, this approach still has

time span problems.

4.2.2 Genetic Algorithms

Genetic algorithms are population-based algorithms, based on the evolution theory

by Darwin. They are initialized with a set of feasible solutions for a given problem (an initial

population). These solutions are evaluated using a fitness function. The best are selected,

while the worst are discarded (simulating the “survival of the fittest”). Remaining solutions

suffer a variation process (a “mutation”) and crossovers, and the new solutions go through

the evaluation process again, restarting the cycle. This is repeated until a specific stopping

criterion is met.

Genetic algorithms have been used in several portfolio optimization problems [Rao

et al., 2010; Zhang and Zhang, 2009; Huang, 2012], but recently, an ALM approach has

been proposed [de Almeida, 2016].

43

Table 1 – Summary of Related Work

Author State Spaces Algorithm
Number of

Investments
Single/Multi

Period
Time
Steps

MVO, by
Markowitz [1952]

Continuous
Quadratic

Programming
Many Single 1 at a time

Hilli et al. [2007] Discrete MSP 3 Multi 5

Valladão and Veiga [2008] Discrete MSP 5 Multi
20 years
in 5 steps

Haneveld et al. [2010] Discrete MSP 3 Multi 3

Gulpinar and Pachamanova [2013] Discrete
Robust

Optimization
3 Multi 3

de Almeida [2016] Continuous
Genetic

Algorithm
3 Multi 40

Fontoura et al. [2019] Continuous DDPG 6 Multi Up to 80

4.3- Overall Conclusion

Multistage stochastic programming is the most common approach to ALM problems.

This approach relies on scenario tree generation and variable discretization, which leads to

several issues when dealing with too many variables or long time spans since the number

of necessary scenarios grows exponentially. Other approaches, like robust optimization

and genetic algorithms, are still studied in an ALM context, and this work presents one

more option to be considered.

Departing from all the approaches described above, our proposed model considers

a continuous state space and can handle virtually infinite periods. This naturally fits the

structure of the random variables we are dealing with in our ALM problem.

Table 1 presents a comparison of the main features of each discussed algorithm.

44

5- Deep Reinforcement Learning Model for ALM

The main proposal in this dissertation is to solve an ALM problem with the selected

reinforcement learning algorithm. To fulfill this purpose, the first thing to be done is to

model the addressed problem as a Markov Decision Process, as stated in Section 3.1.

For this, ALM elements were enlisted on Section 5.1, and then, mapped to MDP elements,

in Section 5.2. The initial state of the problem is described in Section 5.3, and its transition

model, in Section 5.4. Section 5.5 details the chosen reward function.

5.1- ALM Elements

The elements of an ALM problem are:

• Asset : the total amount of money available for investments at any given time. Its

value at any observed time is a non-negative deterministic scalar, represented by At.

At any future moment, it depends on investment’s returns and liabilities, and so, is

stochastic.

• Liabilities: a flow of future debts that have to be paid in their proper due dates. It

can be deterministic, which is more unusual. Alternatively, it can have one or more

stochasticity sources, like variable interest, insurance indemnities, or pension fund’s

payments. At any given time t, it is represented by Lt = [L1, L2, . . . , LT].

• Time horizon: time until all debts are paid, represented by a discrete integer, from

1 to T . It can be deterministic (a loan), stochastic (lifelong pension fund), or even

infinite (insurance company portfolio).

• Available investments: at any given time, this is the set of all investments that can be

picked by the decision-maker. Each investment has its features, like expected return,

risk level, and liquidity. Correlations among available investments, and between them

and liabilities are of paramount importance.

45

• Allocation: how to split the assets among available investments. It is represented by

an n-sized vector at = [a1,t, a2,t, . . . , an,t], where n is the total number of available

investments, with ai,t ≥ 0 ∀i ∈ 1, . . . , n and
∑n

i=1 ai,t = 11.

5.2- ALM Mapping to MDP

The elements of a Markov decision process (see Section 3.1), and their ALM

mappings, are:

• State: at any time, a state will be composed of current assets and the liability flow

until the end of the time horizon; so, it is a vector of size T + 1.

• Action: this is the investment’s allocation made by the agent. It is a continuous

n-sized vector.

• Transition model : the new asset will be given by current amount of money, updated

by investment’s returns, and subtracted from current liability’s first element, as in

Equation 3. New liability is current liability flow, without its first element (which has

just been paid), and updated by a chosen index (usually, inflation). New assets and

new liability form the next state.

• Reward function: several options can be used, like rewarding excessive assets at

the end of the time horizon (surplus) or total periods with debts paid (longevity).

5.3- Initial State

The primary inputs of the problem are an initial total asset, a liability flow, and a

data frame with the historical returns of available assets. An index used to update the

liability, such as inflation, is added to the set of available assets, in order to be simulated

together, respecting their correlations.
1The ai,t ≥ 0 constraint is a regulatory restriction typical of pension funds. Other problem setups, like

insurance companies or banking may or may not have a similar constraint.

46

5.4- Transition Model

At every step, state st, which contains At and Lt, is observed. The input of the

model will be the ratio Lt/At, which is obviously a T -sized vector. The agent, based on

this input and in its deterministic policy µθ, selects an action at = [a1,t, a2,t, . . . , an,t], where∑n
i=1 ai,t = 1 (Equation 22). This vector at is multiplied by current assets At, and returned

to the environment as an allocation.

at = µθ

(
Lt
At

)
(22)

The environment then simulates current returns It for all available investments and

liability’s update index Ut, considering their correlations. There are several ways to do this

simulation. In this work, it is made by a multivariate random normal, with mean vector

and covariance matrix given by available asset’s time series inputs, and so, returning an

n-sized vector.

New total asset, At+1, is given by current total asset plus investments incomes,

minus current step’s liability, as stated in Equation 3. The incomes are the inner product of

the action vector and return vector, added to 1.

New liability flow is given by current liability, with its first element removed (repre-

senting current debt’s payment), and a 0 appended to its end (to keep T size constant).

This new vector is then multiplied by chosen update index Ut. In mathematical terms:

It ∼ N(µ,Σ)

At+1 = At ·
(
at × (1 + It)

′)− Lt[0]

Lt+1 = Lt[1 :].append(0) · Ut

(23)

The identities seen in Equation 23 represent the transition distribution. As every

variable at the next step relies solely on variables at the current step (and simulated

results), it satisfies first-order Markov property.

47

5.5- Reward Function

In this work, a binary reward function is used. It returns 1 whenever new asset At+1

is greater than 0, meaning that current liability was successfully paid, and 0 otherwise

(Equation 24). As the algorithm tries to maximize the expectation of cumulative discounted

rewards, this choices guarantees this model will try to pay as many debts as possible, and

will not incur in unnecessary risks trying to accumulate more money than needed.

rt+1 =


1 if At+1 > 0

0 otherwise
(24)

5.6- Terminal State

A terminal state is reached whenever one of two conditions occur: (1) new asset

At+1 is equal to or lower than 0, meaning that we have run out of assets, or (2) total sum

of liability’s vector is equal to 0, meaning there are no more debts to be paid (Equation 25).

Terminal =


True if (At+1 ≤ 0) ∪ (

∑
Li = 0)

False otherwise
(25)

5.7- Episode

An episode is defined as a single simulation rollout, from its initial to terminal state.

We consider an episode successful whenever it reaches its terminal state due to the

second condition (liability sum equal to 0), which means all debts were paid. As a result,

the total sum of rewards is equal to maximum episode length T .

48

0

1000

2000

3000

4000

1 2 3 4

Time in years

L
ia

b
ili

ty

Figure 8 – Estimated liability flow for toy example.

5.8- Toy Example

To further clarify the proposal, we provide a toy example: suppose someone wants

to pay for her children’s graduation. The tuition fee is proportional to the number of classes

taken in each year ($ 800 for each class), and the first payment is a year from now.

According to her plans, the first year’s debt will be $ 3,350 ($ 150 as an initial fee, plus

four classes taken), and three next years will cost her $ 4,000, $ 2,400 and $ 1,600, for a

total of a 4-years time horizon. These values are updated every year by the inflation index

and can be seen in Figure 8. This is the liability flow.

So far, she has $ 10,000 in savings (her initial assets), which is less than the total $

11,350 of her total future debts, but she believes she can invest her money for an average

return of inflation plus 6% each year. Using this value as a discount rate, she calculates

49

her liability’s present value, given by LPV , with Equation 2, and finds the following result:

LPV =
3, 350

(1 + 0.06)
+

4, 000

(1 + 0.06)2
+

2, 400

(1 + 0.06)3
+

1, 600

(1 + 0.06)4
= 10, 002.80 (26)

Her solvency rate is pretty close to 1 (0.9997), which is a good sign. If she takes

the right decisions, it is highly probable she will be able to honor her debts.

She has three available investments to chose: a pre-determined fixed-income bond,

which returns a net 10% a year (BOND1); an inflation-based bond, returning inflation plus

5% a year (BOND2); and the stock market, with a 15% a year expected return, but with

high volatility (STOCKS). Besides that, expected inflation for the next few years is 4.5%,

with low volatility.

The initial asset and the liability flow compose the initial state. This state is

observed by the parent, who takes the place of the agent. Available investments, their

expected returns, and their volatilities are part of the environment.

s0 = [10000, 3350, 4000, 2400, 1600].

In first year, the agent decides to use the following allocation: $ 2,000 in BOND1, $

6,000 in BOND2, and $ 2,000 STOCKS. She knows the return from the inflation-based

bond is less than she needs but thinks she can profit enough from other investments to

cover the difference.

At the end of the year, BOND1 returned 10%, to a total amount of $ 2,200. Inflation

was just 3% in the period, so, BOND2 returned 8% to a net value of $ 6,480. On the other

hand, the stock market had a bad year, returning only 6%, for a total $ 2,120. Her updated

asset is now $ 10,800, and after paying her first liability, she will have $ 7.450 to invest

in her next year (new total asset). Her new liability flow is the old one, without its first

element, and updated by a 3% inflation. So, it is now $ 4,120, $ 2,472 and $ 1,648. As

the debt was paid, and she still has money at hand, the reward of this period is 1, and

terminal condition is False, since debts are not over.

s1 = [7450, 4120, 2472, 1648, 0]

In the second year, the agent believes the stock market will perform better, and

then decides to allocate $ 1,450 in BOND1, $ 3,000 in BOND2 and $ 3,000 in STOCKS.

50

Inflation has a high peek, going to 6% in that year, but the stocks market returns a net

15%, proving his strategy was right. She now has a 10% return from BOND1, updating its

value to $ 1,595, an 11% return from BOND2, going to $ 3,330, and STOCKS go up to

$ 3,450. The total asset is now $ 8,375. The current debt of $ 4.120 is paid, and asset

for the next year is $ 4,255. Liability flow is updated by 6%, and is now $ 2,620.32 and $

1,746.88. The period’s reward is 1 again, as well as terminal condition, which is False.

s2 = [4255, 2620.32, 1746.88, 0, 0]

The agent now realizes that the present value of this new liability, when discounted

by 5% is $ 4,080.15, which means that, thanks to adopted strategy, she can now allocate

all her assets in BOND2, which no matter the inflation index, will return more than needed

to pay liabilities. Her children’s education is covered.

But, as investment returns are stochastic, the agent might not be so lucky. If in the

first year, inflation were 5% and the stock market returned nothing, she would have the

same $ 2,200 for BOND1 (as it is not subject to market volatility), but now BOND2 would

have a net value of $ 6,600 while STOCKS would be stuck at $ 2,000. She would have the

same $ 10,800 updated asset, and of course, the same $ 7,450 after paying first liability.

But now, updated liabilities would be $ 4,200, $ 2,520 and $ 1,680. Reward and terminal

condition would still be 1 and False, respectively, but the new state now is:

s1 = [7450, 4200, 2520, 1680, 0]

She can now follow the very same belief she had, and then again allocate $ 1,450

in BOND1 and $ 3,000 in both BOND2 and STOCKS. But her bad luck is not gone, and

inflation went up, to 7%, while the stocks market returned 8%, which is better than the last

year, but still under the expected return. Her investment’s updated values are now $ 1,595,

$ 3,360 and $ 3,240, adding to $ 8,195. New asset, after liability is paid, is now $ 3,995,

and updated liabilities are $ 2,696.40 and $ 1,797.60. Reward and terminal condition are

1 and False again, while new state is:

s2 = [3995, 2696.40, 1797.60, 0, 0]

Liability’s present value, for a 5% discount rate, is now $ 4,198.48, which is greater

than the current asset. She cannot allocate all her assets in BOND2, like the last example.

51

Actually, she has to take more risk, as her solvency rate is below 1. She then decides to

allocate $ 495 in BOND1, $ 1,500 in BOND2 and $ 2,000 in STOCKS. But, in this year,

both inflation and stocks returned only 5%, making her investments worth of $ 544.50, $

1,650 and $ 2,100, for a total amount of $ 4,294.50. After paying current liability, she is left

with only $ 1,598.10, while the updated liability is $ 1,887.48.

s3 = [1598.10, 1887.48, 0, 0, 0]

She will have to allocate all her assets in STOCKS, and expect it to return over

18% this year, or else, she’ll have no money to pay next year’s liability, leading to a reward

of 0. Anyhow, next year’s terminal condition will be True, either due to no more liabilities, if

she pays it all, or no more assets, if she fails to pay it.

52

6- Experiments

In order to validate our proposed model, several computer simulations were devised.

Details of the code implementation for the proposed algorithm and the custom environment

are described in Section 6.1. The simulated data generation process is detailed in Section

6.2, describing the inputs of the environment, and a data frame containing available

investment’s time series. Experimental settings of the algorithm are in Section 6.3. The

outputs of the training sessions can be seen in Section 6.4, while Section 6.5 shows some

simulations with trained policies.

6.1- Code

The code used in the experiments is composed of two parts: the algorithm itself,

and the custom environment. For the algorithm, an educational Python package known as

Spinning Up has been used, with a few minor changes. The ALM environment has been

created from scratch, using tools provided by the gym package.

6.1.1 Spinning Up

The OpenAI group 1 is an AI research and deployment company, according to

themselves. They have developed many artificial intelligence-related resources in sev-

eral fields, like deep learning, generative adversarial networks, transfer learning, and

reinforcement learning.

One of these resources is Spinning Up 2, which is a Python package aimed at

the study of various reinforcement learning algorithms. The version used in this work
1https://openai.com/
2https://spinningup.openai.com/en/latest/

https://openai.com/
https://spinningup.openai.com/en/latest/

53

supports six different algorithms (DDPG among them), with two implementations for each

one: TensorFlow (our choice) or PyTorch. The following minor changes have been made

to its code:

• The output activation function for both actor and target-actor networks has been

changed, from tanh to softmax, since it has the exact output shape the problems

needs (normalized, non-negative vector)

• The random noise added to the action in the training phase has been changed

to a multiplicative one. A multivariate normal, with mean vector 1, and an identity

covariance matrix multiplied by the noise parameter τ , is multiplied by the action.

The resultant vector is then normalized (since the total sum of the action vector has

to be 1).

SpinningUp package has been chosen because it is, according to their own site,

”an educational resource produced by OpenAI that makes it easier to learn about deep

reinforcement learning”3. It has tools which help the analysis of the whole training process,

and not just the results, like other packages.

6.1.2 Gym

Gym [Brockman et al., 2016], similar to Spinning Up, is an OpenAI python package,

which provides tens of ready-to-use reinforcement learning environments and an extensive

toolkit to create custom ones. The creation of a new environment requires:

• Input data for the environment, which will define: (1) the problem’s initial state (initial

asset and liability vector, described in Section 6.2.1) and; (2) its transition model

(available investment’s time series, detailed in Section 6.2.2).

• Definitions for action and state space’s domains.

• A ‘step’ method, used for interactions between agent and environment. This method

is responsible for providing an observation to the agent, receiving its action, and
3https://spinningup.openai.com/en/latest/user/introduction.html

https://spinningup.openai.com/en/latest/user/introduction.html

54

calculating new asset and liabilities, as well as returning the reward, and a Boolean

value indicating if the agent reached a terminal state or not. This method is further

detailed in Figure 9.

• A ‘reset’ method, used to return the environment to its initial state after an episode

reaches a terminal condition.

55

Fi
gu

re
9

–
S

te
p

m
et

ho
d

of
th

e
cu

st
om

en
vi

ro
nm

en
t.

56

6.2- Simulated Data

Financial data usually is sensitive. Institutions do not share how they estimate

their future liabilities, data about their customers and pensioners, how much money they

have, among other confidential information. Due to this (necessary) secrecy, simulated

data had to be used in this work, for both assets and liabilities. This data is described in

Section 6.2.1. On the other hand, indexes yearly returns are easy to find on the internet,

and the time series we used are real ones (source: https://www3.bcb.gov.br/sgspub/

localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries)

6.2.1 Assets and Liabilities

Fifteen asset/liability setups have been created. In all of them, there is an initial

asset of $ 1,000,000. For the liabilities, fifteen flows have been simulated: three groups,

with 30, 50, and 80 years time horizons, and within each group, discount rates of 6.0%,

6.5%, 7.0%, 7.5%, and 8.0% were used4. In all setups, liability’s present value is also $

1,000,000, to match initial asset, making the initial solvency rate always 1.

Flow’s shapes are similar to the chi-squared distribution, as can be seen in Figure

10, to simulate the behavior of a pension fund that has not reached its maturity yet. Debts

are smaller now than they will be in the future (when more participants will retire), and

after that, they will slowly shrink to zero. The chosen shape is arbitrary, and other options

could be used.

6.2.2 Available Investments

Six investments are available to the decision-maker, each one representing a major

asset group: BRL-USD exchange rate, iBovespa (stocks market), IRF-M (predetermined
4The higher the discount rates, the greater is the performance investments need to provide.

https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries

57

3
0

5
0

8
0

0 20 40 60 80

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

Time length

L
ia

b
ili

ty

DR

6.0%

6.5%

7.0%

7.5%

8.0%

Figure 10 – Liabilities modeled as proportionate to chi-squared distributions. (a) over 30
years; (b) over 50 years; (c) over 80 years.

fixed income), IMA-S (SELIC based fixed income), IMA-B 5 (short term inflation based

fixed income) and IMA-B 5+ (long term inflation based fixed income). Besides these

indexes, IPCA (inflation index) has been added to update liabilities. Yearly returns from

2005 to 2018 have been used, since not all series are available for year 2004 and before.

6.3- Experimental Settings

The actor is a fully-connected deep neural network, with input layer the size of

the respective liability’s length T (30, 50, or 80). Two hidden layers have 400 and 300

neurons each (both with ReLU activation). The output follows a softmax pattern, with size

n = 6, according to the number of available investments. The critic has a similar structure

but with input size n + T (i.e., 6 plus 30, 50 or 80), and a scalar output, with identity

activation. Target actor and critic networks, by design, follow the same configuration of

their counterparts.

Action’s noise parameter introduced in training, to enforce exploration of the state

space, is a random multivariate normal vector multiplied by the actor’s output, as stated

58

in Section 6.1.1. An additive parameter would lead to negative values, which is out of

the action’s domain. It is distributed as a multivariate normal, with mean vector one,

and covariance τ = 0.01 times an identity matrix (higher values would cause too much

disturbance, making the training more erratic). The resulting action is then normalized.

Although more testing is needed, we suspect that the relatively high variance observed

during training is mainly due to this parameter.

Reward’s discount factor γ was set to 0.99; the actor and critic’s learning rate are

10−3; ρ parameter for the target network’s updates is 0.995; batch size is 100. Replay

buffer maximum size is 106, and its first ten thousand step’s actions are completely random,

following a Dirichlet distribution with all parameters equal to 1 (a multivariate version of a

standard uniform distribution, which was used in the original code). In each simulation,

500 epochs have been run, with a total of five thousand steps per epoch. All the other

hyperparameters, except actions and state’s sizes and noise distribution, are the Spinning

Up default values.

Training sessions were run in a personal computer, equipped with an Intel Core

i7 7600 processor and 16Gb of RAM, running Ubuntu 18.04 and Python 3.6. A single

training took about four hours to complete, and five concurrent training sessions took up to

fifteen hours. The complete code and result logs can be found at https://github.com/

afontoura/DRLA2ALM.

6.4- Outputs

Figures 11, 12 and 13 show average episode return evolution for 30, 50 and 80

years groups, respectively. It is important to emphasize these returns are calculated with

the training policies; that is, the noise parameter is included in the actions taken. This fact

by itself raises the average return’s volatility.

Note that it is easy to see (Figure 11) that all 30 years of simulations converged

with no problems, and three did it at pretty early epochs.. Besides having a very similar

behavior, the 50 years group (12) had some unstable periods, particularly for liabilities with

6.5% and 8.0% discount rates, although it was not enough to compromise final results.

As expected, the 80 years group is very unstable when compared to the previous

https://github.com/afontoura/DRLA2ALM
https://github.com/afontoura/DRLA2ALM

59

15

20

25

30

0 100 200 300 400 500

Epoch

A
v
e

ra
g

e
 E

p
is

o
d

e
 R

e
tu

rn

DR

6.0%

6.5%

7.0%

7.5%

8.0%

Figure 11 – Average episode return for 30-years simulations.

two (13). While liabilities with 6.0%, 6.5%, and 7.0% discount rates converged pretty

fast (with a small instability for the second one), simulations with 7.5% and 8.0% had

more unstable periods, and they probably should benefit from a more extended period of

training.

6.5- Policy Testing

After training sessions were complete, a thousand simulations were run with each

policy. In these simulations, the policy is deterministic - the noise parameter is no longer

used. Results are presented in Table 2. In each line, we have the percentile of simulations

with maximum return, the minimum return, average return among all simulations, and

average return among simulations that did not reach maximum return.

Percentile of maximum return is over 90% in 8 out of 15 scenarios. The worst

result is 52.6%, which is still pretty good, considering an 80 years time horizon and 7.5%

discount rate. Interestingly, in all time horizon groups, the simulation with 7.5% discount

rate performed worse than the one with 8.0%. This behavior is also found in average total

return, except for a 30-years horizon.

60

20

30

40

50

0 100 200 300 400 500

Epoch

A
v
e

ra
g

e
 E

p
is

o
d

e
 R

e
tu

rn

DR

6.0%

6.5%

7.0%

7.5%

8.0%

Figure 12 – Average episode return for 50-years simulations.

20

40

60

80

0 100 200 300 400 500

Epoch

A
v
e

ra
g

e
 E

p
is

o
d

e
 R

e
tu

rn

DR

6.0%

6.5%

7.0%

7.5%

8.0%

Figure 13 – Average episode return for 80-years simulations.

61

Table 2 – Simulation results.

Horizon
Discount

Rate
% Max.
Return

Min.
Return

Avg.
(Total)

Avg.
(Not Max.)

30

6.0% 96.6% 11 29.654 19.824
6.5% 93.9% 11 29.551 22.639
7.0% 93.4% 9 29.199 17.864
7.5% 67.7% 12 26.241 18.362
8.0% 71.2% 7 25.408 14.056

50

6.0% 99.0% 25 49.815 31.500
6.5% 93.3% 16 48.530 28.060
7.0% 92.4% 12 48.166 25.868
7.5% 77.7% 11 43.370 20.269
8.0% 84.7% 6 45.118 18.092

80

6.0% 84.2% 24 76.611 58.551
6.5% 94.6% 16 78.113 45.056
7.0% 94.2% 17 77.278 33.069
7.5% 52.6% 17 57.056 31.595
8.0% 70.1% 12 64.832 29.271

Figure 14 shows the distribution of non-maximal simulations. The height of each

column is the number of simulations with a given return. We can see that, for the three

first discount rate levels, they are pretty flat (except for the 80-years / 6.0% discount rate).

In the other two, they concentrate on the worst reward levels.

One of the most critical decisions for a reinforcement learning algorithm when

modeling a problem is how to set its reward function since it defines what will be optimized.

Present work maximizes the number of periods in which the decision-maker will be able to

honor his debts. According to this principle, results are considered very good.

6.6- Comparisons

To better analyze the performance of the proposed model, its results were com-

pared to those of two other models: a straightforward uniform portfolio, where assets were

distributed equally among all available investments, and another one, using Mean-Variance

Optimization.

62

30 50 80

6
.0

%
6
.5

%
7
.0

%
7
.5

%
8
.0

%

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Return

Figure 14 – Non-maximal simulations.

63

Table 3 – Mean-Variance Optimization Portfolios.

DR Câmbio Bovespa IRF-M IMA-S IMA-B 5 IMA-B 5+ E(R) Vol.
6.00% 7.21% 2.52% 6.60% 48.60% 35.07% 0.00% 11.87% 2.73%
6.50% 2.59% 0.00% 3.75% 43.09% 50.58% 0.00% 12.39% 2.98%
7.00% 0.05% 0.00% 4.97% 27.08% 67.90% 0.00% 12.92% 3.40%
7.50% 0.00% 0.00% 11.92% 0.00% 87.28% 0.80% 13.45% 4.05%
8.00% 0.00% 0.00% 0.00% 0.00% 81.20% 18.80% 13.98% 5.39%

6.6.1 Selected Portfolios

The first portfolio, as mentioned before, has approximately 16.67% of total assets

in each of the six available investments. Its expected return and volatility are 10.90% and

2.78%, respectively.

For the MVO model, five different portfolios have been created, one for each

discount rate used in the liabilities. This was done because, for higher levels of debt (the

greater discount rates), we need portfolios with higher expected returns, therefore, greater

risk. The expected returns used to find these portfolios were the average IPCA5 of the

period - 5.536% - plus the discount rate (from 6.0% to 8.0%). After defining these expected

returns, investment weights were calculated by minimizing the resulting portfolio variance,

trough a simple quadratic programming formulation:

min
w

1

2
wT · Σ · w

subject to: µT × w = E(R)

wi ≥ 0, ∀i ∈ 1, · · · , n
n∑
i=1

wi = 1

(27)

where w is the vector with the portfolio weights, µ and Σ are the mean vector and the

covariance matrix of the investment’s historical returns respectively, and E(R) is the

resulting portfolio’s expected return. The resulting portfolios can be seen in Table 3.

The uniform portfolio and the five MVO portfolios were exposed to the same

simulation scenario used by the proposed model, and the results were as follows:
5The chosen update index

64

Table 4 – Uniform portfolio results.

Horizon
Discount

Rate
% Max.
Return

Min.
Return

Avg.
(Total)

Avg.
(Not Max.)

30

6.0% 62.5% 18 28.210 25.227
6.5% 51.6% 16 27.290 24.401
7.0% 37.5% 17 26.171 23.874
7.5% 23.3% 16 24.615 22.979
8.0% 14.3% 15 23.238 22.110

50

6.0% 62.7% 19 43.510 32.601
6.5% 44.2% 19 39.714 31.566
7.0% 28.7% 18 35.650 29.874
7.5% 15.3% 16 31.113 27.701
8.0% 08.3% 16 27.186 25.121

80

6.0% 61.0% 20 62.668 35.559
6.5% 43.1% 18 53.826 34.000
7.0% 26.2% 16 43.386 30.388
7.5% 16.8% 16 37.158 28.507
8.0% 08.0% 16 30.771 26.490

6.6.2 Uniform Portfolio Results

Table 4 displays the simulation results for the uniform portfolio. In all simulation

setups, the percentage of simulations with the maximum return is clearly below those in

the reinforcement learning proposed model, as expected. A uniform portfolio is a very

naive approach, serving only as a basic benchmark.

Figure 15 displays the distributions of all non-maximal simulations of this portfolio.

All the histograms show a similar pattern: a peak of simulations in early steps (usually,

between 20 and 30), and a slow decay after that. This concentration of total returns in

early periods of time happens because this portfolio is not dynamic. Therefore, it does

not change its allocation strategy according to its results, meaning that when it has bad

returns in early years, it won’t take more risk, trying to recover its losses.

65

30 50 80

6
.0

%
6

.5
%

7
.0

%
7

.5
%

8
.0

%

20 40 60 20 40 60 20 40 60

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

Result

Figure 15 – Non-maximal simulations - Uniform portfolio.

66

Table 5 – MVO portfolio results.

Horizon
Discount

Rate
% Max.
Return

Min.
Return

Avg.
(Total)

Avg.
(Not Max.)

30

6.0% 76.9% 22 29.366 27.255
6.5% 72.4% 21 29.135 26.866
7.0% 70.1% 21 28.919 26.385
7.5% 63.8% 20 28.438 25.685
8.0% 60.4% 15 27.823 24.503

50

6.0% 68.4% 27 46.379 38.541
6.5% 67.3% 22 45.754 37.015
7.0% 65.8% 24 44.917 35.137
7.5% 64.3% 22 44.106 33.490
8.0% 57.0% 19 41.683 30.658

80

6.0% 67.9% 26 67.914 42.349
6.5% 66.3% 25 66.842 40.955
7.0% 61.3% 23 63.644 37.736
7.5% 58.3% 21 61.575 35.815
8.0% 53.9% 20 57.750 31.735

6.6.3 MVO Portfolio Results

In Table 5, we can see MVO portfolio’s results. Percentage of simulations with

maximum returns are better than those from the uniform portfolio, but still below the results

of the reinforcement learning model. For a long time, this approach has been used to

solve ALM problems (and is still used nowadays for simpler portfolio optimization). So, an

average-to-good performance was expected.

Figure 16 shows that non-maximal simulations’ behavior is similar to those of the

uniform portfolio, but their peaks shift to the right (between 30 and 40).

6.6.4 Results Comparison

For a cleaner comparison of the results, an analysis of each one of the metrics is

presented.

67

30 50 80

6
.0

%
6

.5
%

7
.0

%
7

.5
%

8
.0

%

20 40 60 80 20 40 60 80 20 40 60 80

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

0

30

60

90

120

Result

Figure 16 – Non-maximal simulations - MVO portfolio.

68

Table 6 – Percentage of maximum returns.

Horizon
Discount

Rate
Uniform MVO DDPG

30

6.0% 62.5% 76.9% 96.6%
6.5% 51.6% 72.4% 93.9%
7.0% 37.5% 70.1% 93.4%
7.5% 23.3% 63.8% 67.7%
8.0% 14.3% 60.4% 71.2%

50

6.0% 62.7% 68.4% 99.0%
6.5% 44.2% 67.3% 93.3%
7.0% 28.7% 65.8% 92.4%
7.5% 15.3% 64.3% 77.7%
8.0% 08.3% 57.0% 84.7%

80

6.0% 61.0% 67.9% 84.2%
6.5% 43.1% 66.3% 94.6%
7.0% 26.2% 61.3% 94.2%
7.5% 16.8% 58.3% 52.6%
8.0% 08.0% 53.9% 70.1%

Percentage of maximum returns

Table 6 shows, side by side, the main metric of the reinforcement learning proposed

model: the percentage of maximum returns. It is considered the primary metric because,

as stated in Section 5.5, the reward function of this algorithm was constructed to maximize

the number of steps in which the liability was paid. Therefore, more simulations with

maximum return mean better training of the algorithm.

According to the metric of the percentage of maximum returns, It is pretty obvious

as noted in Table 6 that DDPG had an outstanding performance when compared to the

other models, beating them in 14 out of 15 simulation setups. The best result from the

other two algorithms is a 76.9% of the MVO portfolio, for 30 years time horizon and 6.0%

discount rate. Nothing less than 11 results from DDPG are above this number, including

seven above 90.0%,

69

Table 7 – Minimum returns.

Horizon
Discount

Rate
Uniform MVO DDPG

30

6.0% 18 22 11
6.5% 16 21 11
7.0% 17 21 9
7.5% 16 20 12
8.0% 15 15 7

50

6.0% 19 27 25
6.5% 19 22 16
7.0% 18 24 12
7.5% 16 22 11
8.0% 16 19 6

80

6.0% 20 26 24
6.5% 18 25 16
7.0% 16 23 17
7.5% 16 21 17
8.0% 16 20 12

Minimum returns

The minimum return are showed in Table 7. This metric is better for the MVO

technique since it is the best in all 15 setups (one tie with the uniform portfolio).

As DDPG is a dynamic allocation algorithm, when the first few time steps have bad

returns, it will try to reallocate the assets, incurring in more risk, in order to improve the

expected return. Sometimes, this increase in risk will pay off, and the simulation will reach

maximum return, or something close to it. Nevertheless, when the additional risk does not

increase the returns, the algorithm will try to increase the risk more and more, until it runs

out of assets. This behavior is the reason why, when investments go wrong, they go really

bad.

MVO, on the other hand, is a static allocation model, which will not change its

strategy, no matter the results. So, the percentage of maximum returns is lower because it

will not correct its course when the first year’s returns are low, and its assets will not go

below 0 as fast as the dynamic DDPG model.

70

Table 8 – Average returns - Total.

Horizon
Discount

Rate
Uniform MVO DDPG

30

6.0% 28.210 29.366 29.654
6.5% 27.290 29.135 29.551
7.0% 26.171 28.919 29.199
7.5% 24.615 28.438 26.241
8.0% 23.238 27.823 25.408

50

6.0% 43.510 46.379 48.815
6.5% 39.714 45.754 48.530
7.0% 35.650 44.917 48.166
7.5% 31.113 44.106 43.370
8.0% 27.186 41.683 45.118

80

6.0% 62.668 67.914 76.611
6.5% 53.826 66.842 78.113
7.0% 43.386 63.644 77.278
7.5% 37.158 61.575 57.056
8.0% 30.771 57.75 64.832

Average returns - Total

Table 8 show the average returns total. Note that DDPG beats MVO in 11 out of

15 setups, which is expected, since DDPG has the greatest amount of simulations with

maximum return, which increases its total average. The four setups where MVO beats

DDPG are among the five worse DDPG setups (the only exception is the 80 years, 8.0%

discount rate setup).

Average returns - Non Maximal

At last, the average returns of non maximal simulations are shown in Table 9. Just

as the minimum return metric, the MVO model has a good performance when it comes to

simulations that not reach maximum return. As mentioned in Section 6.6.4, non-maximal

simulations of DDPG model are worse than the others, due to its dynamic allocation nature.

This phenomenon is reflected in this metric as well.

71

Table 9 – Average returns - Non Maximal.

Horizon
Discount

Rate
Uniform MVO DDPG

30

6.0% 25.227 27.255 19.824
6.5% 24.401 26.866 22.639
7.0% 23.874 26.385 17.864
7.5% 22.979 25.685 18.362
8.0% 22.110 24.503 14.056

50

6.0% 32.601 38.541 31.500
6.5% 31.566 37.015 28.060
7.0% 29.874 35.137 25.868
7.5% 27.701 33.490 20.269
8.0% 25.121 30.658 18.092

80

6.0% 35.559 42.349 58.551
6.5% 34.000 40.955 45.056
7.0% 30.388 37.736 33.069
7.5% 28.507 35.815 31.595
8.0% 26.490 31.735 29.271

6.6.5 Discussion

The chosen reinforcement learning model (DDPG) had a good performance, beat-

ing the two benchmark algorithms in the metrics it was designed to excel: to pay as many

years of liabilities as possible. Its dynamic allocation nature, as opposed to the others,

makes it perform worse when it has bad returns in the first few years, although its overall

performance is worth it.

72

7- Conclusions

An ALM problem consists in optimizing a portfolio in order to pay a future flow of

debt. It is highly stochastic, since the return on investments and the values and duration of

the liability are not known in advance. The number of investments available to the decision

maker and the total amount of time periods are of paramount importance, since too many

variables can make the problem intractable. Thanks to this, most common approaches to

this problem involve scenario discretization, which is not good.

7.1- Retrospective Analysis

In this work, common concepts of ALM have been introduced, and fifteen variations

of a basic formulation have been solved, using an algorithm known as Deep Deterministic

Policy Gradient.

An implementation of the DDPG algorithm provided by the OpenAI SpinningUp

package was used, with some minor changes, as well as a customized environment

created especially for this work, using the OpenAI Gym package.

The results of the proposed algorithm were then compared with the results of more

simple approaches present in literature. Such comparisons corroborate the hypothesis

stated in Section 1.3, showing that the reinforcement learning framework is a reliable

alternative, worth of research, and with a significant advantage: there is no need to use

scenario discretization.

7.2- Contributions

The feature of being able to work with continuous state spaces in the ALM task is

one of the main contributions of this dissertation. The very modeling of an ALM problem

73

as a Markov Decision Process to be solved with a Deep RL algorithm is another, since, to

the best of author’s knowledge, this has never been done before.

7.3- Future Work

This present work is just a first approach at Deep Reinforcement Learning for Asset-

Liability Management problems, and for sure, there is plenty of room for improvement.

For the environment, the next natural step would be simulating stochastic liabilities,

in values or time horizons, which would require more in-depth research in actuarial

modeling. Scenarios other than a pension fund could be used, which could lead to a

problem with an infinite time horizon (like an insurance portfolio, for example).

Another possible future work is to investigate changes in the reward function

detailed in Section 5.5 for handling short term liquidity. One possibility is to label one of

the available investments as a ‘highly liquid investment’. If its allocation is less than the

current liability, the agent is penalized. This should be used to simulate the need to have

cash available to pay current debts, which is more realistic.

Another idea related to the reward is not to use a binary function. An option is to

use surpluses and deficits as rewards and penalties or use just deficits as penalties, to

avoid unnecessary risks related to rewarding a surplus.

Introducing reallocation costs and adding regulatory constraints, such as solvency

rates and asset limitations, would bring the model closer to reality, which would undoubtedly

be a good improvement.

A stochastic policy gradient algorithm can be used to estimate investment realloca-

tion bandwidths. In practice, the decision-maker cannot reallocate his investments every

day; therefore, a confidence interval for investments is better than a point estimate.

A routine to find an optimal set of hyperparameters is needed since no fine-tuning

has been made in this work, and such parameters have a significant impact on the

outcome.

The whole RL literature has plenty of other algorithms that can address this problem

and should be tested.

74

7.4- Derivative Work

A partial version of this work has been submitted to the Brazilian Conference on

Intelligent Systems 2019, as a paper entitled ’A Deep Reinforcement Learning Approach

to Asset-Liability Management’. The paper has been accepted after a double-blind peer

review and presented on October 16, 2019: [Fontoura et al., 2019]. It can be found in

https://www.researchgate.net/profile/Alan_Fontoura/research.

http://www.bracis2019.ufba.br/
http://www.bracis2019.ufba.br/
https://www.researchgate.net/profile/Alan_Fontoura/research

75

Bibliography

Aouni, B., Doumpos, M., Pérez-Gladish, B., and Steuer, R. E. (2018). On the increasing

importance of multiple criteria decision aid methods for portfolio selection. Journal of

the Operational Research Society, 69(10):1525–1542.

Aro, H. and Pennanen, T. (2017). Liability-Driven Investment in Longevity Risk

Management, pages 121–136. Springer International Publishing, Cham.

Brinson, G. P., Hood, L. R., and Beebower, G. L. (1986). Determinants of portfolio

performance. Financial Analysts Journal - FINANC ANAL J, 42:39–44.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016). Openai gym.

Cariño, D. R., Kent, T., Myers, D. H., Stacy, C., Sylvanus, M., Turner, A. L., Watanabe, K.,

and Ziemba, W. (1994). The russell-yasuda kasai model: An asset-liability model for

a japanese insurance company using multistage stochastic programming. Interfaces,

24:29–49.

Cariño, R., Myers, D. H., and Ziemba, W. (1998). Concepts, technical issues, and uses of

the russell-yasuda kasai financial planning model. Operations Research, 46:450–462.

Consigli, G., Moriggia, V., Benincasa, E., Landoni, G., Petronio, F., Vitali, S., di Tria, M.,

Skoric, M., and Uristani, A. (2018). Optimal Multistage Defined-Benefit Pension Fund

Management, pages 267–296. Springer International Publishing, Cham.

de Almeida, J. F. C. R. (2016). Genetic algorithms applied to asset & liability management.

Master’s thesis, NOVA Information Management School.

de Oliveira, A. D., Filomena, T. P., Perlin, M. S., Lejeune, M., and de Macedo, G. R. (2017).

A multistage stochastic programming asset-liability management model: an application

to the brazilian pension fund industry. Optimization and Engineering.

Defourny, B., Ernst, D., and Wehenkel, L. (2011). Multistage stochastic programming: A

scenario tree based approach to planning under uncertainty. LE, Sucar, EF, Morales,

76

and J., Hoey (Eds.), Decision Theory Models for Applications in Artificial Intelligence:

Concepts and Solutions. Hershey, Pennsylvania, USA: Information Science Publishing.

Dermine, J. (2008). Alm in banking. In Handbook of Asset and Liability Management -

Set. North Holland.

Dhrymes, P. J. (2017). Portfolio Theory: Origins, Markowitz and CAPM Based Selection,

pages 39–48. Springer International Publishing, Cham.

Duarte, T. B., Valladão, D. M., and Álvaro Veiga (2017). Asset liability management for open

pension schemes using multistage stochastic programming under solvency-ii-based

regulatory constraints. Insurance: Mathematics and Economics, 77:177 – 188.

Fama, E. F. (1975). Multiperiod Consumption-Investment Decisions. In Stochastic

Optimization Models in Finance. World Scientific Pub Co Inc.

Fontoura, A., Haddad, D., and Bezerra, E. (2019). A deep reinforcement learning approach

to asset-liability management. In 2019 8th Brazilian Conference on Intelligent Systems

(BRACIS), pages 216–221.

Gulpinar, N. and Pachamanova, D. (2013). A robust optimization approach to asset

liability management under time-varying investment opportunities. Journal of Banking

& Finance, 37:2031.

Haneveld, W. K. K., Streutker, M. H., and van der Vlerk, M. (2010). An alm model for

pension funds using integrated chance constraints. Annals OR, 177:47–62.

Hilli, P., Koivu, M., Pennanen, T., and Ranne, A. (2007). A stochastic programming model

for asset liability management of a Finnish pension company. Annals of Operations

Research.

Huang, C. F. (2012). A hybrid stock selection model using genetic algorithms and support

vector regression. Applied Soft Computing Journal.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In ICML.

Kaplan, P. D. (2017). From markowitz 1.0 to markowitz 2.0 with a detour to postmodern

portfolio theory and back. The Journal of Investing, 26(1):122–130.

77

Klein Haneveld, W. K., editor (1986). Duality in Stochastic Linear and Dynamic

Programming. Springer-Verlag, Berlin, Heidelberg.

Koivu, M., Pennanen, T., and Ranne, A. (2003). Modeling assets and liabilities of a

finnish pension insurance company: a veqc approach. Scandinavian Actuarial Journal -

SCAND ACTUAR J, 2005:1–1.

Kouwenberg, R. (2001). Scenario generation and stochastic programming models for

asset liability management. European Journal of Operational Research, 134(2):279 –

292. Financial Modelling.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,

D. (2015). Continuous control with deep reinforcement learning. CoRR, abs/1509.02971.

Luckner, W. R., Backus, J. E., Benedetti, S., Bergman, D., Cox, S. H., Feldblum, S., Gilbert,

C. L., Liu, X. L., Lui, V. Y., Mohrenweiser, J. A., Overgard, W. H., Pendersen, H. W.,

Rudolph, M. J., Shiu, E. S., and Smith Jr., P. L. (2003). Professional Actuarial Specialty

Guide: Asset-Liability Management. Society of Actuaries.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In

Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning

Research, pages 1928–1937, New York, New York, USA. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602.

Pennanen, T. and Koivu, M. (2002). Integration quadratures in discretization of stochastic

programs. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche

Fakultät II, Institut für Mathematik.

Rao, Z., Conroy, P., Yeowell, A., De Rosa, S., and Williams, W. (2010). Asset management

optimisation using genetic algorithms and whole life, cost benefit analysis. In Integrating

Water Systems - Proceedings of the 10th International on Computing and Control for

the Water Industry, CCWI 2009.

78

Rosen, D. and Zenios, S. A. (2008). Enterprise-Wide Asset and Liability Management:

Issues, Institutions, and Models. In Handbook of Asset and Liability Management - Set.

North Holland.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. A. (2014).

Deterministic policy gradient algorithms. In ICML.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT

Press, second edition.

Valladão, D. and Veiga, A. (2008). Optimum allocation and risk measure in an asset

liability management model for a pension fund via multistage stochastic programming

and bootstrap. EngOpt 2008 - International Conference on Engineering Optimization.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: Q-learning. Machine Learning,

8:279–292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8(3):229–256.

Zhang, X. L. and Zhang, K. C. (2009). Using genetic algorithm to solve a new multi-period

stochastic optimization model. Journal of Computational and Applied Mathematics.

	Introduction
	Contextualization
	Motivation
	Goals
	Methodology
	Organization of Chapters

	Fundamentals of Asset-Liability Management
	Basic Concepts
	Present Value and Discount Rate
	Solvency Rate

	Usual Portfolio Optimization
	ALM vs. Portfolio Optimization
	Asset and Liability Dynamics

	Fundamentals of Reinforcement Learning
	Markov Decision Process
	Basic Concepts
	Exploration vs Exploitation
	Important Equations
	Main Solution Methods

	Policy Gradient Theorem
	Direct Policy Differentiation
	REINFORCE

	Actor-Critic Methods
	Deterministic Policy Gradient
	Deep Deterministic Policy Gradient

	Related Work
	Usual Solution Methods
	Scenario Trees
	Investment Policies
	Multistage Stochastic Programming

	More recent approaches
	Robust Optimization
	Genetic Algorithms

	Overall Conclusion

	Deep Reinforcement Learning Model for ALM
	ALM Elements
	ALM Mapping to MDP
	Initial State
	Transition Model
	Reward Function
	Terminal State
	Episode
	Toy Example

	Experiments
	Code
	Spinning Up
	Gym

	Simulated Data
	Assets and Liabilities
	Available Investments

	Experimental Settings
	Outputs
	Policy Testing
	Comparisons
	Selected Portfolios
	Uniform Portfolio Results
	MVO Portfolio Results
	Results Comparison
	Discussion

	Conclusions
	Retrospective Analysis
	Contributions
	Future Work
	Derivative Work

	References

