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José Antônio Fernandes de Macedo, D.Sc. (UFC)

Yania Molina Souto, D.Sc. (LNCC)

Rio de Janeiro,

July 2020



Ficha catalográfica elaborada pela Biblioteca Central do CEFET/RJ

Elaborada pela bibliotecária Tania Mello – CRB/7 nº 5507/04

 N244      Nascimento, Rafaela de Castro do  
                   STconvS2S: spatiotemporal convolutional sequence to 
                sequence network for Weather Forecasting / Rafaela de Castro do
                Nascimento   —   2020. 
                   57f : il. color. , enc. 

                    Dissertação (Mestrado) Centro Federal de Educação 
              Tecnológica Celso Suckow da Fonseca , 2020. 
                    Bibliografia : f. 52-57
                    Orientador:  Eduardo Bezerra da Silva
                    Coorientador: Fábio André Machado Porto
                    
                    1.   Redes neurais (Computação).  2. Arquitetura de
              computador. 3. Previsão do tempo. 4. Meteorologia – 
              Processamento de dados.  I. Silva, Eduardo Bezerra da (Orient.).  
              II. Porto, Fábio André Machado (Coorient.). III. Título.

                                                                                           CDD 006.3



DEDICATION

For the five most important people in my life,

reasons for a happier journey.



ACKNOWLEDGMENTS

Firstly, I would like to thank Prof. Eduardo Bezerra for his supervision, availability and all

the help throughout the dissertation. Also, I would like to highlight his competence in making

Machine Learning classes enjoyable, even those filled with mathematical formulations. Then,

Yania Souto, who patiently shared her knowledge and made this work possible. I really appreciate

our discussions on the many topics surrounding this project. Furthermore, I would like to thank

Fabio Porto for his valuable suggestions and careful reviews.

To all my friends. In particular, I would like to express my gratitude to my leader at TRF

2a Região, Markenson, for his understanding and support over the past 2 years. Next, my

co-worker Chrystinne, for our many conversations about the academic path (which I insistently

denied for the first 4 years). In addition, I would like to thank Ana Carolina, Pammela, Rickson

and Emanoele, for their encouragement and patience in listening to my complaints.

Last but not least, I am infinitely thankful to my family. My parents, Sonia and Romero,

and dear sisters Paloma, Carolina and Camila, I will be forever grateful for your love and

positivity. Thank you for always being there, for the many conversations and knowledge sharing.

You know that for me it is all about the journey, not the accomplishment itself. It was definitely

quite a journey, and your continued support has helped me through this path.

I will be calmly active, actively calm.

Paramahansa Yogananda



RESUMO

STConvS2S: rede convolucional espaço-temporal para tarefa de sequência a sequência

aplicada à previsão do tempo

Rafaela de Castro do Nascimento

Orientadores:
Eduardo Bezerra, D.Sc.
Fábio Porto, D.Sc.

Resumo da Dissertação submetida ao Programa de Pós-graduação em Ciência da Computação do
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ como parte dos
requisitos necessários à obtenção do grau de mestre.

Aplicar modelos de aprendizagem de máquina em dados meteorológicos proporcionam muitas
oportunidades na área da Geociência, como prever a condição do tempo de forma mais precisa.
Recentemente, a modelagem dos dados meteorológicos com redes neurais profundas tem se tornado
uma área de investigação relevante. Alguns trabalhos aplicam redes neurais recorrentes (RNN)
ou uma abordagem h́ıbrida usando RNN e redes neurais convolucionais (CNN). Neste trabalho,
propusemos STConvS2S (rede convolucional espaço-temporal para tarefa de sequência a sequência),
uma arquitetura de aprendizagem profunda constrúıda para aprender as dependências espaciais e
temporais dos dados usando somente camadas convolucionais. A arquitetura proposta resolve duas
limitações das redes convolucionais ao prever sequências usando dados históricos, sendo: (1) elas
violam a ordem temporal durante o processo de aprendizagem, e (2) precisam que o tamanho das
sequências de entrada e sáıda sejam iguais. Experimentos computacionais usando dados de tem-
peratura do ar e de chuva da América do Sul mostram que nossa arquitetura captura o contexto
espaço-temporal e que ela é capaz de superar ou ter resultados comparáveis em relação às arquite-
turas consideradas estado da arte na tarefa de previsão. Em particular, uma das variações da nossa
arquitetura proposta melhora em 23% a previsão das sequências futuras, sendo quase cinco vezes
mais rápida no treinamento do que os modelos baseados em RNN comparados nos experimentos.

Palavras-chave:
Análise de dados espaço-temporais; Modelos de sequência a sequência; Redes Neurais Convolu-

cionais; Previsão do tempo

Rio de Janeiro,

Julho de 2020



ABSTRACT

STConvS2S: Spatiotemporal Convolutional Sequence to Sequence Network for Weather

Forecasting

Rafaela de Castro do Nascimento

Advisors:
Eduardo Bezerra, D.Sc.
Fábio Porto, D.Sc.

Abstract of dissertation submitted to the Graduate Program in Computer Science of the Federal
Center for Technological Education of Rio de Janeiro, CEFET/RJ, as partial fulfillment of the
requirements for the degree of master.

Applying machine learning models to meteorological data brings many opportunities to the
Geosciences field, such as predicting future weather conditions more accurately. In recent years,
modeling meteorological data with deep neural networks has become a relevant area of investigation.
These works apply either recurrent neural networks (RNN) or some hybrid approach mixing RNN
and convolutional neural networks (CNN). In this work, we propose STConvS2S (Spatiotemporal
Convolutional Sequence to Sequence Network), a deep learning architecture built for learning both
spatial and temporal data dependencies using only convolutional layers. Our proposed architecture
resolves two limitations of convolutional networks to predict sequences using historical data: (1)
they violate the temporal order during the learning process and (2) they require the lengths of the
input and output sequences to be equal. Computational experiments using air temperature and
rainfall data from South America show that our architecture captures spatiotemporal context and
that it outperforms or matches the results of state-of-the-art architectures for forecasting tasks.
In particular, one of the variants of our proposed architecture is 23% better at predicting future
sequences and almost five times faster at training than the RNN-based model used as a baseline.

Keywords:
Spatiotemporal data analysis; Sequence-to-Sequence models; Convolutional Neural Networks;

Weather Forecasting

Rio de Janeiro,

July 2020
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Chapter I Introduction

I.1 Contextualization

Many opportunities arise in the application of deep learning models to Earth-based tasks. Mod-

els originally designed for object recognition in images, video prediction, and language translation

can be applied to classification of weather patterns in satellite images, spatiotemporal forecasting

of meteorological variables, and time series modeling, respectively [Reichstein et al., 2019]. As a

result, the number of researches in geoscience area using deep learning approaches is increasing and

improving the ability to model this type of data.

Weather forecasting plays an essential role in resource planning in cases of severe natural phe-

nomena such as heat waves (extreme temperatures), droughts, and hurricanes. Such prediction task

helps to mitigate the unavoidable consequences of these phenomena and to calculate disaster risks,

which is essential to support decisions in emergency response plans. The creation of weather pre-

diction models involves knowledge of the current state of weather, the nearby spatial environment,

and the changes in the atmosphere that rely on physical laws, such as thermodynamics [Rolnick

et al., 2019].

Analyzing patterns in meteorological data is not only relevant to managing natural disaster risks,

but is also sensitive information for business activities. Weather forecasting influences decision-

making in agriculture, aviation, retail market, and other sectors, since unfavorable weather neg-

atively impacts corporate revenues. Some examples are how weather events affect the growth of

seeds and can lead to losses for farmers [Vedenov and Sanchez, 2011], or influence the decisions of

consumers purchasing in the retail market [Štulec et al., 2019].

Meteorological data can be collected from weather stations, remote sensing, or climate models.

For example, the remote sensing data collected by satellites provide meteorological data about

the entire globe at specific time intervals (e.g., every 6 hours or daily) and with a regular spatial

resolution (e.g., 1 Km or 5 Km). Figure I.1 illustrates three possible visualizations of the same

meteorological data (temperature in this case), showing the spatial and temporal aspects of this

type of data. Although it is possible to focus the analysis and understanding only on the patterns of

temporal ordering (time series problems), a predictive system should also consider the geographical

distribution to achieve a better representation of the data. In this work, we propose a predictive
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model capable of learning the spatial and temporal contexts of meteorological data.

Figure I.1: Visualizations of temperature data. The raw data show variations in time and spatial
coverage (latitude and longitude). The spatial view highlights different temperature values in each
geographic point for a fixed day. The time view shows daily values measured in a time window
(three months) for six locations.

I.2 Motivation

Over the years, with technological development, predictions of meteorological variables are

becoming more accurate. However, due to the stochastic behavior of the Earth system, which is

governed by physical laws, traditional forecasting requires complex, physics-based models to predict

the weather [Karpatne et al., 2018]. In recent years, a large volume of data about the Earth systems

has become available. This availability of historical data allows researchers to design deep learning

models that can make more accurate predictions about the weather [Reichstein et al., 2019].

Even though meteorological data exhibits both spatial and temporal structures, weather fore-

casting can be modeled as a sequence-to-sequence problem. For example, given the measurements

of a meteorological variable over time for a delimited region (input sequence), the goal is to predict
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future values steps ahead for all spatial coverage simultaneously (output sequence) using its past

observations (Figure I.2). In sequence modeling tasks, an input sequence is encoded to map the

representation of the output sequence, which may have a different length than the input. In Shi

et al. [2015], the authors proposed the ConvLSTM architecture to solve the sequence prediction

problem using a radar echo dataset for precipitation forecasting. They integrated the convolution

operator, adopted by the convolutional neural network (CNN), into a recurrent neural network

(RNN) to simultaneously learn the spatial and temporal context of input data to predict the future

sequence. Although ConvLSTM architecture has been considered the potential approach to build

prediction models for geoscience data [Reichstein et al., 2019], new opportunities have emerged

from recent advances in deep learning. In Wang et al. [2017, 2019], authors proposed improved

versions of the long short-term memory (LSTM) unit for memorizing spatiotemporal information,

and Souto et al. [2018] present an ensemble approach using ConvLSTM to improve predictions.

Figure I.2: Weather forecasting as a sequence-to-sequence problem [Reichstein et al., 2019].

RNN-based architectures may be ideal for multi-step forecasting tasks using spatiotemporal

data [Shi et al., 2015; Souto et al., 2018; Wang et al., 2017, 2019], due to the ability to respect

the temporal order (causal constraint) and predict long sequences. However, these architectures

maintain the information from previous time steps to generate the output, which consequently

leads to a high training time. Taking this as motivation, we address the spatiotemporal forecasting

problem by proposing a new architecture using entirely 3D CNN. CNN are an efficient method for

capturing spatial context and have attained state-of-the-art results for image classification using

a 2D kernel [Krizhevsky et al., 2012]. In recent years, researchers expanded CNN actuation field,

such as machine translation tasks [Gehring et al., 2017] using a 1D kernel, which is useful to capture

temporal patterns in a sequence. 3D CNN-based models are commonly used for video analysis and

action recognition [Yuan et al., 2018; Tran et al., 2018] or climate event detection [Racah et al.,

2017]. However, CNN-based models are generally not considered for multi-step forecasting tasks,

because of two intrinsic limitations. They violate the temporal order, allowing future information

during temporal reasoning [Singh and Cuzzolin, 2019], and they cannot generate a predictive output

sequence longer than the input sequence [Bai et al., 2018].
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I.3 Objectives

To tackle the limitations presented previously, and inspired by the successful applications of

convolutional models in other domains, the objective of this work is to employ deep learning tech-

niques to develop a more accurate weather forecasting methodology at the study location. We

introduce STConvS2S (Spatiotemporal Convolutional Sequence to Sequence Network), a spatiotem-

poral predictive model for multi-step forecasting task. To our knowledge, STConvS2S is the first

3D CNN-based architecture built as an end-to-end trainable model, suitable to satisfy the causal

constraint and predict flexible length output sequences (i.e., not limited to be equal to the input

sequence length).

The contributions of this work are twofold. Firstly, we provide two variants of the STConvS2S

architecture that satisfy the causal constraint. One adapts the causal convolution in 3D convolu-

tional layers, and the other introduces a new approach that strategically applies a reverse function

in the sequence. Secondly, we devise a temporal generator block designed to extend the length of

the output sequence, which encompasses a new application of the transposed convolutional layers.

I.4 Methodology

Machine learning models have a life cycle to build and validate hypotheses in order to solve

a specific problem. This life cycle guided us through the exploratory process of creating a new

deep learning architecture for weather forecasting (Figure I.3). The first activities are intended for

pre-processing, aiming to extract knowledge from the selected data. The following activities are

directed at the construction of deep learning architecture. Finally, the last activities evaluate the

results obtained with the experiments. Further details on the activities are described below.

The data selection phase aims to extract the data from its source. The data comes from

the Climate Forecast System Reanalysis (CFSR), a global dataset with associated meteorological

variables. We also use data from Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS), which is an almost global precipitation dataset. For both datasets, only data from

South America and the surrounding ocean were selected to delimit the scope of the project. The

data preparation activity aims to guarantee the quality of the data before being introduced in any

learning algorithm. It focuses mainly on the cleaning and identification of the appropriate data

used in the study.

Model creation is an activity designed to study and create different forecasting models. In this

phase, we built a new spatiotemporal sequence to sequence network for weather forecasting. In

the learning phase, we train our proposed model with the data previously processed in the initial

phase. This activity is essential to identify the most suitable parameters in order to reduce errors
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or training time.

The last activities are evaluation and validation. The former applies the previously trained

model to the test data. If the algorithm presents an error that is not expected, it is necessary to

return to the learning phase for new configurations of the hyperparameters. To evaluate the model,

the following performance metrics are used: root mean squared error (RMSE) and mean absolute

error (MAE). The objective of the last activity is to validate the predictive capacity of the model.

The validation phase compares the accuracy of the prediction model guided in this work against

state-of-the-art architectures and baselines.

An important point in the validation phase is to make a fair comparison between the models. In

this way, we perform experiments defining initial hyperparameter configurations for deep learning

models and propose variations in this configuration to observe the models’ behavior. Another key

configuration is the number of steps in the past considered in the analysis, defined equally for all

experiments.

Figure I.3: Model construction life cycle

I.5 Organization

The rest of this dissertation is organized into five chapters. Chapter II presents an overview

of the main concepts related to neural networks, especially deep neural networks. Chapter III

discusses works related both to weather forecasting and spatiotemporal architectures. Chapter IV

describes our proposed deep learning architecture. Chapter V presents our experiments and results.

Chapter VI summarizes the conclusions and future work of the dissertation.
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Chapter II Background

This chapter presents some background needed to understand further chapters. It starts with

the basic concepts of ARIMA models, adopted as a baseline in the experiments (Section II.1). Next,

it presents the main concepts to understand how deep learning models perform the training phase,

and also delves into more advanced models that are used as the base networks for our proposed

deep learning model and state-of-the-art models (Section II.2). Finally, it explains the concept of

causal constraint in sequence-to-sequence tasks, providing examples in different domains (Section

II.3).

II.1 ARIMA models

In temporal domain, time series is a sequence of historical measurements of an observable

process taken at equal time intervals, where the measurements can be traffic flow, meteorological

variables, for example. Autoregressive integrated moving average (ARIMA) [Box and Jenkins,

1970] are traditional methods for modeling stochastic process and one of the most used forecasting

approaches for univariate time series [Hyndman and Athanasopoulos, 2018]. They are composed

of an autoregressive (AR) model, a differencing method (I), and a moving average (MA) model,

represented by the parameters p, d, and q, respectively. These statistical methods can handle

stationarity in time series (mean and variance remain constant over time) and nonstationarity

[Gujarati, 2002].

Given a integer p, the AR(p) model specify that the future estimation yt depends linearly on

its own previous values [yt−p, . . . , yt−1] in the form defined in Equation II.1, where δ is an intercept

term (constant), p is the number of steps into past needed to predict yt, φ are the parameters related

to each of the past values and ε is the error term (white noise 1) with εt ∼ N (0, σ2) [Brockwell and

Davis, 2016].

yt = δ +

p∑
r=1

φryt−r + εt (II.1)

Rather than using past values, in the MA(q) model, for a given integer q, the yt is described

as a function of its last q values of white noise [εt−q, . . . , εt−1]. The ARMA(p,q) models are the

1An independent random variable
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combination of these previous models, and the series is modeled using both its past values and

errors. Formally, they are defined in Equation II.2, where θ are the parameters related to each of

the past errors.

yt = δ +

p∑
r=1

φryt−r + εt +

q∑
r=1

θrεt−r (II.2)

As ARMA modeling expects a stationary time series, in the way to handle nonstationarity, the

differencing method can be adopted, forming the ARIMA(p,d,q) models. Nonstationarity (vari-

ations in mean and variance in time series) are often due to deterministic trends, but it can be

manifested by other conditions as well [Salles et al., 2019]. Application of differencing method

preliminary and, repeatedly, if necessary, is capable of generating a stationary time series. For in-

stance, a first differencing transformation can eliminate a linear trend and is formulated as [Salles

et al., 2019]:

y′t = ∇yt = yt − yt−1 (II.3)

A particular model is the ARIMA(0,1,0), called random walk model, which is especially useful

for time series exhibiting a random behavior against time. A random walk model, defined as in

Equation II.4, assumes that the value of a time series yt at a time t can be explained by the value

of the series at the time t−1 and a random movement represented by εt (white noise) [Salles et al.,

2019].

yt = yt−1 + εt (II.4)

II.2 Deep learning models

The ability to the system acquire knowledge by extracting patterns from raw data is known

as machine learning [Goodfellow et al., 2016]. Deep learning can be seen as a subarea of machine

learning, where one of the main differences is the capability to model complex data by increasing

the number of layers for specific architectures. In this section, we provide the idea behind the

learning process of these models and also the foundations of two deep neural networks.

II.2.1 Learning process

Machine learning models are algorithms that can learn from data and are suitable for a variety

of tasks, such as classification, regression, anomaly detection, machine translation, etc. Based on

the scope of this work, our explanation and example focus on the regression task, in which the

model attempts to predict continuous data (numerical value) given an input. One type of learning
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adopted by the model in the regression task is supervised learning, where for each input vector x,

there is an associated target2 vector (expected result) y. Thus, the process aims to learn how to

predict y from x.

Figure II.1 illustrates an overview of the supervised learning process. The learning step can be

split into two: forward and backward. During the forward pass, the model is fed with the input data

to generate the prediction. The target and prediction data are compared by a loss function that

evaluates their differences by computing a measure of error. This error is then applied to optimize

the parameters (weights) of the model. The change in weights is computed by the backpropagation

algorithm in the backward pass [Stevens and Antiga, 2019]. The learning process during training

is iterative and its goal is to improve the parameters of the model in order to minimize the error

and make better predictions.

Figure II.1: Overview of the supervised learning process

In the following sections, the fundamental components used in the learning process are briefly

presented.

Basic concepts and activation functions

Considering a machine learning model with one artificial neuron, the input value provided to

this simple model are known as feature xi, and for each feature, the neuron has an associated weight

w̄i, where 1 6 i 6 n, and n is the number of features. Another parameter of the model aside from

the weights are the bias b. Inside the neuron, pre-activation and activation steps are performed.

In pre-activation, the model applies a linear transformation, which can be defined as a weighted

sum of features (Equation II.5). Following, its output z is passed through the activation function

(or nonlinearity) g(·). The nonlinearity allows the model to approximate more complex functions,

in order to better represent the input data [Stevens and Antiga, 2019]. Figure II.2 schematically

2Also known as ground truth. These terms are used interchangeably in this work.
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shows the basic structure of the artificial neuron. Formally, the predicted output ŷ of the neuron

can be expressed as:

z =

n∑
i=1

w̄ixi + b (II.5)

ŷ = g(z) (II.6)

Figure II.2: Neuron with n features xi, the learnable parameters (weights w̄i and bias b), the
activation function g(·), and at the end, the neuron generates the prediction ŷ [Sautermeister,
2016].

Besides the nonlinear behavior, the activation functions need to be differentiable3 so that the

errors can be propagated (Section II.2.1) in the backward pass through them [Stevens and Antiga,

2019]. Figure II.3 presents some activation functions used in neural networks.

Optimization problem

Previous section provides explanations about a simple neural network with a single artificial

neuron. Complex architectures have many layers, each with many neurons inside. During the

forward pass, features x is the initial information that is manipulated and propagated through

each layer to produce the final output ŷ. Among the forward and backward pass, the error (loss) is

calculated using a loss function4. This function computes a numerical value that the optimization

process attempts to minimize. To measure how close to the true response the model is, the loss

calculation involves taking the difference between the predicted output ŷ and the desired output y.

There are several loss functions for the regression task5. Equation II.7 shows mean squared error

(MSE), one of the most used functions [James et al., 2013], given by

MSE =
1

n

n∑
i=1

(y − ŷi)2 (II.7)

3At least in in most points of its domain, since ReLU is not differentiable at 0.
4Also referred to as cost function.
5Section V.3 provides the functions we have adopted in our work. It is important to note that in this section we

refer to the accuracy of the predictions in the training phase, where the learning process takes place. Section V.3
refers to the evaluation phase applied to the unseen test data (not used during training).
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(a) Sigmoid (b) Hyperbolic tangent

(c) Rectified linear unit (d) Leaky ReLU

Figure II.3: Activation functions [Stevens and Antiga, 2019]. (a) Sigmoid - the output is generated
into range [0,1]. Basically, large negative numbers become 0 and large positive numbers become
1. (b) Hyperbolic tangent (tanh) - the output is generated in the range [-1,1] and is zero-centered.
(c) Rectified Linear Unit (ReLU) - it computes the function f(x) = max(0, x) and nowadays is the
most used activation function in CNN. (d) LeakyReLU - variation of ReLU function, it has a small
positive slope rather than being strictly zero for negative inputs.

where n is the number of samples used as input in the machine learning model.

In the backward pass the information (gradient) of the loss function J must be propagated back

through the layers. Backpropagation is the algorithm to calculate the gradient ∇w̄,bJ , with respect

to the parameters, using the chain rule [Goodfellow et al., 2016]. This gradient is passed to an

optimization method that uses it to adjust the parameters (w̄ and b) of the models. Mathematically,

the gradient ∇w̄i,bJ of a specific neuron can be defined as:

∇w̄i,bJ =

(
∂J

∂w̄i
,
∂J

∂b

)
=

(
∂J

∂x′
· ∂x

′

∂w̄i
,
∂J

∂x′
· ∂x

′

∂b

)
(II.8)

where also with respect to the input x′, the chain rule is used to calculate partial derivatives

∂J/∂w̄i and ∂J/∂b.

II.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are categorized as supervised learning algorithm, due to

the type of experience they have during the learning process. They were studied in detail in LeCun



11

and Bengio [1995] for image, speech, and time series tasks, where the architecture was designed

to process data with grid-like topology. Inspired by the visual cortex, the artificial neurons in

this model use convolution operation to scan the input data and detect different kinds of patterns

located in a local region, called receptive field. Convolution is a set of transformations that apply

the same linear transformation of a small local region across the entire input [Goodfellow et al.,

2016]. Formally in Equation II.9, convolution operation of two given functions f and q in terms of

a variable v at point α is typically denoted with an asterisk and defined in the discrete domain as

follows [Goodfellow et al., 2016]:

(f ∗ q)(α) =
∞∑

v=−∞
f(v)q(α− v) (II.9)

Here α can be seen as the offset which allows q(α − v) to slide along the v-axis. Similarly, in

Equation II.10 the convolution operation applied to more than one axis at a time, for instance,

2-dimensional image I as input, and a 2-dimensional kernel K, is denoted by:

(I ∗K)(α, β) =
H∑

h=1

W∑
w=1

I(h,w)K(α− h, β − w) (II.10)

where I(h,w) is the pixel at location (h,w) and K(α−h, β−w) gives the kernel’s values (known

as weights of the network) based on the pixel offsets α and β. Before CNN, to create the kernel

used in image processing tasks, such as edge detection, weights were investigated manually. For

example, to detect vertical and horizontal edges of an image, weights were defined similarly to


−1 0 1

−2 0 2

−1 0 1

 and


1 2 1

0 0 0

−1 −2 −1


respectively (these specific kernels are called Sobel operator [Sobel and Feldman, 1968]). One

of the main advantages of applying CNN in image processing is that the weights are learned by the

network itself, removing the manual investigation of these values. Figure II.4 shows an example of

a convolution operation [Burkov, 2019]. The output value of the first convolution, −3, was obtained

as (0×−1) + (0× 5) + (0× 4) + (1×−3). In the example, the input size is 4× 4, the kernel size

is 2 × 2, and the output will consist of a 3 × 3 matrix, result of sliding the kernel over the input.

Thus, the output of each neuron after the convolution forms the feature map, and the kernel size

defines the receptive field in the input. Since the convolution operation is a linear transformation,

each convolutional layer is usually followed by an activation function.

The dimension of the feature map depends on two convolution properties: stride and padding.

Stride controls how the kernel slides through the input, i.e., the position at which convolution
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Figure II.4: A kernel convolving across an input. The size of the receptive field in the input is
equal to the kernel size (2× 2), the stride = 2 and padding = 1.

operation must begin for each element. The padding technique can be applied to ensure that the

output feature map has the same dimension as the input data. This technique surrounds each slice

of the input volume with p cells containing zeros. Thus, the size of the output can be defined in

terms of input size rin, stride s, kernel size k and padding p as (rin − k + 2p)/s+ 1.

Spatiotemporal Convolutional Neural Networks

CNN applied to images operates 2D convolutions, as explained in the previous section, capturing

features in the spatial dimension only. When CNN is addressed to the spatiotemporal problem, such

as video analysis, it also needs to capture motion information in the multiple frames. To accomplish

this, 3D convolution is adopted instead of 2D convolution, and the layer can be named as 3D CNN

[Tran et al., 2015]. Figure II.5 illustrates the difference in input and output representation when

applying 2D and 3D convolution.



13

(a) (b)

Figure II.5: Comparison of 2D and 3D convolution. (a) 2D convolution applied to an image, where
H and W are height and width, generates 2D output. The 2D kernel is defined by d × d, where
d represents the size of the kernel (k) in the spatial dimension (H and W ). (b) 3D convolution
preserves the temporal information of the input resulting in an output volume. The input has 3
dimensions T ×H ×W , where H and W have the same definition as in (a), and T is the size of
temporal dimension, i.e., the number of frames if the input is video clips. The kernel is t× d× d,
where d is defined in (a) and t is the size of temporal depth. [Tran et al., 2015].

Transposed convolutional layer

Transposed convolutional layer6 is widely used for semantic segmentation [Noh et al., 2015] and

object detection [Racah et al., 2017] to reconstruct the shape of the input image after applying

convolutional layers. Convolution operation can be interpreted as a many-to-one relationship, i.e.,

it associates multiple elements of input feature map with a single element of the generated feature

map. In contrast, in a transposed convolutional layer, transposed convolution operation forms a

one-to-many relationship, thus it can be used to generate an upsampled output [Noh et al., 2015]

as shown in Figure II.6. Formally, the size of the output can be defined as s(rin − 1) + k − 2p, for

input size rin, stride s, kernel size k and padding p [Dumoulin and Visin, 2016]. See Section II.2.2

for stride, kernel size and padding details.

Figure II.6: Example of 1D transposed convolution operation where 2 × 1 input feature map
(rin = 2) is upsampled to 5 × 1 output feature map. This 1D transposed convolutional layer has
as hyperparameters: k = 3, s = 2, p = 0.

II.2.3 Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of neural networks in which their units are similar

to the artificial neuron described in Section II.2.1, but with additional connections between layers

(recurrent connections). This type of connection provides a chain-like structure, where the output

6Also termed as deconvolution in previous works of the literature.
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Figure II.7: The encoder formed by a stack of LSTM layers reads the input sequence one tem-
perature at a time and then maps it to an intermediate representation called ”encoder output”.
Another stack of LSTM layers decode the output sequence from the encoder output, generating
the forecast for the next few days.

Figure II.8: Illustration of LSTM layer inside with the three gates: forget, input, and output.
Among the LSTM layers are shown the recurrent connections [Zhang, 2017].

from one step is passed to the next step and so on, making it follow the causal constraint and

suitable for sequence problems. Sequence modeling (or sequence-to-sequence learning) can be

defined as a way of generating a model that maps an input sequence vector x = [x1, . . . , xn] of

n elements to an output sequence vector y = [y1, . . . , ym], where the size of the sequences may

be different. The encoder-decoder architecture, ideally designed for sequence modeling, was first

proposed by Sutskever et al. [2014] for machine translation tasks using long short-term memory

(LSTM) [Hochreiter and Schmidhuber, 1997], a type of RNN. This architecture can also be applied

to other domains, such as forecasting tasks using time series data, as shown in Figure II.7.

Nowadays, LSTM are the standard RNN-based architecture to deal with higher temporal depth

(long sequences) [Goodfellow et al., 2016]. They has a memory state (or cell state) ct to keep the

information from previous time steps. To control the flow of information from the current input

xt to memory, the layer uses a memory gate (or input gate). Other gating mechanisms are the
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forget gate and output gate. The forget gate uses sigmoid function σ to regulate if it removes

information from memory. The output gate controls the output of the layer ŷt, which is the also

the information passed onwards, defined as the hidden state ht. The output ŷt is based on the new

memory state after the operation on the forget and memory gate, on the previous hidden state ht−1

and on the current input xt. This structure is shown schematically in Figure II.8 and the output

can be formalized as [Shi et al., 2015]:

ŷt = σ(w̄xxt + w̄hht−1 + w̄c � ct + b)� tanh(ct) (II.11)

where w̄x, w̄h and w̄c are the weights in relation to each state x, h and c, respectively, b is

the bias, tanh is the hyperbolic tangent function (see Section II.2.1) and � operator denotes the

Hadamard product7.

A drawback of the information dependency from previous step is that LSTM does not allow

parallel computation, leading to a slow training phase. Gehring et al. [2017] successfully propose

a new architecture using only 1D CNNs for sequence modeling, designed with causal convolu-

tions in decoder to capture temporal dependencies in sequences and, compared to LSTM models,

computations can be completely parallelized during training.

II.3 Causal constraint in sequence-to-sequence tasks

(a)

(b)

Figure II.9: Causal constraint in sequence-to-sequence tasks. (a) Speech recognition task: this
model does not have to be causal, because to obtain the correct interpretation of the current word
(represented as a blank space), it is necessary to look in both directions to understand the context.
(b) Forecasting task: this model needs to be causal because, the model can only look in one direction
to obtain the representation of the current time step (highlighted in the red circle), which means,
it must not look to the future.

7It defines the element-wise product of two matrices with the same dimension, producing another matrix of the
same dimension
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Structuring data as a sequence is essential for modeling several real problems, since many ob-

served tasks are sequential, such as communication, which is based on word sequences, or the

measurement of a variable over time. In some sequence-to-sequence tasks, such as speech recog-

nition, the desired output prediction may depend on the entire input sequence. Thus, to get the

correct interpretation of the current word is necessary to look at both previous and next words in

the sequence.

On the other hand, in tasks like weather forecasting, one of the main constraints is the temporal

order. In other words, to properly learn the representation of the current time step, the model must

not look at the next observations (future), because it violates the temporal order. In this sense,

the domain in which the model is applied defines the need to satisfy the causal constraint or not.

Figure II.9 provides examples of sequence-to-sequence tasks and shows which model needs to be

causal.
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Chapter III Related Work

Many studies have addressed weather forecasting as a time-series problem using types of neu-

ral networks [Corchado and Fyfe, 1999; Baboo and Shereef, 2010; Mehdizadeh, 2018; Zaytar and

Amrani, 2016] (Section III.1). However, meteorological variables have variations in their dynamics

also in space. Thus, spatiotemporal deep learning models are investigated in this chapter to tackle

this problem (Section III.2). At the end, we present the main characteristics of these works and

summarize the conclusions of this chapter (Section III.3).

III.1 Time series approach

Several statistical methods and machine learning techniques have been applied to historical

data about temperature, precipitation, and other meteorological variables to predict the weather

conditions. ARIMA are traditional statistical methods for times series analysis [Babu and Reddy,

2012]. Other studies have also applied artificial neural networks (ANN) to time series prediction in

weather data, such as temperature measurements [Corchado and Fyfe, 1999; Baboo and Shereef,

2010; Mehdizadeh, 2018].

Recently, some authors have been developing new approaches based on deep learning to improve

time series forecasting results, in particular, using LSTM networks. Traffic flow analysis [Yang et al.,

2019], displacement prediction of landslide [Xu and Niu, 2018], petroleum production [Sagheer and

Kotb, 2019] and sea surface temperature forecasting [Zhang et al., 2017] are some applications that

successfully use LSTM architectures. In Zaytar and Amrani [2016], the authors build a model

with stacked LSTM layers to map sequences of weather values (temperature, humidity, and wind

speed) of the same length for 9 cities in Morocco and show that their results are competitive with

traditional methods. However, these approaches (addressed to time series) are unable to capture

the spatial dependencies in the observations.

III.2 Spatiotemporal approach

We separate this approach into two sections (Section III.2.1 and Section III.2.2) based on

the type of deep learning layer adopted and in them we briefly discuss design decisions in the

architecture of each work. Architectures presented in this section [Shi et al., 2015; Wang et al.,
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2017, 2019; Tran et al., 2018; Racah et al., 2017] are used in the experimental evaluation (see

Chapter V).

III.2.1 RNN-based models

Spatiotemporal deep learning models deal with spatial and temporal contexts simultaneously.

In Shi et al. [2015], the authors formulate rainfall forecasting as a sequence-to-sequence prob-

lem, where the input and output are 2D radar map sequences. In addition, they introduce the

ConvLSTM architecture to build an end-to-end model for precipitation nowcasting. The proposed

model includes the convolution operation into LSTM network to capture spatial patterns. Formally,

the output ŷ is expressed as in Equation III.1. Comparing with Equation II.11, the difference be-

tween them is the replacement of multiplication by the convolution operation, denoted by ∗. In

details, the future representation (state) of a cell is defined by the receptive field (green and red

squares in Figure III.1) in the previous layer. This is the result of the convolution operation in the

ConvLSTM layer that allows the encoding of spatial information from a neighborhood. Kim et al.

[2019] also define their problem as a sequence task and adopt ConvLSTM for extreme climate event

forecasting (Figure III.1). Their model uses hurricane density map sequences as spatiotemporal

data.

ŷt = σ(w̄x ∗ xt + w̄h ∗ ht−1 + w̄c � ct + b)� tanh(ct) (III.1)

The work proposed in Souto et al. [2018] implements a spatiotemporal aware ensemble approach

adopting ConvLSTM architecture. Ensemble approaches combine predictors to generate predictions

that are weighted and possibly better than the predictions obtained by each predictor separately.

The authors combine different meteorological models as channels in the convolutional layer to

predict the next expected rainfall values for each location. This can be seen as a multiple regression

model, since the variable of interest is predicted by a combination of predictors. Our approach,

instead, can be seen as an autoregression model, because the variable of interest is predicted based

on its own past data.

Based on Shi et al. [2015], Wang et al. [2017] present a new LSTM unit for ConvLSTM, called

Spatiotemporal LSTM (ST-LSTM), that memorizes spatial and temporal variations in a unified

memory pool. Their memory states flow through the network along a zigzag direction as shown in

Figure III.2. ST-LSTM unit for PredRNN is able to deliver memory states both vertically (between

layers) and horizontally (between time steps).

In Wang et al. [2019], they present an improved memory function in ST-LSTM unit adding

non-stationarity modeling. They proposed an architecture, called Memory In Memory (MIM),

which is inspired by the ARIMA models. They proposed two recurrent modules, where the first
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Figure III.1: The encoder (encoding network) maps the entire input sequence and its representation
is passed to the decoder (forecasting network) as its initial representation [Kim et al., 2019].

Figure III.2: PredRNN architecture with ST-LSTM. The gray arrows show the flow of conventional
ConvLSTM architecture and the orange ones denote the spatiotemporal memory flow proposed in
PredRNN architecture [Wang et al., 2017].

are designed to replace the temporal forget gate and capture the non-stationary variations between

two consecutive hidden representations (previously termed as output state) ht − ht−1, through the

differencing method [Box and Jenkins, 1970]. The other recurrent module takes as input the output

of the non-stationary module and memory ct−1 to capture the approximately stationary variations

in spatiotemporal sequences.

Although related to the use of deep learning for climate/weather data, our model adopts only

CNN rather than a hybrid approach that combines CNN and LSTM.

III.2.2 CNN-based models

Some studies have applied spatiotemporal convolutions [Yuan et al., 2018; Tran et al., 2018] for

video analysis and action recognition. In Tran et al. [2018], the authors compare several spatiotem-

poral architectures using only 3D CNN and show that factorizing the 3D convolutional kernel into
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Figure III.3: A stack of 3D convolutional layers in the encoder and a stack of 3D transposed
convolutional layers in the decoder are used for the recognition task [Racah et al., 2017].

separate and successive spatial and temporal convolutions produces accuracy gains. They use as

input a sequence of video frames with specific height and width, and RGB channels. Their ar-

chitecture focuses on layer factorization, i.e., factorizing each convolution into a block of a spatial

convolution and a temporal convolution. A top layer performs a average pooling over the entire

spatiotemporal volume to reduce the output dimensions, and a fully-connected ANN (FC-ANN)

is responsible for the final classification prediction. Moreover, in comparison to the full 3D con-

volution, they indicate advantages: an increase in the complexity of the functions that can be

represented, and a facility in the optimization of spatial or temporal components. Inspired by Tran

et al. [2018], we also adopt a factorized 3D CNN, but with a different implementation. Figure IV.3

highlights this difference.

A limitation of both 3D CNN or factorized 3D CNN [Tran et al., 2018] is the lack of causal

constraint, violating the temporal order. Singh and Cuzzolin [2019] and Cheng et al. [2019] factorize

the 3D convolution as Tran et al. [2018]. Singh and Cuzzolin [2019] propose a recurrent convolution

unit based on RNN to address causal constraint in temporal learning for action recognition tasks,

and Cheng et al. [2019] satisfy the causal constraint by adopting causal convolution in separate

and parallel spatial and temporal convolutions. We also adopt a factorized 3D CNN, but with

a different implementation, where Figure IV.3 highlights our approach. In contrast to Singh and

Cuzzolin [2019], we use an entirely CNN approach, and to Cheng et al. [2019], besides not using

parallel convolutions when adopting a causal convolution, we introduce a new method to not violate

the temporal order (details in Section IV.2.2).

Following the success of 2D CNN in capturing spatial correlation in images, Xu et al. [2019]

propose a model to predict vehicle pollution emissions using 2D CNN to capture temporal and spa-

tial correlation separately. However, unlike our work, they also do not satisfy the causal constraint

when adopting 2D CNN in temporal learning. Racah et al. [2017] use a 3D CNN in an encoder-

decoder architecture for extreme climate event detection (Figure III.3). They use as input 8 time
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steps (sequence length) and 16 climate variables, where each variable corresponds to one channel

of the tensor (likewise as in Souto et al. [2018]). Their model reconstruct the 8 time steps and

predict bounding boxes1 for 4 labelled time steps. Their architecture consists of a downsampling

path in the encoder using a stack of convolutional layers, and an upsampling path in the decoder

using a stack of transposed convolutional layers. Their model adopts the typical use of transposed

convolutional layers to reconstruct the output to match the entire input dimension. Instead, we

use these layers to generate an output with a larger dimension, different from the dimensions of

the input.

III.3 Overall conclusion

To sum up, our proposed STConvS2S architecture aims to fill this gap and departs from the

previous approaches, either in the manipulation of spatial and temporal dependencies or in the use

of different deep learning layers to learn features from the data. Table III.1 highlights the main

features of our proposed architecture as well as each work that uses the spatiotemporal approach.

In this chapter, we presented studies related to weather forecasting and spatiotemporal archi-

tectures. Firstly, we provided studies on time series approaches, in which they indicate that LSTM

models performed better in forecasting tasks than the ARIMA models. Further on, we extended

the related work to spatiotemporal architectures, focusing on deep learning approaches.

Table III.1: Overview of deep learning approaches for spatiotemporal data

Model Domain Layer Task Output type

ConvLSTM
[Shi et al., 2015]

weather (rainfall) ConvLSTM forecasting sequence

Deep-Hurricane-
Tracker [Kim et al.,
2019]

climate events
(hurricane)

ConvLSTM forecasting sequence

Ensemble ConvLSTM
[Souto et al., 2018]

weather (rainfall) ConvLSTM forecasting single value

PredRNN [Wang
et al., 2017]

weather (rainfall);
video

ST-LSTM forecasting;
action prediction

sequence

MIM [Wang et al.,
2019]

weather (rainfall);
video

ST-LSTM +
MIM

forecasting;
action prediction

sequence

R(2+1)D [Tran et al.,
2018]

video 3D CNN +
FC-ANN

action recognition class label

3D Encoder-Decoder
[Racah et al., 2017]

climate events
(hurricane)

3D CNN object detection bounding boxes
+ class label

STConvS2S (ours) weather
(temperature and
rainfall)

3D CNN forecasting sequence

1Rectangular box determined by specific coordinates and used to identify an object
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When dealing with sequence as output using spatiotemporal data, especially for forecasting

tasks many-steps ahead, RNN-based architectures are widely explored, achieving state-of-the-art

results for these tasks. On the other hand, CNN-based architectures are more applied to tasks

such as action recognition and object detection, when dealing with spatiotemporal data. From the

most recent research, it is evident that comparative studies between the RNN and CNN models for

forecasting tasks using spatiotemporal data are still lacking.
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Chapter IV Deep learning model for spatiotemporal data forecasting

This chapter first gives a formal definition of the sequence-to-sequence problem using spatiotem-

poral data (Section IV.1). Further on, it introduces the proposed architecture, providing a detailed

description of each component (Section IV.2).

IV.1 Problem Statement

Spatiotemporal data forecasting can be modeled as a sequence-to-sequence problem. Thus,

the observations of spatiotemporal data (e.g. meteorological variables) measured in a specific

geographic region over a period of time serve as the input sequence to the forecasting task. Since

the observations are related to a single variable and its observations at previous time steps are

useful to predict the next time steps, this problem can be treated as an autoregression. More

formally, we define a spatiotemporal dataset as [X̃(1), X̃(2), . . . , X̃(m)] with m samples of X̃(i) ∈

RT×H×W×C , where 1 ≤ i ≤ m. Each training example is a tensor X̃(i) = [X
(i)
1 , X

(i)
2 , . . . , X

(i)
T ],

that is a sequence of T observations containing historical measurements. Each observation X
(i)
j ∈

RH×W×C , for j = 1, 2, . . . , T (i.e. the length of input sequence), consists of a H×W grid map that

determines the spatial location of the measurements, where H and W represent the latitude and

longitude, respectively. In the observations, C represents how many meteorological variables (e.g.

temperature, humidity) are used simultaneously in the model. This structure is analogous to 2D

images, where C would indicate the amount of color components (RGB or grayscale).

Modeled as sequence-to-sequence problem in Equation IV.1, the goal of spatiotemporal data

forecasting is to apply a function f that maps an input sequence of past observations, satisfying

the causal constraint at each time step t, in order to predict a sequence X̂ ∈ RH×W×C , where the

length T ′′ of output sequence may differ from the length T of input sequence.

X̂t+1, X̂t+2, . . . , X̂t+T ′′ = f(Xt−T+1, . . . , Xt−1, Xt) (IV.1)

IV.2 STConvS2S architecture

STConvS2S is an end-to-end deep neural network suited for learning spatiotemporal predictive

patterns, which are common in weather forecasting domains. Our approach makes multi-step
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(sequences) prediction without feeding the predicted output back into the input sequence. This is

possible due to a specific component within the STConvS2S model designed to generate all future

time steps T ′′ at once. Thus, our model can produce a sequence of any length without repeating

the entire STConvS2S model up to the number of steps ahead T ′′ that it is desired to predict.

Avoiding repetition of the model in a chain form provides computational cost savings, especially if

T ′′ is large enough.

Although some methods for weather forecasting using a radar echo dataset apply a hybrid

approach, combining CNN 2D (to learn spatial representations) and LSTM (to learn temporal

representations) [Shi et al., 2015; Wang et al., 2017, 2019], our method uses only 3D convolutional

layers to learn spatial and temporal contexts. Distinct from conventional convolution applied

in some 3D CNN architectures [Tran et al., 2015; Tran et al., 2018; Racah et al., 2017], during

temporal learning, STConvS2S takes care not to depend on future information, a crucial constraint

on forecasting tasks. Another core feature of our designed network is the capability to allow flexible

output sequence length, which means the possibility to predict many time-steps ahead, regardless

of the fixed-length of the input sequence.

Figure IV.1 presents an overview of our proposed deep learning architecture, highlighting the

spatiotemporal format of the input, feature maps and output. Figure IV.2, instead, is a simpli-

fied diagram of our architecture, mainly illustrating its components and the convolutional layers

within them. In the following, we provide more details about the components which comprise our

architecture.

Figure IV.1: An illustration of STConvS2S architecture highlighting the spatiotemporal format.
The architecture comprises three components: temporal block, spatial block, and temporal genera-
tor block. Each block is a set of layers. The temporal block learns a temporal representation of the
input sequence, the spatial block extracts spatial features from the output of the previous block.
On top of the spatial block, there is the temporal generator block designed to increase the sequence
length T if the task requires a longer predictive horizon, where T ′′ > T . Finally, the output of this
block is further fed into a final convolutional layer to complete the prediction
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Figure IV.2: An illustration of STConvS2S architecture highlighting its components. Each block
is shown with two layers, but it is possible to increase this number to suit a specific problem
solution. Besides, each color indicates a distinction between layers. Gray represents the factorized
convolutional layers (FConv) that use temporal kernels and blue, the FConv that use spatial
kernels. Since the temporal generator block is not always used (only when it requires extending
the output sequence), this block is presented with dashed lines to distinguish it from other blocks.

IV.2.1 Factorized 3D convolutions

Instead of adopting a conventional t̄×d×d kernel for 3D convolutional layers, where d and t̄ are

the kernel size in space (H×W ) and time (T ) dimensions, respectively, we use a factorized 3D kernel

adapted from R(2+1)D network, proposed in Tran et al. [2018]. The factorized kernel 1 × d × d

and t̄× 1× 1 split the convolution operation of one layer into two successive operations, named as

a spatial convolution and a temporal convolution in their work. In our new architecture, we take

a different approach: operations are not successive inside each convolutional layer. Instead, the

factorized kernels are separated into two blocks, giving them specific learning skills. The temporal

block applies the t̄× 1× 1 kernel in its layers to learn only temporal dependencies, while the next

component, the spatial block, encapsulates spatial dependencies using 1×d×d kernel. Figure IV.3

schematically illustrates the difference between these three approaches and Figure IV.4 shows a

representation of the factorized 3D convolutions in the temporal and spatial blocks of STConvS2S

architecture.

Compared to the full 3D kernel applied in standard convolutions, the kernel decomposition

used in STConvS2S offers the advantage of increasing the number of nonlinearities in the network

(additional activation functions between factorized convolutions), which leads to an increase in the

complexity of representable patterns [Tran et al., 2018]. An advantage of our proposed approach

over the (2+1)D block is flexibility since temporal and spatial blocks can have a distinct number

of layers, facilitating their optimization.

IV.2.2 Temporal Block

In STConvS2S, the temporal block is a stack of 3D convolutional layers which adopt t̄× 1× 1

kernel during convolutions. Each layer receives a 4D tensor with dimensions T ×H ×W ×Cl−1 as

input, where Cl−1 is the number of filters used in the previous layer (l−1), T is the sequence length

(time dimension), H and W represent the size of the spatial coverage for latitude and longitude,
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(a) (b) (c)

Figure IV.3: Comparison of convolution operations applied in three convolutional layers. The
spatial kernel (ks) is defined as 1×d×d and the temporal kernel (kt̄) as t̄×1×1, where d and t̄ are
the kernel size in spatial (H×W ) and time (T ) dimensions, respectively. (a) Representation of the
standard 3D convolution operation using the t̄× d× d kernel. (b) Factorized 3D kernels proposed
in Tran et al. [2018] as successive spatial and temporal convolution operations in a unique block
called (2+1)D. (c) Our proposal for the factorized 3D kernels usage is in separate blocks. First,
the temporal block stacks three convolutional layers, each performing convolutions using only the
temporal kernel. Likewise, the spatial block applies the spatial kernel to its layers.

respectively. Within the block, the filters C are increased twice in the feature maps as the number

of layers increases, but the final layer reduces them again to the number of filters initially defined.

In detail, this block uses batch normalization and LeakyReLU after each convolutional layer.

This block discovers patterns over the time dimension T exclusively. Besides, since we are using

3D convolutional layers to analyze historical series of events, we must prevent data leakage from

happening. That is, the model should not violate the temporal order and should ensure that, at

step t, the learning process uses no future information from step t + 1 onward. To satisfies this

constraint, we propose two variants of the temporal block.

Figure IV.4: Example of representation of factorized 3D convolutions in temporal and spatial block
when t̄ = d = 3. The kernel format allows each block to learn temporal and spatial dependencies
separately, providing blocks with specific learning skills.
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Temporal Causal Block

We name our architecture as STConvS2S-C when it adopts this block to learn the temporal

patterns. We apply causal convolutions within the block to incorporate the ability to respect the

temporal order during learning in convolutional layers. Causal convolution was originally presented

in WaveNet [van den Oord et al., 2016] for 1D CNN and applied with factorized 3D convolutions

in Cheng et al. [2019]. This technique can be implemented by padding the input by k−1 elements,

where k is the kernel size. Since we use factorized convolutional layers with temporal kernel

(t̄ × 1 × 1), the convolution operation on a 3D input is similar to 1D, as shown in Figure IV.4

through the feature map on the left. Figure IV.5 shows the operation in details.

Figure IV.5: Causal convolution operation in a factorized convolutional layer showing only the time
dimension, with t̄ = 3 (temporal kernel size). Input is padded by t̄− 1 elements to avoid learning
future information. To ensure that the output feature map has the same length as the input, the
last t̄− 1 elements are removed since they are related to the zeros added to the right of the input.

Temporal Reversed Block

When dealing with historical data, respecting the temporal order (causal constraint) is an essen-

tial behavior of deep learning models. This because, in real applications, future information is not

available in forecasting. The common approach in the literature for adapting convolutional layers

to satisfy this constraint is through causal convolutions. Here, we introduce a better alternative 1

to avoid violating the temporal order. The architecture is named as STConvS2S-R when composed

with this block.

Unlike STConS2S-C, the STConvS2S-R architecture does not apply padding in the input, a

strategy used by the former to respect the causal constraint. Instead, in the STConvS2S-R, we use

a sequence of operations to fill the output feature map. Further on, we will provide details about

these operations, but first, we schematically illustrate the structure of the temporal reversed block

in Figure IV.6.

1Detailed analysis of the experimental results are demonstrated in the Ablation study (Section V.6), more specif-
ically in the topic ”Comparison of strategies to satisfy the causal constraint”.
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(a) (b)

Figure IV.6: Temporal Reversed Block. (a) Structure of the temporal reversed block. Here, the
block is shown with one RNet layer for simplicity, but it is possible to stack several layers. (b) RNet
structure in detail with two factorized convolutional layers: on the left, the layer with t̄ × 1 × 1
kernel (t̄ = 3); on the right, the layer with fixed kernel (2× 1× 1). The operations for joining the
outputs of these layers are shown in Equation IV.5.

Within the temporal reversed block, we start by applying a function ψ in the time dimension

of the input to reverse the sequence order, where this function is a linear transformation ψ :

RT×H×W×C → RT×H×W×C . Next, we stack several RNet, a carefully designed network composed

of two factorized convolutional layers, applying only a temporal kernel (kt̄).

RNet generates an output that matches the input dimensions without using the padding tech-

nique in the input 2. In this way, the first factorized convolutional layer of RNet (left in Figure

IV.6) applies a t̄× 1× 1 kernel, generating an output with size of T − t̄+ 1 in the time dimension,

where t̄ is the temporal kernel value (a hyperparameter previously defined in the execution) and T

is the size of time dimension (length of sequence) of the input. The second layer is similar to the

first one, but always adopts the 2× 1× 1 kernel instead, which is the smallest temporal kernel to

capture correlation among the input sequence values.

One way to understanding the RNet operations is to think about padding the output by re-

peating the last value until it reaches the same size as the input in the time dimension (i.e., t̄− 1

elements). This strategy helps to keep the learned values in the right position to ensure the causal

constraint. Another operation is the usage of the output of the second layer (kt̄ = 2 × 1 × 1) to

generate variability in the padded values of the first layer for each time step.

Take x′′t−3 in Zr2 (Figure IV.6) as an example. First, the learning process only take account

2The input dimensions after each convolution operation are reduced, thus the padding technique is usually applied
to handle this issue (see Section II.2.2)
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xt−3 and xt−4, thus respecting the causal constraint of not using future information. Then, we use

x′′t−3 to create variability (through the subtraction operation) for the padded value x′′′t−2 in Z
(2)
r1 in

the same position (time step). Formally, STConvS2S-R computes the output feature map R of a

temporal reversed block using

R′1:lr =


rnet(ψ(Iu)), if u = 1

rnet(Iu), if 2 6 u 6 lr

(IV.2)

R = ψ(R′) (IV.3)

where lr is the number of RNet layers (rnet) within the temporal reversed block. For the first

layer, I1 is the input sequence X̃ previously defined in Section IV.1, and for the subsequent layers,

I2:lr is the feature map calculated in the previous RNet layer R′lr−1.

The factorized convolutional layers in RNet are defined as in Equation IV.4, where W̄r1:2 and

br1:2 are the learnable weight tensor and bias term, respectively, ∗ denotes a convolution operator

and g(·) is a non-linear activation function. Ir1:2 determines the inputs for the two convolutional

layers in RNet. Specifically for the second layer, Ir2 = [Ir1(e)], t̄ 6 e 6 T in which e represents the

e-th elements of Ir1 in the time dimension. Thus, We use a part of the input for the second layer,

since we only need to create variability for padded values in the output feature map of the first

convolutional layer.

Zr1:2 = g(W̄r1:2 ∗ Ir1:2 + br1:2) (IV.4)

The final output feature map of the RNet R′ is calculated as in Equation IV.5, where ⊕ denotes

a concatenation operator in the time dimension, Z
(1)
r1 = [Zr1(i)], 1 6 i 6 T − t̄ and Z

(2)
r1 = [Zr1(j)],

t̄ 6 j 6 T in which i and j represent i-th and j-th elements of Zr1 in the time dimension.

R′ = Z(1)
r1 ⊕ (Z(2)

r1 − Zr2) (IV.5)

IV.2.3 Spatial Block

The spatial block is built on top of the temporal block and has a similar structure with batch

normalization and LeakyReLU as non-linearity. In contrast, each 3D convolutional layer of this

block extracts only spatial representations since kernel decomposition allows us to analyze the

spatial and temporal contexts separately. In the STConvS2S, each feature map generated has a

fixed-length in H ×W dimensions and, to ensure this, the input in the spatial block is padded

following p = ks−1
2 , where ks is the size of spatial kernel. This design choice differentiates our
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model from 3D encoder-decoder architecture [Racah et al., 2017], which needs to stack upsample

layers after all convolutional layers, due to the downsampling done in the latter.

IV.2.4 Temporal Generator Block

In addition to ensuring that our model satisfies the causal constraint, another contribution of

our work is generating output sequences with longer lengths than the length of the input sequence.

When CNNs are used for sequence-to-sequence learning, such as multi-step forecasting, the length

of the output sequence must be the same size or shorter than the input sequence [Gehring et al.,

2017; Bai et al., 2018]. To tackle this limitation, we designed a component placed on top of the

spatial block used when the task requires a more extended sequence (e.g., from the previous 5 grids,

predict the next 15 grids). First, we compute the intermediate feature map G′:

G′1:lgt
= tconv(I1:lgt

) (IV.6)

where lgt =
⌈
T ′′−T

2T

⌉
is the number of transposed convolutional layers (tconv) necessary to guarantee

that G′ has the size of time dimension TG′ > T ′′ − T . The kernel size, stride and padding of tconv

are fixed and extend the feature map by a factor of 2 in time dimension only. For the first layer,

I1 is the output of the spatial block S and for the other layers, I2:lgt
is the feature map calculated

in the previous layer G′lgt−1. Follow, given G′ and S, we can compute G′′:

G′′ = ρ(S ⊕G′) (IV.7)

In the equation above, ⊕ denotes a concatenation operator in the time dimension and ρ(·) is a

function to ensure that the feature map G′′ matches exactly the length T ′′ of the desired output

sequence. Figure IV.7 illustrates the feature maps used in Equation IV.7. Notice that we initially

preserve the output of the spatial block S, which contains the learning patterns from the early layers

of the architecture, and we use the transposed convolutional layer to extend the time dimension,

generating G′.

Finally, the output feature map G of this block can be defined as

G1:lgc = g(W̄1:lgc ∗ I1:lgc + b1:lgc ) (IV.8)

where lgc =
⌊
T ′′

T

⌋
is the number of convolutional layers that use factorized kernels as in the

spatial block. W̄1:lgc and b1:lgc are the learnable weight tensor and bias term, respectively, in lgc

layers, ∗ denotes a convolution operator and g(·) is a non-linear activation function. For the first

convolutional layer, I1 is G′′. Unlike the temporal and spatial block, where the number of layers

is a defined hyperparameter to execute the model, in the temporal generator block lgt and lgc are
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calculated based on the length T ′′ of the desired output sequence and the length T of the input

sequence (the size of time dimension).

Figure IV.7: Feature maps in the Temporal Generator Block. Feature map S is the output of the
spatial block, and G′ is the main point of this block - to extend the sequence so that the sequence
predicted at the end of the STConvS2S architecture meets the length T ′′.
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Chapter V Experiments

We perform experiments on two publicly available meteorological datasets containing air tem-

perature and precipitation values to validate our proposed architecture. We start by detailing the

environment built to perform these experiments, providing information about the hardware and

software settings (Section V.1). We also explain the datasets (Section V.2) and the evaluation

metrics adopted to compare the models (Section V.3). Further, we describe the main results of

the experiments for each dataset (Section V.4 and V.5) and present the results of ablation studies

(Section V.6).

V.1 Hardware and Software settings

Deep learning experiments were conducted on a server with a single Nvidia GeForce GTX1080Ti

GPU with 11GB memory. We executed the ARIMA methods on 8 Intel i7 CPUs with 4 cores and

66GB RAM. We use PyTorch1, an open source machine learning framework, in version 1.0 with

Python 3.6 and CUDA 10.0 to implement and run the deep learning experiments. PyTorch is

developed by Facebook’s AI Research lab (FAIR) and enables fast experimentation due to its

ecosystem of tools and libraries. Our source code is publicly available at https://github.com/

MLRG-CEFET-RJ/stconvs2s.

For baselines, we use statsmodels2 in version 0.9, which is a Python package that provides

classes and functions for the estimation of many statistical models. Another relevant package is

xarray3, used in version 0.11 to manipulate and analyze the spatiotemporal dataset in netCDF44

format. Our datasets can be downloaded at http://doi.org/10.5281/zenodo.3558773, an open

source online data repository.

1https://pytorch.org
2https://www.statsmodels.org
3http://xarray.pydata.org
4https://www.unidata.ucar.edu/software/netcdf/

https://github.com/MLRG-CEFET-RJ/stconvs2s
https://github.com/MLRG-CEFET-RJ/stconvs2s
http://doi.org/10.5281/zenodo.3558773
https://pytorch.org
https://www.statsmodels.org
http://xarray.pydata.org
https://www.unidata.ucar.edu/software/netcdf/
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(a) CFSR-temperature dataset (b) CHIRPS-rainfall dataset

Figure V.1: Spatial coverage of the datasets used in all experiments. (a) It shows the selected grid
on January 1, 1979 with air temperature values.(b) It shows the selected grid of the sequence on
March 31, 2019 with rainfall values.

V.2 Datasets

CFSR5 is a reanalysis6 product that contains high-resolution global land and ocean data [Saha

et al., 2014]. The data contain a spatial coordinate (latitude and longitude), a spatial resolution of

0.5 degrees (i.e., 0.5◦×0.5◦ area for each grid cell) and a frequency of 6 hours for some meteorological

variables, such as air temperature and wind speed.

In the experiments, we use a subset of CFSR with the air temperature observations from January

1979 to December 2015, covering the space in 8◦N-54◦S and 80◦W-25◦W as shown in Figure V.1

(a). As data preprocessing, we scale down the grid to 32 × 32 in the H and W dimensions to fit

the data in GPU memory. The other dataset, CHIRPS7, incorporates satellite imagery and in-situ

station data to create gridded rainfall times series with daily frequency and spatial resolution of

0.05 degrees [Funk et al., 2015]. We use a subset with observations from January 1981 to March

2019 and apply interpolation to reduce the grid size to 50 × 50. Figure V.1 (b) illustrates the

coverage space 10◦N-39◦S and 84◦W-35◦W adopted in our experiments.

CFSR dataset has no missing values and, as CHIRPS dataset has only continent data, to make

this dataset capable of being trained on grid-like models, it was necessary to imput the missing

values from the ocean. We adopt as an imputation strategy the filling with the most frequent value

(zero, in this case, for the rainfall dataset). As a final strategy, we apply a mask (continental data

filled with 1 and ocean data filled with 0) to the predicted data generated by the models in order

not to consider the ocean forecast when calculating the loss.

5https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
6Scientific method used to produce best estimates (analyses) of how the weather is changing over time [Fujiwara

et al., 2017].
7https://chc.ucsb.edu/data/chirps

https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://chc.ucsb.edu/data/chirps
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Similar to Shi et al. [2015], we define the input sequence length as 5, which indicates the use

of the previous five grids to predict the next T ′′ grids. Thus, the input data shapes to the deep

learning architectures are 5×32×32×1 for CFSR dataset and 5×50×50×1 for CHIRPS dataset.

The value 1 in both dataset shapes indicates the one-channel (in this aspect similar to a grayscale

image), 5 is the size of the sequence considered in the forecasting task, and 32 and 50 represent the

numbers of latitudes and longitudes used to build the spatial grid in each dataset.

We create 54,041 and 13,960 grid sequences from the temperature dataset and rainfall datasets,

respectively. Since we are using a CNN-based architecture to solve a sequence-to-sequence problem,

more specifically multi-step spatiotemporal forecasting, we need to manipulate the data in order

to feed it into a convolutional layer. Taking CHIRPS dataset as example, we transform this

sequence of daily rainfall observations from 1981 to 2019, into several small sequences (samples),

each containing an input-target association, as the type of learning is supervised. Thus, for each

sample, the input is the past T observations, and the target is the future T ′′ observations. Mapping

CNN terminology to the forecasting domain, a convolutional layer with temporal kernel (see Section

IV.2.1) with size of K means that the convolution operation will analyze the input sequence K

time steps at a time.

Finally, we divide both datasets into non-overlapping training, validation, and test set following

60%, 20%, and 20% ratio, in this order. In detail, considering a the index to divide the entire

dataset, the index for the training set can be defined as a ∈ [0, b[, for the validation set as a ∈ [b, d[,

and for test set as a ∈ [d, e[, where b = b0.6× ec and d = b0.8× ec are the split limits (considering

the ratios in our case), and e is the length of the entire dataset before the division. As the name

suggests, the training set is used to train the model, which means learning the patterns in data based

on the space and time contexts. The model must evaluate its predictive accuracy in each iteration

during the learning phase and, for this purpose, the validation set is applied. The validation set

helps us to see whether the model generalizes its learning to unseen data as well or whether it is

overfitting to training data. On the other hand, the test set is not considered during the training

phase. It is used to evaluate the model, which means, to compute only the error without the

backpropagation and optimization process.

Table V.1: Properties of CFSR and CHIRPS datasets

CFSR dataset CHIRPS dataset

Variable air temperature rainfall
Period from Jan. 1979 to Dec. 2015 from Jan. 1981 to Mar. 2019
Frequency of 6 h daily
Size of temporal sequence T = 5 T = 5
Size of spatial coverage H = W = 32 H = W = 50
Samples 54,041 sequences 13,960 sequences
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The adoption of temperature and rainfall datasets in our experimental evaluation relies on the

fact that they are the two main meteorological variables. Research about their spatiotemporal

representation is relevant to short-term forecasting and improves the understanding of long-term

climate variability [Rahman and Lateh, 2017]. However, the proposed architecture is suitable for

other meteorological variables or other domains, as long as the training data can be structured as

defined in Section IV.1. Table V.1 summarizes the properties of the CFSR and CHIRPS datasets

presented throughout this section and Figure V.2 illustrates the example of a small sequence (sam-

ple) for each dataset, highlighting its dimensions.

(a) CFSR sequence (b) CHIRPS sequence

Figure V.2: Example of a sequence for each dataset. In detail, the size of temporal sequence (5)
and the size of spatial coverage.

V.3 Evaluation metrics

To evaluate the proposed architecture, we compare our results against ARIMA models, tradi-

tional statistical approaches for time series forecasting, and state-of-the-art models for spatiotem-

poral forecasting. To accomplish this, we use the two evaluation metrics presented in Equation V.1

and V.2.

RMSE, denoted as Er, is based on MSE metric, which is the average of squared differences

between real observation and prediction. The MSE square root gives the results in the original unit

of the output, and is expressed at a specific spatiotemporal volume as:

Er(T,H,W ) =

√√√√ 1

N

N∑
n=1

∑
t∈T

∑
h∈H

∑
w∈W

[x(t, h, w)− x̂(t, h, w)]2 (V.1)

where N is the number of test samples, x(t, h, w) and x̂(t, h, w) are the real and predicted values

at the location h and w at time t, respectively.
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MAE, denoted as Em, is the average of differences between real observation and prediction,

which measures the magnitude of the errors in prediction. MAE also provides the result in the

original unit of the output, and is expressed at a specific spatiotemporal volume as:

Em(T,H,W ) =
1

N

N∑
n=1

∑
t∈T

∑
h∈H

∑
w∈W

|x(t, h, w)− x̂(t, h, w)| (V.2)

where N , t, h, w are defined as shown in Equation V.1.

The results of these metrics can be very different from each other, as the RMSE (square differ-

ence) penalizes the wildly wrong results more than the MAE (absolute difference).

V.4 CFSR Dataset: results and analysis

We first conduct experiments with distinct numbers of layers, filters, and kernel sizes to inves-

tigate the best hyperparameters to fit the deep learning models. As a starting point, we set the

version 1 based on the settings described in Shi et al. [2015] with two layers, each containing 64

filters and a kernel size of 38. To make fair comparisons using the chosen datasets, we explored

variations of the hyperparameters for our architecture (STConvS2S-C and STConvS2S-R) and the

following state-of-the-art methods: ConvLSTM [Shi et al., 2015], PredRNN [Wang et al., 2017],

and MIM [Wang et al., 2019]. Thus, for versions 2-4, we defined the number of layers (L), kernel

size (K) and the number of filters (F ) in a way that would help us understand the behavior of the

models during the learning process by increasing L (versions 1 and 3), K (versions 2 and 4) or F

(versions 2 and 3). In the training phase, we perform for all models mini-batch learning with 50

epochs, and RMSprop optimizer with a learning rate of 10−3.

We applied dropout after convolutional layers during the training of PredRNN and MIM models

9 to reduce the model complexity and avoid overfitting. Without dropout, these models do not

generalize well for this dataset and make less accurate predictions in the validation set. We adopt

0.5 as the dropout rate for both models after evaluating the best rate employing the grid search

technique, which performed several experiments changing the rate by {0.3, 0.5, 0.8}. Figure V.3

(a) and (b) illustrate the differences in the learning curve, where the former shows a high error on

the validation set early in the training stage for both models, and the latter indicates the learning

curve with dropout applied.

As a sequence-to-sequence task, we use the previous five grids, as we established before in

Section V.2, to predict the next five grids (denoted as 5 → 5). Table V.2 provides the models

considered in our investigation with four different settings, the values of the RMSE metric on the

83 × 3 kernel for ConvLSTM, PredRNN, and MIM. 3 × 1 × 1 temporal kernel and 1 × 3 × 3 spatial kernel for
STConvS2S.

9STConvS2S and ConvLSTM models do not overfit during training on any version.
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test set, the training time, and the memory usage by GPU. The results present the superiority of

version 4, which has the highest values of L and K, reaching the lowest RMSE for all models, except

PredRNN, where version 2 is superior. Another aspect to note is that when increasing the number

of filters (versions 2 and 3) the impact is more significant in the training time than when increasing

the number of layers (versions 1 and 3) for state-of-the-art models, indicating that version 2 is faster

for these RNN-based architectures. This impact is not seen in our models (CNN-based) compared

to version 3, as in versions 1 and 2 they spend almost the same time during training, showing that

STConvS2S models have more stability when increasing the hyperparameters.

Table V.2: Evaluation of different settings on the CFSR dataset for STConvS2S and state-of-the-art
methods, where the best version has the lowest RMSE value.

5→ 5

Model Version Setting RMSE Training time
Memory usage

(MB)

ConvLSTM
[Shi et al., 2015]

1 L=2, K=3, F=64 2.1306 01:49:16 1119
2 L=3, K=3, F=32 2.0090 01:12:16 920
3 L=3, K=3, F=64 1.9607 02:53:00 1358
4 L=3, K=5, F=32 1.8770 01:58:52 922

PredRNN
[Wang et al., 2017]

1 L=2, K=3, F=64 1.7497 06:59:45 3696
2 L=3, K=3, F=32 1.6928 04:55:19 2880
3 L=3, K=3, F=64 1.7004 10:44:25 5242
4 L=3, K=5, F=32 1.7028 06:41:14 2892

MIM
[Wang et al., 2019]

1 L=2, K=3, F=64 1.7623 09:37:07 4826
2 L=3, K=3, F=32 1.7199 07:31:59 4124
3 L=3, K=3, F=64 1.7163 16:27:42 7789
4 L=3, K=5, F=32 1.6621 09:49:40 4145

STConvS2S-C (ours)

1 L=2, K=3, F=64 1.6355 01:16:40 991
2 L=3, K=3, F=32 1.5681 01:22:42 1021
3 L=3, K=3, F=64 1.5459 03:14:25 1554
4 L=3, K=5, F=32 1.3791 02:25:26 1040

STConvS2S-R (ours)

1 L=2, K=3, F=64 1.6001 01:22:57 975
2 L=3, K=3, F=32 1.5384 01:29:18 1000
3 L=3, K=3, F=64 1.5149 03:25:44 1493
4 L=3, K=5, F=32 1.2823 02:13:37 956

To improve the comprehension of the analysis, Figure V.4 highlights the differences between

the performances of RMSE metric and training time for the models. As shown, STConvS2S-R

and STConvS2S-C models perform favorably against the state-of-the-art models for the CFSR

dataset in all versions, demonstrating that our architectures can simultaneously capture spatial

and temporal correlations. Comparing the best version of each model, our models significantly

outperform the state-of-the-art architectures for spatiotemporal forecasting. In detail, STConvS2S-

R (version 4) takes only 1/4 of memory space, is almost 5x faster in training, and has achieved a
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(a) Learning curve - overfitting (b) Learning curve - dropout 0.5

(c) Training curve for all models

Figure V.3: Learning curves after running 50 epochs on temperature dataset (CFSR). (a) To
exemplify, we select version 2 to illustrate the overfitting observed when analyzing the training and
validation curve of PredRNN and MIM models. (b) The same version and models using dropout
to improve its generalization. (c) Comparison of training curve for the best version for each model.
Our models (STConvS2S-R and STConvS2S-C) achieved lower RMSE and thus, better ability to
learn spatiotemporal representations.
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Figure V.4: Comparison between training time in hours (bar plot) and RMSE (line plot) for each
model version on temperature dataset (CFSR).

23% improvement in RMSE over MIM (version 4), the RNN-based model with better performance.

These results reinforce that our models have fewer parameters to optimize than MIM and PredRNN.

Furthermore, our model can be completely parallelized, speeding up the learning process, as the

output of the convolutional layers does not depend on the calculations of the previous step, as

occurs in recurrent architectures. Figure V.3 (c) illustrates that STConvS2S-R has a lower training

error in 50 epochs compared to other models, including STConvS2S-C, proving to be a better

alternative to make CNN-based models respect the temporal order.

To further evaluate our models, we chose the most efficient version for each model to perform

new experiments. For STConvS2S-R, STConvS2S-C, ConvLSTM and MIM models, version 4 was

chosen with 3 layers, 32 filters, and kernel size of 5, and for PredRNN, version 2 with the same

number of layers and filters, but with kernel size of 3. We also included a comparison with two

variations of the ARIMA methods to serve as baseline for deep learning models, since they are a

traditional approach to time series forecasting. The experiment for the baseline takes into account

the same temporal pattern and spatial coverage. Thus, predictions were performed throughout all

the 1,024 time series, considering in each analysis the previous 5 values in the sequence.

In this phase, we have not defined a specific number of epochs for each deep learning model’s

execution. Therefore to avoid overfitting during the training of models, we apply the early stopping

technique with patience hyperparameter set to 16 on the validation dataset. As the models run

with different numbers of epochs, we include the training time/epoch to be able to compare the

time efficiency of the models. We train and evaluate each deep learning model 3 times and compute

the mean and the standard deviation of RMSE and MAE metrics on the test set. This time, we
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evaluate the models in two horizons: 5-steps (5 → 5) and 15-steps (5 → 15). These experiments

are relevant to test the capability of our model to predict a long sequence.

In Table V.3, the results show that all models outperform the random walk model (ARIMA

(0, 1, 0)), and this provides evidence that the temperature forecast does not follow a random be-

havior over time. In detail, STConvS2S-R and STConvS2S-C perform much better than the

ARIMA(5, 0, 1) baseline on RMSE and MAE metrics, indicating the importance of spatial de-

pendence on geoscience data since ARIMA models only analyze temporal relationships. They also

outperform the state-of-the-art models in these evaluation metrics in both horizons, demonstrat-

ing that our models can be efficiently adopted to predict future observations. However, beyond

that, the designed temporal generator block in STConvS2S architecture can convincingly generate

a more extended sequence regardless of the fixed-input sequence length. In a closer look at the

best CNN-based architecture and RNN-based architecture in the task 5→ 15, STConvS2S-R takes

less memory space and is faster than PredRNN. To provide an overview, Figure V.5 illustrates the

cumulative error based on both horizons.

Table V.3: Performance results for temperature forecasting using the previous five observations
(grids) to predict the next five observations (5→ 5), and the next 15 observations (5→ 15).

5→ 5

Model RMSE MAE
Memory usage

(MB)
Mean training

time

Training
time/epoch

ARIMA(0,1,0) 2.3413 1.9777 — — —
ARIMA(5,0,1) 2.1880 1.9005 — — —
ConvLSTM
[Shi et al., 2015]

1.8555 ± 0.0033 1.2843 ± 0.0028 922 02:38:27 00:02:21

PredRNN
[Wang et al., 2017]

1.6962 ± 0.0038 1.1885 ± 0.0020 2880 06:59:34 00:05:52

MIM
[Wang et al., 2019]

1.6731 ± 0.0099 1.1790 ± 0.0055 4145 11:05:37 00:10:43

STConvS2S-C (ours) 1.3699 ± 0.0024 0.9434 ± 0.0020 1040 03:34:52 00:02:48
STConvS2S-R (ours) 1.2765 ± 0.0044 0.8648 ± 0.0051 956 03:26:15 00:02:32

5→ 15

Model RMSE MAE
Memory usage

(MB)
Mean training

time

Training
time/epoch

ARIMA(0,1,0) 2.9241 2.5736 — — —
ARIMA(5,0,1) 2.2481 1.9077 — — —
ConvLSTM
[Shi et al., 2015]

2.0728 ± 0.0069 1.4558 ± 0.0076 1810 5:29:30 00:07:32

PredRNN
[Wang et al., 2017]

2.0237 ± 0.0067 1.4311 ± 0.0149 7415 11:45:48 00:17:03

MIM
[Wang et al., 2019]

2.0287 ± 0.0361 1.4330 ± 0.0250 10673 19:19:00 00:31:19

STConvS2S-C (ours) 1.8739 ± 0.0107 1.2946 ± 0.0061 1457 03:12:24 00:05:17
STConvS2S-R (ours) 1.8242 ± 0.0089 1.2538 ± 0.0070 1373 03:31:46 00:05:23
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Figure V.5: Cumulative error based on both horizons (5 → 5 and 5 → 15) using temperature
dataset (CFSR). Evaluations on RMSE and MAE metrics.

V.5 CHIRPS Dataset: results and analysis

Similar to what we did with CFSR dataset, we divide the experiments into two phases. The

first phase aims to investigate the best hyperparameter settings to adjust the models. In the

second, we take into account the best version of each model and perform experiments with different

initialization values for weight and bias to consolidate the analysis. In detail, we first set the

hyperparameters as in the previous experiments on CFSR dataset. However, as the CHIRPS

dataset is almost 4x smaller, all models overfit with those configurations. Thus, as an initial method

to address this problem, we reduce the models’ complexity by decreasing the number of layers (L)

and the number of filters (F ). However, we ensure fair comparability in the way we analyze the

learning process when changing L (versions 1 and 3), K (versions 2 and 4) or F (versions 2 and

3). Again, all models were trained in mini-batch learning with 50 epochs, and RMSprop optimizer

with a learning rate of 10−3.

Although we reduced the complexity, the overfitting problem remained with PredRNN and

MIM models. We apply dropout to improve their performance in comparison with our proposed

models. As before, we apply a search to find the best dropout rate among 0.2, 0.5, 0.8. Figure

V.6 (a) and (b) show the learning curves of these models with overfitting and with a dropout rate

of 0.5 applied, respectively. Table V.4 shows the experimental results of predicting five grids into

the future by observing five grids (5→ 5). For all models, version 1 with the fewest layers has the

lowest memory usage and was faster in training than the other versions. Another notable analysis

is that version 2 an 4 consume the GPU memory equally for RNN-based models, thus increasing

the kernel size affects only computational time.

Figure V.7 compares these results version by version. STConvS2S models outperform ConvL-
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(a) Learning curve - overfitting (b) Learning curve - dropout 0.5

(c) Training curve for all models

Figure V.6: Learning curves after running 50 epochs on the rainfall dataset (CHIRPS). (a) To
exemplify, we select version 2 to illustrate the overfitting observed when analyzing the PredRNN
and MIM models’ training and validation curves. (b) The same version and models using dropout
to improve its generalization. (c) Comparison of training curve for the best version for each model.
STConvS2S-R achieved lower RMSE and, thus, better ability to learn spatiotemporal representa-
tions.
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Table V.4: Evaluation of different settings on the CHIRPS dataset for STConvS2S and state-of-
the-art methods, where the best version has the lowest RMSE value.

5→ 5

Model Version Setting RMSE Training time
Memory usage

(MB)

ConvLSTM
[Shi et al., 2015]

1 L=1, K=3, F=16 6.4321 00:06:39 746
2 L=2, K=3, F=8 6.4076 00:08:01 756
3 L=2, K=3, F=16 6.3963 00:13:35 989
4 L=2, K=5, F=8 6.3681 00:10:19 756

PredRNN
[Wang et al., 2017]

1 L=1, K=3, F=16 6.2787 00:30:31 1673
2 L=2, K=3, F=8 6.2572 00:34:19 1740
3 L=2, K=3, F=16 6.2638 01:01:00 2775
4 L=2, K=5, F=8 6.2600 00:39:24 1740

MIM
[Wang et al., 2019]

1 L=1, K=3, F=16 6.3126 00:25:32 1447
2 L=2, K=3, F=8 6.2586 00:43:52 2231
3 L=2, K=3, F=16 6.2634 01:19:18 3521
4 L=2, K=5, F=8 6.2626 00:48:00 2231

STConvS2S-C (ours)

1 L=1, K=3, F=16 6.3991 00:06:16 609
2 L=2, K=3, F=8 6.3660 00:08:23 654
3 L=2, K=3, F=16 6.3623 00:12:45 807
4 L=2, K=5, F=8 6.3131 00:13:16 662

STConvS2S-R (ours)

1 L=1, K=3, F=16 6.3881 00:07:03 607
2 L=2, K=3, F=8 6.3592 00:09:16 656
3 L=2, K=3, F=16 6.3490 00:14:30 796
4 L=2, K=5, F=8 6.2269 00:12:54 639

STM with compatible training time on all versions. Comparing the best version of each model (ver-

sion 4 for STConvS2S models and ConvLSTM, and version2 for PredRNN and MIM), STConvS2S-

R has the lowest prediction error and, compared to PredRNN, it is 3x faster and occupies only

1/3 of memory space. Besides, Figure V.6 (c) illustrates training in 50 epochs and indicates that

STConvS2S-R learns the spatiotemporal representation of rainfall better than RNN-based archi-

tectures.

For the second phase, we train the models in the same set up as previously indicated for

the CFSR dataset. We also include ARIMA methods as a baseline and evaluate the proposed

architectures and state-of-the-art models in two tasks: feeding only five observations (grids) into the

network and predicting the next 5 and 15 observations, denoted as 5→ 5 and 5→ 15, respectively.

For both ARIMA models, predictions were performed throughout all the 2,500 time series, and for

ARIMA(5, 0, 1) was considered the previous five values in the sequence in each analysis. Results in

Table V.5 indicate, similarly to CFSR dataset, that the rainfall forecast does not follow a random

behavior against time, since ARIMA(0, 1, 0) (random walk model) was lowest performing model.

Also, demonstrate that STConvS2S-R achieves a better trade-off between computational cost and
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Figure V.7: Comparison between training time in hours (bar plot) and RMSE (line plot) for each
model version on the rainfall dataset (CHIRPS).

Table V.5: Performance results for rainfall forecasting using the previous five observations (grids)
to predict the next five observations (5→ 5), and the next 15 observations (5→ 15).

5→ 5

Model RMSE MAE
Memory usage

(MB)
Mean training

time

Training
time/epoch

ARIMA(0,1,0) 9.5538 8.0628 — — —
ARIMA(5,0,1) 7.4377 6.1694 — — —
ConvLSTM
[Shi et al., 2015]

6.3666 ± 0.0019 2.9074 ± 0.0185 752 00:15:15 00:00:13

PredRNN
[Wang et al., 2017]

6.2625 ± 0.0039 2.7880 ± 0.0110 1740 00:39:59 00:00:43

MIM
[Wang et al., 2019]

6.2621 ± 0.0051 2.7900 ± 0.0178 2231 00:52:13 00:00:52

STConvS2S-C (ours) 6.3091 ± 0.0029 2.8487 ± 0.0280 662 00:15:54 00:00:15
STConvS2S-R (ours) 6.2264 ± 0.0016 2.7732 ± 0.0024 639 00:16:23 00:00:14

5→ 15

Model RMSE MAE
Memory usage

(MB)
Mean training

time

Training
time/epoch

ARIMA(0,1,0) 9.8396 7.1049 — — —
ARIMA(5,0,1) 7.9460 5.9379 — — —
ConvLSTM
[Shi et al., 2015]

6.3244 ± 0.0025 2.8972 ± 0.0264 1308 00:44:30 00:00:33

PredRNN
[Wang et al., 2017]

6.2600 ± 0.0013 2.7850 ± 0.0067 4115 01:53:30 00:01:58

MIM
[Wang et al., 2019]

6.2722 ± 0.0020 2.7935 ± 0.0246 5276 02:48:38 00:02:34

STConvS2S-C (ours) 6.2962 ± 0.0039 2.8452 ± 0.0130 916 00:35:43 00:00:41
STConvS2S-R (ours) 6.2642 ± 0.0018 2.7971 ± 0.0187 928 00:42:50 00:00:40
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Figure V.8: Cumulative error based on both horizons (5→ 5 and 5→ 15) using the rainfall dataset
(CHIRPS). Evaluations on RMSE and MAE metrics.

prediction accuracy than state-of-the-art models in both tasks.

Figure V.8 summarizes these results in an overview of the cumulative error based on the two

forecast horizons. Trained on the rainfall dataset, our proposed architecture equipped with the

temporal reversed block achieves performance comparable to RNN-based architecture. Besides,

it can predict short and even long sequences in the spatiotemporal context. Such a statement is

confirmed by Figure V.9, which shows the observations at each time step for STConvS2S-R and

PredRNN models. STConvS2S-R can predict in the long-term without many distortions since it

presents a predictive result similar to the PredRNN. Given the high variability of rainfall, both

models have difficulties in making an accurate forecast.

V.6 Ablation Study

We conduct a series of ablation studies10, where the goal is to understand our architecture by

removing/changing its main components and observing the impact on the evaluation metrics. For

fair comparisons, we trained all models with the same settings of version 4 for CFSR (see Table

V.2) and CHIRPS (see Table V.4) datasets. Besides analyzing the structure of our model, we also

compare it with three models: vanilla 3D CNN, 3D Encoder-Decoder architecture [Racah et al.,

2017], and a CNN model using (2+1)D blocks [Tran et al., 2018]. In Table V.6 and V.7, the results

of these comparisons are shown on rows 1-3, rows 4-11 show the ablation experiments and on rows

12-13 the proposed models in this work. Following, we discuss the experimental results in detail.

• Removal of the factorized convolutions. In these experiments, there is no separation

in temporal and spatial blocks in our architecture, since this split is only possible due to

10A neuroscience-inspired approach, which was used to uncover structure and organization in the brain [Meyes
et al., 2016].
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Figure V.9: Prediction example on test set of rainfall dataset (CHIRPS). Comparison between the
best CNN-based and RNN-based models: STConvS2S-R and PredRNN, respectively

factorized convolutions. These models in relation to layers are similar to 3D CNN (see Figure

IV.3 (a) and (c)). Removing factorized convolutions from the models underperform the

proposed models in RMSE and MAE metrics (see rows 4 and 12; rows 5 and 13). To reinforce

that the performance gain comes from design options rather than increased model parameters,

we also performed experiments removing the progressive filters from our models (rows 10-11)

for comparison. The models without factorized convolutions still performed worse.

• Removal of the causal constraint. In general, respecting the temporal order is more a

restriction of the problem domain than an additional feature to improve models’ performance.

However, the STConvS2S-R model slightly improves the results on both evaluation metrics

for CHIRPS datasets (comparison between rows 6 and 13 in Table V.7). On the other hand,

the STConvS2S-C model results do not show the same contribution to performance.

• Removal of the temporal block. This experiment analyzes the importance of this com-

ponent in our network since we propose two variations of STConvS2S based on the temporal

block adopted. The results on row 7 indicate that although faster than the proposed models,

this removal has a critical impact on RMSE and MAE, especially for the CFSR dataset.
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• Inverted blocks. Understanding the influence of the temporal and spatial blocks on each

other is not straightforward. Thus, to analyze the model structure, we change the blocks

from (temporal ⇒ spatial) to (spatial ⇒ temporal). Both GPU memory usage and training

time are very similar, comparing each STConvS2S model with the respective inverted version.

Regarding the evaluation metrics, the inverted versions have the worst performance on both

datasets.

• Comparison with baselines methods. There is no significant differentiation among

STConvS2S models and the baselines on the CHIRPS dataset concerning memory usage

and training time. These metrics almost increase twice on the CFSR dataset compared to 3D

CNN and 3D Encoder-Decoder, but as a result, STConvS2S-R achieves a 4% improvement

in RMSE over those same baselines. STConvS2S-R had a favorable or matching perfor-

mance in the results of the experiments on both datasets, except for the MAE metric on the

CHIRPS dataset comparing against (2+1)D Conv. STConvS2S-C does not perform as well

as STConvS2S-R in these comparisons.

• Comparison of strategies to satisfy the causal constraint. The results show the

superiority of STConvS2S-R compared to STConvS2S-C in the evaluation metrics in all the

experiments. The hypothesis of STConvS2S-R to better predict is that this model does not

add extra information in the input before performing the convolution operation on each layer

inside the temporal block (STConvS2S-C add t̄ − 1 elements through zero-padding in the

input). This study demonstrates the relevance of our original method (STConvS2S-R) to

make convolutional layers satisfy the causal constraint during the learning process.
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Table V.6: Quantitative comparison of ablation experiments, baseline methods using 3D convolu-
tional layers, and our proposed models on temperature dataset (CFSR) for 5→ 5 task.

Model
Factorized

Conv.
Causal
const.

RMSE MAE
Memory usage

(MB)
Training

time

1. 3D CNN — — 1.3307 0.9015 578 01:13:54

2. 3D Encoder-Decoder — — 1.3327 0.9291 544 01:11:26
3. (2+1)D Conv X — 1.2944 0.8763 847 01:51:24

4. STConvS2S-C — X 1.4450 1.0068 605 01:39:47

5. STConvS2S-R — X 1.3477 0.9159 620 00:57:22

6. STConvS2S X — 1.2811 0.8645 884 02:00:52

7. STConvS2S* X — 1.6780 1.1828 740 01:14:47

8. STConvS2S-C** X X 1.4152 0.9750 1000 02:15:46

9. STConvS2S-R** X X 1.3052 0.8873 979 02:12:07

10. STConvS2S-C*** X X 1.4218 0.9821 698 01:04:58

11. STConvS2S-R*** X X 1.3315 0.9027 679 01:04:27

12. STConvS2S-C X X 1.3791 0.9492 1040 02:25:26

13. STConvS2S-R X X 1.2823 0.8719 956 02:13:37

* No temporal block
** Inverted (spatial ⇒ temporal)
*** No filter increase

Table V.7: Quantitative comparison of ablation experiments, baseline methods using 3D convolu-
tional layers, and our proposed models on rainfall dataset (CHIRPS) for 5→ 5 task.

Model
Factorized

Conv.
Causal
const.

RMSE MAE
Memory usage

(MB)
Training

time

1. 3D CNN — — 6.2519 2.8519 534 00:09:27

2. 3D Encoder-Decoder — — 6.2540 2.7977 513 00:09:26
3. (2+1)D Conv X — 6.2323 2.7243 660 00:12:09

4. STConvS2S-C — X 6.3310 2.9161 553 00:12:38

5. STConvS2S-R — X 6.2576 2.8009 557 00:09:16

6. STConvS2S X — 6.2281 2.8134 609 00:10:19

7. STConvS2S* X — 6.3539 2.8980 572 00:06:57

8. STConvS2S-C** X X 6.3255 2.8594 656 00:12:10

9. STConvS2S-R** X X 6.2422 2.8342 633 00:12:21

10. STConvS2S-C*** X X 6.3171 2.8418 591 00:10:23

11. STConvS2S-R*** X X 6.2430 2.7996 582 00:10:10

12. STConvS2S-C X X 6.3131 2.8327 662 00:13:16

13. STConvS2S-R X X 6.2269 2.7765 639 00:12:54

* No temporal block
** Inverted (spatial ⇒ temporal)
*** No filter increase
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Chapter VI Conclusions

VI.1 Retrospective Analysis

In this work, we propose a deep learning architecture to model spatiotemporal data, more specif-

ically meteorological variables from South America, for short and long-term predictions. Our goal

was to demonstrate that a 3D CNN-based model is applicable to sequence-to-sequence tasks, such

as multi-step forecasting, and can predict more accurately the weather at the study location than

RNN-based models. To this end, we conduct comparative studies with state-of-the-art methods

[Shi et al., 2015; Wang et al., 2017, 2019] for spatiotemporal predictive learning, and traditional

methods for time series forecasting [Box and Jenkins, 1970]. Based on the outlined objective, it

was not the scope of this dissertation to research the best configurations (optimal values of hyper-

parameter) for our proposed model, neither for state-of-the-art nor the baseline models. Instead,

we perform a fair comparison and use as initial hyperparameters configurations the values defined

in Shi et al. [2015]. Further on, we proposed variations on this initial configuration to observe the

models’ behavior. Two datasets with different distributions were used in the experiments since the

model predictive capability is strongly related to the data.

We implemented a framework using PyTorch 1.0 that builds the deep learning models, runs

the experiments, saves checkpoints for reproducibility, and logs the results. We have performed

1146 experiments since we started monitoring on April 8, 2019, in which 631 were dedicated to

testing the many hypotheses around the structure of our architecture. In detail, at the beginning,

we adopted linear layers1 as final layers. These layers are used to decrease the dimension C of the

final feature map so that it corresponds to the dimension of the ground truth (expected result).

This first decision was made based on CNN architectures commonly applied to image classification,

but after many experiments, the results were not promising for our regression task. Recently, more

studies were conducted to investigate the best location of the new temporal generator block, if

it was in the middle just after the temporal block, or on the top of spatial block at the end of

the architecture. Overall, the high number of experiments shows that, in the machine learning

life-cycle, building the right model requires a lot of trial and error.

1Same as artificial neural network or multilayer perceptron
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VI.2 Contributions

Predicting future information many steps ahead can be challenging, and a suitable sequence-

to-sequence architecture to better represent spatiotemporal data for this purpose is still open for

research. However, RNN-based models have been widely adopted in these cases [Shi et al., 2015;

Wang et al., 2017, 2019]. Previously to this work, CNN-based architectures were not considered

for this task, due to two limitations. Firstly, they do not respect the temporal order in the learning

process. They also cannot generate an output sequence of length that is higher than the input

sequence. Considering these limitations, we proposed STConvS2S, an end-to-end trainable deep

learning architecture. STConvS2S can do spatiotemporal data forecasting by only using 3D con-

volutional layers.

First, we address the problem of causal constraint, proposing two variations of our architecture,

one using the temporal causal block and the other, the temporal reversed block. The former adopts

causal convolution, which is commonly used in 1D CNN. We also introduced a new technique in the

temporal reversed block that makes it not violate the temporal order by applying a reverse function

in the sequence. These implementations are essential for a fair comparison with state-of-the-art

methods, which are causal models due to the chain-like structure of LSTM layers. To overcome the

sequence length limitation, we designed a temporal generator block at the end of the architecture

to extend the spatiotemporal data only in the time dimension.

We further compared our models with state-of-the-art models (ConvLSTM, PredRNN, MIM)

through experimental studies in terms of both performance and time efficiency on meteorological

datasets. The results indicate that STConvS2S models manage to analyze spatial and temporal

data dependencies better since they have achieved superior performance in temperature forecasting.

More specifically, in the first phase of the experiments, STConvS2S-R took only 1/4 of memory

space, was almost 5x faster at training and improved the RMSE metric by 23% compared to MIM

model. In the rainfall forecasting, STConvS2S-R had comparable results with the advantage of be-

ing 3x faster than PredRNN model and occupying only 1/3 of memory space. Based on the results,

STConvS2S could be a natural choice for sequence-to-sequence tasks when using spatiotemporal

data. We evaluate our architecture in the weather forecasting problem, but it is not limited to

this domain. We expect that the results presented in this work will foment more research with

comparisons between convolutional and recurrent architectures.

VI.3 Future work

Some proposals for future work can be explored, as there is space for improvement in terms of

hyperparameter configuration and data manipulation. Firstly, it would be interesting to perform
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an extensive parameter search to obtain better predictive results. Tuning machine learning models

is an arduous and time-intensive task. Thus a possible choice should explore hyperparameters

through automatic optimization methods, such as Random Search [Bergstra and Bengio, 2012] or

Bayesian Optimisation [Klein et al., 2017]. For baselines, the auto.arima function [Hyndman and

Khandakar, 2008] should be considered to search the best values for the parameters p, d and q.

Another important hyperparameter investigation would be to change the padding mode adopted

in the STConvS2S-C architecture. We performed the experiments using PyTorch 1.0, which was

the latest version when this research started. At that time, the only padding mode embedded in the

convolutional layer was the zero-padding. Since version 1.5, released in April 2020, other options

are available, such as the replicate mode 2.

It would be worth searching for ways to decrease the error in the rainfall dataset. Directions may

include applying preprocessing techniques to sparse data and adding data from other geographic

regions. The former is relevant since rainfall data are unbalanced with many periods without rain.

The latter would be helpful to avoid overfitting the models.

Since the dataset size and other characteristics have a notable effect on the results of the

experiments, a suggestion for future work is to use a diverse dataset, which means, to compose the

meteorological dataset with other complementary data such as social and environmental variables.

This extends the work from a univariate problem to a multivariate and can be achieved using the C

dimension presented in the problem statement (Section IV.1). Another variation in the experiments

would be to evaluate the models with longer time intervals to improve the sensitivity analysis.

The domain used to evaluate the architecture can be extended even further so that the model

can predict video, finance or energy consumption. Moreover, a comparison with space-time au-

toregressive integrated moving average model (STARIMA) [Min et al., 2009], a spatiotemporal

statistical approach, should be examined to serve as a strong baseline. Other architectures based

on Transformer [Vaswani et al., 2017] would be an interesting point of investigation and compari-

son. These additional experiments would provide a more comprehensive evaluation to consolidate

our architecture.

Finally, future work should look into more architectures for spatiotemporal data forecasting. A

potential suggestion for this is to apply convolutional layers with attention mechanisms [Gehring

et al., 2017] or tensor decomposition [Bahadori et al., 2014].

2See documentation at https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html#conv3d

https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html#conv3d
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