
EVALUATION OF DATA PREPROCESSING METHODS FOR PREDICTING BRAZILIAN

FLIGHT DELAYS

Leonardo da Silva Moreira

Dissertation submitted to the Postgraduate

Program in of the Federal Center for Tech-

nological Education of Rio de Janeiro, CE-

FET/RJ, as partial fulfillment of the require-

ments for the degree of master.

Advisor: Jorge de Abreu Soares

Co-advisor: Eduardo Soares Ogasawara

Rio de Janeiro,

November 13, 2019



EVALUATION OF DATA PREPROCESSING METHODS FOR PREDICTING BRAZILIAN

FLIGHT DELAYS

Dissertation submitted to the Postgraduate Program in of the Federal Center for Techno-

logical Education of Rio de Janeiro, CEFET/RJ, as partial fulfillment of the requirements

for the degree of master.

Leonardo da Silva Moreira

Examining jury:

President, Prof. D.Sc Jorge de Abreu Soares (CEFET/RJ) (Advisor)

Prof. D.Sc Eduardo Soares Ogasawara (CEFET/RJ) (Co-advisor)

Prof. D.Sc. Eduardo Bezerra da Silva(CEFET/RJ)

Prof. D.Sc. Leonardo Gresta Paulino Murta (UFF/RJ - Universidade Federal Fluminense)

Rio de Janeiro,

November 13, 2019



  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

Ficha catalográfica elaborada pela Biblioteca Central do CEFET/RJ  

  

M838    Moreira, Leonardo da Silva.  

                   Evaluation of data preprocessing methods for predicting 
brazilian flight delays / Leonardo da Silva Moreira – 2019.  

                   123f. + apêndices : il.color. , grafs. ; enc.  

  

  

                   Dissertação (Mestrado). Centro Federal de Educação 
Tecnológica Celso Suckow da Fonseca, 2019.  

                   Bibliografia : f. 115-123.  

                   Orientadores: Jorge de Abreu Soares [e] Eduardo Soares   

  Ogasawara.  

  

                   1. Mineração de dados. 2. Redes neurais (Computação). 3.  

Análise de redes (Planejamento). 4. Teoria da Análise de sistemas.  

5. Predição, Teoria da. 6. Modelos matemáticos. I. Soares, Jorge de 
Abreu (Orient.). II. Ogasawara, Eduardo Soares. III. Título.  

  

  

                                                                                      CDD 006.312  

Elaborada pelo bibliotecário Leandro Mota de Menezes CRB-7/5281  

  

  



DEDICATION
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RESUMO

Evaluation of Data Preprocessing Methods for Predicting Brazilian Flight Delays

Em 2016, as receitas do setor de serviços aéreos do Brasil alcançaram um recorde

histórico de receita de R$ 35, 59 bilhões, transportando 109,6 milhões de passageiros de

acordo com levantamento da Agência Nacional de Aviação Civil (ANAC). Considerando

esse cenário, atrasos nos voos causam vários inconvenientes para as companhias aéreas,

aeroportos e passageiros como ocorreram entre 2009 e 2015, onde cerca de 22% dos

voos domésticos realizados no Brasil sofreram atrasos superiores a 15 minutos. A pre-

visão desses atrasos é fundamental para mitigar sua ocorrência e otimizar o processo

de tomada de decisão de um sistema de transporte aéreo. Particularmente, compan-

hias aéreas, aeroportos e usuários podem estar mais interessados em saber quando

é provável que ocorram atrasos do que a previsão precisa de quando não ocorrerão.

Neste contexto, esta pesquisa apresenta uma avaliação experimental de métodos de pré-

processamento de dados para modelos de classificação de aprendizado de máquina para

a predição dos atrasos aéreos, de forma a identificar quais métodos e combinações destes

métodos podem auxiliar na melhora da predição e dos resultados do classificador sob uma

distribuição desequilibrada de classes de atraso. Para isto a metodologia utilizada inclui a

integração de dados aéreos e meteorológicos, etapas de pré-processamento (limpeza,

transformação, redução e balanceamento) e finalmente a comparação da predição de

dados a partir destes diferentes métodos de pré-processamento. Particularmente, esta

pesquisa contribui com a análise de um espectro de métodos de pré-processamento de

dados quando comparado à revisão bibliográfica, focando especialmente a distribuição

das classes de atraso. Incluem-se entre os objetivos deste trabalho a verificação mais

detalhada em relação aos atributos do classificador, a normalização, discretização e

seleção e extração de recursos, principalmente no que diz respeito à faixa de parâmetros

do filtro. Em comparação aos trabalhos relacionados, com o uso de uma comparação

normalizada das melhorias, foram obtidos resultados até 54,70% superiores em termos

de Acurácia; 4,58% superiores em termos de Precisão; até 63,33% superiores em termos

de Recall; e cerca de 25,38% superiores em termos de F1-Score.

Palavras-chave: Predição;Atrasos Aéreos;Pré-Processamento



ABSTRACT

Evaluation of Data Preprocessing Methods for Predicting Brazilian Flight

Delays

In 2016, revenues from Brazil’s air services industry reached a historical record

revenue of R$ 35.59 billion, carrying 109.6 million passengers according to a survey by the

National Civil Aviation Agency (ANAC). Given this scenario, flight delays cause a number

of inconveniences for airlines, airports and passengers, as occurred between 2009 and

2015, where about 22 % of domestic flights performed in Brazil were delayed by more

than 15 minutes. Predicting these delays is critical to mitigating their occurrence and

optimizing the decision-making process of an air transport system. In particular, airlines,

airports and passengers may be more interested in knowing when delays are likely to

occur than the precise forecast of when they will not occur. In this context, this research

presents an experimental evaluation of data preprocessing methods for machine learning

classification models for the prediction of flight delays, in order to identify which methods

and combinations of these methods can assist in improving prediction and classifier results

under an unbalanced distribution of delay classes. For this the methodology used includes

the integration of flight and weather data, preprocessing steps (cleaning, transformation,

reduction and balancing) and finally the comparison of data prediction from these differ-

ent preprocessing methods. In particular, this research contributes to the analysis of a

spectrum of data preprocessing methods as compared to the literature review, focusing in

particular on the distribution of delay classes. The objectives of this work include more

detailed verification regarding the attributes of the classifier, normalization, discretization,

selection and extraction of resources, especially with regard to the filter parameter range.

In comparison to the related studies, with the use of a normalized improvement, results

were obtained up to 54.70% superior in terms of Accuracy; up to 4.58% higher in Precision

terms; up to 63.33% higher in terms of Recall; and results about 25.38% higher in terms

of F1-Score.

Keywords: Prediction; Flight Delays; Preprocessing
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Introduction

Brazilian aviation is administered and regulated by the Civil Aviation Secretary

through INFRAERO (Brazilian Airport Infrastructure Company) and ANAC (National Civil

Aviation Agency) bodies responsible for the administration and regulation of flights in

Brazilian airspace. Besides, they concentrate most of the data on civil aviation, providing

an appropriate database to build a panorama of the Brazilian air sector concerning the

number of passengers, aircraft, and other aspects of the main airport units in the country.

In 2016, revenues from Brazil’s air services sector reached a historical record of

revenue of R$ 35.59 billion [ANAC, 2016]. Considering domestic and international flights,

Brazilian and foreigners companies carried 109.6 million passengers paid in 2016 [ANAC,

2016, 2017]. It is estimated that in the medium and long-term (up to 2030), given the

projected growth, the total number of passengers will increase from 130 million to 310

million passengers a year [BNDES, 2010].

Delay is one of the key performance indicators of any transportation system. A

flight delay shall be represented by the difference between the programmed time and the

actual time of departure or arrival of a flight [ANAC, 2016, 2012]. Given the uncertainty of

its occurrence, many passengers are forced to reschedule their travels in order to arrive

at the destination on time, which often leads to increased travel costs [Britto et al., 2012].

Thus, methods of predicting flight delays are fundamental to mitigate their occurrence, and

therefore reduce the costs generated.

In the commercial aviation scenario, delays have a high financial impact on airlines,

such as fines, additional operating costs, and declining customer loyalty. Also, given the

uncertainty of their occurrence, many passengers are forced to reschedule their travels to

arrive at the destination on time, which often leads to increased travel costs.

In Brazil, in 2016, the percentage of cancellations was 10.5% of total scheduled

flights, while 6.2% of flights performed were delayed by 30 minutes or more, and 2.5%

were delayed by 60 minutes or more. Thus, 11.8% of scheduled domestic flights were

canceled, 5.9% of the flights were delayed by more than 30 minutes, and 2.2% were

delayed by more than 60 minutes.

A large volume of data has been collected in databases of public and private
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institutions for studying and understanding the operations of the air transport system.

Analysis of this large amount of data, such as a big data problem, allows us to gain

the knowledge needed to detect and predict delays. This process of prediction, which

presentation of a repertoire of data, makes it possible to perform in different types of the

prediction, especially that refers to the label [Han et al., 2011]. In this context, there are

several analyzes, which involve domain comprehension, the relationship between the data,

and the application of models to solve the problem [Sternberg et al., 2016; Dhar, 2013;

Jagadish et al., 2014; Matsudaira, 2015].

Although there are these public databases and regulations regarding the disclosure

of cases of delays and cancellations, there are few studies that aim to analyze the

conditions that generate delays and cancellations regarding data science. The lack of jobs

in the area causes many airlines, airports, and investors to make decisions that may not

consider all the factors associated with delays [Sternberg et al., 2016].

In this scenario, the objective of this work is to perform an experimental evalua-

tion of data preprocessing methods, especially normalization, categorical mapping, and

discretization, with the objective of optimizing the accuracy, sensitivity, and F1-Score of

the prediction models, considering all the factors involved and collected by the dataset.

Any improvement on this topic can be beneficial to airlines, airports, and passengers. For

this, a preprocessing methodology will be used for data mining, including the evaluation of

classification in two types of machine learning.

This research contributes by exploring a broader spectrum of data preprocessing

methods for building machine learning models. Although flight delay prediction is an

open problem, our results indicated the need for balanced training data. Workflows

were assembled with different combinations of data transformation techniques to perform

the tests to generate classification models. Given the imbalance of the data, balancing

techniques and classification threshold definitions were applied. These workflows were

observed for the accomplishment of numerous experiments that verified the effectiveness

of the techniques.

The experimental evaluation was conducted using a dataset that flight operations

information from ANAC (2016), and weather information from The Weather Company

(2016). The dataset was made available by Ogasawara (2018), containing aviation data

from January 2009 to December 2017. Many data preprocessing methods were applied in

combination with machine learning classification models. Their performance evaluation
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regarding delay prediction was preliminarily analyzed.

Compared with the original workflow, without any transformation, results were

obtained with much higher performance, with improvements of 130% in F1-Score and

more than 40% improvement in the results obtained in Accuracy and Sensitivity.

Besides this introduction, this work is structured as follows. Chapter 1 refers to

the theoretical foundation. In this chapter, the concepts related to preprocessing and

machine learning are presented. Chapter 2 presents a literature overview of prediction and

classification in flight delays that uses preprocessing techniques and model classification.

Chapter 3 presents the methodology used to carry out the work, pointing out each

stage of preprocessing steps applied to the dataset and workflow experiments performed

for the creation, training, testing, and evaluation of the models. Chapter 4 presents the

results of testing and comparison of data obtained on experiments. On the final, the

Conclusion presenting some considerations with the proposed future step for this work.
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1- Background

The process of Knowledge Discovery in Databases (KDD) was created in 1989

as a reference to the domain of knowledge in data mining (Data Mining), referring to any

process of finding useful knowledge of data, while Data Mining refers to the application of

algorithms to extract models of the data[Fayyad et al., 1996; Macedo and Matos, 2010].

Six stages represent KDD Process, organized From Data to Knowledge, as de-

picted in Figure 1: Problem Specification, Problem Understanding, Data Preprocessing,

Data Mining, Evaluation, Result Exploitation [Garcı́a et al., 2016].

Figure 1 – KDD Process. Adapted From: [Garcı́a et al., 2016]

The project starts specifying the problem stage, where it is necessary to understand

the problem, the definition of objectives (mining problems), and the requirements of

a business perspective [Fayyad et al., 1996]. This stage, in addition to the selected

data understanding, also comprises an associated specialized knowledge to achieve a

somewhat higher degree of reliability, with a rework reduction.

During preprocessing problem, a number of tasks such as data cleaning (how

to deal with noise removal and inconsistent data), data integration (where multiple data

sources can be combined in one), data selection (giving higher relevance to data), data

transformation (how to deal with the format of the data, adjusting it), data reduction
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(decreasing dimensionality from data making them more significant), and data balancing

(how to deal with class data distribution) are applied [Garcı́a et al., 2016].

Often confused with KDD, which refers to the whole process of knowledge discov-

ery, data mining is a stage of this process, combining statistical analysis, machine learning,

and data management to extract information from datasets [Thuraisingham, 2000]. Each

data mining technique serves, depending on the modeling objective, to a different purpose

[Han et al., 2011].

Finally, we have the last two stages of this process: evaluation, which includes

the estimation and interpretation of the standards mined in the previous stage; and result

exploitation, which from the evaluation performed, can extract the knowledge.

1.1- Data Preprocessing

The presence of noise, redundant data, missing data, inconsistencies, and data

in large sizes and dimensions usually influences datasets. Such factors can dramatically

reduce the performance of data mining. These threats reinforce that the Data Preprocess-

ing step is one of the most important in the KDD process. Typically, this stage requires

more than 60 % of the total project time [Press, 2016]. It exemplifies the importance of

data quality to meet the desired requirements, including factors such as accuracy, integrity,

consistency, timeliness, credibility, sensitivity, and interpretability [Aggarwal, 2015; Han

et al., 2011]. After data collection, this phase includes integration, selection, cleaning,

transformation, reduction, and balancing procedures, as exhibited in figure 2.

Figure 2 – Data Preprocessing.
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1.1.1 Integration and Selection

The Integration stage, as demonstrated in Figure 25, permits the integration of

different databases (multiple autonomous systems and heterogeneous data sources) in

order to create a unified dataset for a complete data analysis [Han et al., 2011; Lenzerini,

2002; Halevy et al., 2006].

If the data integration phase disregards semantic heterogeneity and structure of

data, redundancies and inconsistencies might appear, resulting in accuracy and speed

decrease [Han et al., 2011; Garcı́a et al., 2016].

A practical example of data integration, as shown in Figure 25, refers to the flight

data integration. For each flight record (arrival and departure), the process looks for

historical data concerning the climatic conditions through the web service of Weather

Underground (WU). To each of flights and climatic conditions, this stage uses data of

departure (date and time expected) and arrival (date and time expected), resulting in

integrated base VRA-WU.

Figure 3 – Data Integration Example

Properly performing the data integration phase, dismissing semantic heterogene-

ity, and structure of data, the probability of redundancies and inconsistencies reduces

substantially, resulting in accuracy and speed decreasing [Han et al., 2011; Garcı́a et al.,

2016].
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Data Selection

Sometimes it may be necessary when performing the integration in a large set of

data and attributes, the use of selection technique as a form of redundancy reduction, or

even for the relevance concentration [Han et al., 2011; Rahm and Do, 2000].

Commercial aviation problems commonly employ data selection techniques; for

example, from the flight frequency at a given airport [Sternberg et al., 2016].

In the context of commercial aviation (main airports, for example), sampling tech-

niques can reduce the number of tuples, using methods as stratified samplings, quartiles,

histograms, and Pareto [Xiong and Hansen, 2013; Rebollo and Balakrishnan, 2014].

1.1.2 Cleaning

Even after the data integration phase, errors may still exist in the dataset. This

cleanup routine aims to correct these types of problems by filling in missing values,

smoothing noisy data, identifying or removing outliers, and solving inconsistencies [Garcı́a

et al., 2016]. Hence, the data cleansing process is crucial, filtering incorrect data for the

data set and processing, because dirty data may noise the mining procedure, resulting in

unreliable output. It also can overload subsequent mining routines, although most mining

routines have some procedures to deal with incomplete or noisy data [Han et al., 2011;

Garcı́a et al., 2016].

Inconsistent Data Entries and Duplication

Essential methods can remove or correct inconsistent entries. It includes incon-

sistency detection (when the data is available from different sources in different formats);

domain knowledge (a significant amount of knowledge referring to attributes or rules

ranges - that specify the relationships across different attributes); or data-centric methods
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(when the statistical behavior of the data is used to detect outliers) [Han et al., 2011; Rahm

and Do, 2000].

Figure 4 presents flight data discrepancies concerning values referring to the

flight spent time. For example, negative time (−830) and duration over 24h denotes

inconsistency.

Figure 4 – Flight Duration Example - Inconsistency and Outlier

Redundancy can lead to duplication, especially with denormalized data, commonly

used to accelerate processes involving join operations. This problematic duplication can

be a source of inconsistency [Silberschatz et al., 2016; Garcı́a et al., 2016].

The following step after data set integration is to check data errors. Data collected

on a day-to-day basis tend to be incomplete, containing noises and inconsistencies. As

the purpose is to use the data to generate classification models, data must be complete,

correct, and compatible with reality to prevent the classifier’s performance from being

adversely affected. Hence, the cleanup step prepares data to use, either by identifying

and removing outliers, by smoothing noisy data, or by filling in lost values [Han et al.,

2011; Rahm and Do, 2000]. For this, there are methods to remove or fix as missing and

inconsistent data entries.
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Missing Data Entries

Missing data is a common problem faced by preprocessing data step. Various

reasons may cause this situation, such as user response lack, storage problems, among

others [Schafer and Graham, 2002].

Missing data mechanisms are classified as missing completely at random (MCAR),

missing at random (MAR), and missing in non-Random (NMAR)[Little and Rubin, 1989].

In MCAR, the reason that caused the problem is the loss of power of the analysis. In MAR,

the completed variables can explain the missing values. Regarding NMAR, the missing

non-measurable data depends only on the missing attribute, revealing as the most severe

form of missing data Soares [2007].

Some of the methods used to treat such missing data involve the removal or

replacement of missing data.

There are methods to deal with lost data, as shown in figure 5. These can be

divided into categories such as the exclusion of selected cases of variables, consisting

of the straightforward deletion of data that contains missing values (such as listwise and

pairwise, with a disadvantage of lead to possible biased parameter estimates); and data

imputation(which aims to replace missing values with more plausible values in order

to infer the information of the variables in that incomplete cases) where methods fill in

missing values given the others the available data. A consequence of imputation is that

the deviation in mean imputation decreases the variation in the data set. Mainstream

imputation methods include case substitution, mean substitution, hot deck, regression,

multiple imputations, and closest neighborhood imputation [Andridge and Little, 2010;

Schafer and Graham, 2002].

Appropriate methods to process lost data tend to present satisfactory results even

if the missing data are not originated by purely measurable factors [Brick and Kalton, 1996;

Little and Schenker, 1995].
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Figure 5 – Handling Missing Data.

Figure 6 – Missing Data Example.

Redundancy

Redundancy caused by an attribute derived from another one should be an avoided

problem because it can increase the size of the resulting dataset [Han et al., 2011]. Cor-

relation analysis can detect redundancies. Given two attributes, the implication between

them is calculated based on availability. The chi-square test is appropriated to use in

nominal data. Numerical attributes demand correlation coefficient and co-variance, to

evaluate variations of the value.



24

1.1.3 Transformation

The Transformation stage is responsible for transforming and consolidating data

in an appropriate format, facilitating the data mining process and the understanding of

hidden data patterns [Han et al., 2011]. The data transformation strategies used in this

study are the Min-Max and Z-score normalization, Conceptual Hierarchy, Smoothing, and

Categorical Mapping.

Normalization: Min-Max and Z-score

Normalization transforms the scale of the values of an attribute so that they fit

into a new range. For example, because the unit of measurement used can affect data

analysis, changing the unit of measurement from miles to miles can lead to different results.

Therefore, to avoid using the unit of measures, the data should be normalized [Rissanen,

2001].

Normalization transforms data to a range, usually [0.0, 1.0] or [−1.0, 1.0], a very

important process for classification algorithms such as neural networks or k-neighbors. It

increases the speed of the learning phase and prevents attributes with distorted (very high

or small) initial values, such as income, overlap attributes, and binary attributes [Garcı́a

et al., 2016].

Min-Max normalization is one of the standardization methods that apply a linear

transformation in the original data, where the minimum value, minA, and the maximum

value, maxA, are used to transform each value vi of an attribute A to a value v′i, in the new

interval [newMinA, newMaxA], as shown in the following equation 1 [Ogasawara et al.,

2009], and exemplified in figure 7.

Min-max normalization is not useful or cannot be applied if minimum or maximum

values of attribute A are not known. Although the minimum and maximum values are

available, the presence of outliers can influence the min-max normalization by grouping

them and limiting the digital precision available to represent the values [Garcı́a et al.,

2016]. In normalization Z-score (or zero-mean normalization), the values for an attribute,
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A, are normalized based on the mean and standard deviation of A. A value, vi, of A is

normalized to vi′ by computing, as shown in equation 2 [Al Shalabi and Shaaban, 2006]

and exemplified in figure 8.

v′i =
vi −MinA

MaxA −MinA

· (NewMaxA −NewMinA) +NewMinA (1)

v′i = (vi −A)/(∂a) (2)

Figure 7 – Min-Max

Figure 8 – z-score
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Conceptual Hierarchy

The Conceptual Hierarchy is a preprocessing technique of the transformation stage.

The objective is to transform an attribute in n other attributes, exploiting a hierarchical

division among them.

This technique does not fit into one procedure step. It can also be used for the

reduction step, replacing the original data by a smaller number of intervals and concepts

representing them. It also simplifies the original data and makes the data mining process

more efficient [Chan, 1998].

Nominal attributes have a finite number of distinct values without order between

them, with many hierarchies implicit in the database schema. Concept hierarchies can be

used to transform data at various levels of granularity, as demonstrated in Figure 10.

Discretization

The Smoothing technique is used to correct noises in data, generated by some

random error or an unusual variation obtained in the variable measurement. These

methods soft a data sample noise by querying the closest values and distributing them

in several ”buckets” or boxes. Because smoothing methods query neighboring values

for noisy values, they do a local smoothing on the data [Han et al., 2011]. Figure 9

demonstrates this technique.

Figure 9 – Smoothing
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Figure 10 – Conceptual Hierarchy.

Categorical Mapping

Some machine learning methods need to use categorical attributes before usage.

Assume a categorical attribute with n distinct values. The basic idea is to produce n

derived binary attributes. Since n can be higher, many advanced approaches reduce

the original 1-to-n mapping problem to a 1-to-k mapping problem with k � n. For this

purpose, the cardinality of the data is first reduced by grouping individual values into k sets

of values. Then each set is represented by a binary derived input, identifying the group

the value belongs, and then the corresponding definition in the numerical representation.

Original attribute needs to be grouped by values that present similar target statistics to

become effective [Micci-Barreca, 2001]. Figure 11 demonstrates the use of this method.

Figure 11 – Categorical Mapping.
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1.1.4 Feature Selection and Extraction

Dimensionality impacts data differently depending on the following DM task or

algorithm. The reduction step can create a shortened representation of the data set and

still produce the same analytical result. A set of data to be analyzed can contain several

attributes. However, some of them may be irrelevant during the mining process, or even

redundant [Han et al., 2011]. For example, to classify airline companies based on flight

delays, attributes such as flight numbers tend to be irrelevant, unlike starting delay time or

real departure time, which are attributes that can add value to the analysis.

Some tasks to data reduction step are known as Feature Extraction (when a

function calculates new features based on the original ones); and Feature Selection

(where chooses an optimal subset according to a criterion).

The data reduction strategies used in this study for Feature Selection are LASSO,

Information Gain (IG), Attribute Selection based on Correlation (CFS), and Principal

Component Analysis (PCA) for Feature Extraction.

Figure 12 – Feature Selection
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Figure 13 – Feature Extraction

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) is a powerful two-tasks

method (regularization and selection) which involves penalizing the absolute size of the

regression coefficients and having as its primary objective to minimize the prediction error

[Hastie et al., 2009].

This method performs a restriction on the sum of the absolute values of the model

parameters, with the sum smaller than an upper limit. Hence, the method applies a

shrinking process, also called regularization, where regression coefficients penalized,

reducing some of them to zero. It also holds some of the favorable selection properties of

both subsets, revealing the boundary regression stability [Tibshirani, 2011].

Supposing the data (xi, yi), i = 1, 2, ...N , where xi = (xi1, ...xi1)
T are predic-

tor variables and yi is the response. Assume xij as standardized so that
∑

i xij/N =

0,
∑

i x
2

ij/N = 1.

Letting β̂ = (β̂1...β̂p)
p, the lasso estimate (α, β̂) is, according to Tibshirani [2011],

defined by:

(α̂, β̂) = argmin
N∑

i=1

(yi − α−
∑

βjxij)
2 subject to

∑

j

|βj | ≤ t (3)

where t ≥ 0 is a tuning parameter.
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Information Gain

Information Gain is a method that individually evaluates the accretion of each

attribute. For an attribute, it is defined as the difference between entropy before and after

the distribution of the data [Witten et al., 2011].

The use of this method makes it possible to obtain attributes that minimize the

amount of information needed to classify the data. It is used to select the essential

attributes, i.e., those that have the least entropy. It allows the treatment of the missing

values separately, or to distribute counts to each other in proportion to their frequency

[Quinlan, 1986].

To calculate the Information Gain (IG), firstly is necessary to calculate the entropy,

computing the quality of a single (sub)set of examples corresponds to a single value, as

shown in Equation 4.

E(D) = −
m∑

i=1

pilog(pi) (4)

where pi represents the probability that an object in D belongs, and E(D) represents

the average amount of information needed to find out the class label of an object in partition

D.

After that, it is necessary to compute the weighted average over all sets result-

ing from the split. I(D) represents the simplification of computation of average entropy

(information), represented in equation 5.

I(D) =

v∑

j=1

Dj

D
E(Dj) (5)

where
Dj

D
represents the weight of the jth partition.

Finally, IG is the difference between the original information before splitting or

partitioning, E(D); and the new Information, I(D), obtained after partitioning on A, as given

in the equation below.

IG(A) = E(D)− I(D) (6)

In other words, equation 6 calculates how much would be gained by branching on
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A. It represents the expected reduction in the information requirement caused by knowing

the value of feature A.

CFS

The CFS is a simple filter algorithm that classifies subsets of attributes according

to a heuristic evaluation function based on the correlation. The bias of this function is for

subsets that contain attributes that are highly correlated with the class and uncorrelated to

each other [Hall, 1998].

Irrelevant attributes should be ignored because they will have a low-class correla-

tion. The strong correlation with one or more remaining attributes recommends avoiding

the redundant attributes. Accepting an attribute will depend on the extent to which it

predicts classes in areas of space not already provided by other attributes [Hall, 1998].

CFS is given by equation 1.1.4:

rzc =
kr̄zi√

k + k(k − 1)r̄ii
(7)

where the number of features, r̄zi is the average of the correlation between feature-class

and r̄ii is the average inter-correlation between each pair of features [Hall, 1998].

PCA

The Principal Component Analysis (PCA) is a mathematical algorithm that reduces

the dimensionality of the data, preserving most of the variation in the dataset [Jolliffe,

2002]. PCA combines the essence of attributes by creating a smaller set of variables

[Han et al., 2011]. Moreover, from points in n-dimensional space, it presents patterns of

similarity between observations and variables.

Its purpose is to extract the critical information from the data and express it as a

set of new orthonormal variables, called Principal Components (PC), as shown in Figure

14. For this, the following process is performed: (i) normalization of the input data; (ii)
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the calculation of the main components; (iii) the ordering of the significant components

in descending order of significance or force; (iv) reducing the size of the data from the

elimination of the more ineffective components, i.e., those with the smallest variance [Han

et al., 2011].

Cij =
1

n− 1

n∑

m−1

(Xim −Xi)(Xjm −Xj) (8)

where

Cij covariance of the variable i and j
∑n

m−1 the sum of all n objects

Xim value of the variable i in object m

Xi means of variable i

Xjm value of variable j in object m

Xjmeans of variable j

All eigenvectors are orthogonal (perpendicular). Hence, data is a linear com-

bination of these vectors. The factor (value) multiplied to each vector is known as an

eigenvalue.

The significant components are obtained by eigenvalues of the covariance matrix

C, as presented in equation 9.

Cvi = λivi (9)

The covariance matrix of the original data vectors X (represented by C and λi),

refers to the eigenvalues of matrix C,vi and corresponds to eigenvectors.

Considering Ek = [v1, v2, v3....vk] and Λ = [λ1, λ2, λ3....λk], having CEk = EkΛ

obtains:

XPCA = ET
KX (10)

The number of characteristics of the data matrix original X is reduced by mul-

tiplication with the matrix ET
K , which has eigenvectors k corresponding to the highest

eigenvalues k. The result of the array is XPCA.
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Figure 14 – PCA Example.

1.1.5 Data Sampling

Sampling can be used as a data reduction technique because it allows us to

represent a large dataset using a sample of random data, or subsets, much smaller [Lantz,

2013]. The sample formation depends on the type of approach adopted.

Random Sampling consists of creating a subset where each tuple belonging to a

dataset has the same probability of being selected to compose it. The Stratified Sampling

consists of separating the dataset into mutually disjoint parts, called strata, extracting

then a sample from each stratum generated [Han et al., 2011]. Thus, Stratified Sampling

creates a reduced set of data that attempts to maintain the same ratio between the existing

classes in the original dataset.
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1.1.6 Balancing

A widespread problem in data mining is the class assignment in the dataset since

inadequate distribution can induce the result of the classifiers. In several applications,

the number of records of a particular class is much larger than the number of records

belonging to another [Prati et al., 2009]. Some examples are the detection of credit card

fraud, where the number of fraudulent transactions is much less than the number of legal

transactions, and air delays, in which only about 25% of the flights show more delay than

15 minutes.

Sampling is a direct approach to the problem of class balancing in a dataset.

From the use of balancing methods, it is possible to change the distribution of classes to

obtain a more balanced distribution of the data and improve the performance of the data

classification models [Prati et al., 2009]. The data-balancing strategies used in this study

are Random Sub-Sampling and the Synthetic Minority Oversampling Technique (SMOTE).

Random Subsampling & Synthetic Minority Over-sampling Technique

It is a non-heuristic method that aims to balance the distribution of classes in the

data from a random deletion of the tuples of the majority class, that is, the class more

frequently in the original data set [Prati et al., 2009]. This random elimination can generate

information loss about the majority classes[More, 2016].

Synthetic Minority Over-sampling Technique (SMOTE) is a data-balancing method

that aims at generating synthetic tuples of the minority class in the data set. The minority

class tuples oversampling accomplishes introducing synthetic tuples from a less frequent

class tuple and its nearest neighboring k-tuples. The difference between the tuple attributes

of the chosen minority class and the attributes of their neighbors generates the synthetic

tuples. This difference is then multiplied by a random number between 0 and 1 and added

to the chosen minority class tuple. Depending on the number of synthetic tuples needed,

the nearest k neighbors are chosen randomly [Chawla et al., 2002].

As shown in Figure 15, the distribution of the original database was firstly presented,
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naming the majority class (with the highest number of tuples) as ’condition 1’ and the

minority class as ’condition2’. Then, in Random subsampling, the balancing occurred from

the deletion of tuples of the majority class, equaling with the minority. In SMOTE, tuples

were introduced to the minority class until the number was equal to the majority class.

Figure 15 – Balancing Example.

1.2- Data Mining and Machine Learning

Machine Learning investigates how computers can learn (or improve their perfor-

mance) based on the data [Han et al., 2011]. It is useful for automating complex pattern

recognition processes and making smart decisions based on data.

These methods subdivide into supervised, unsupervised, semi-supervised, and

active. The first ones, supervised, are represented by the classification methods since
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supervision in learning is given by the known labels of the class in the training data set.

Clustering methods represent unsupervised methods. The learning process in the input

data does not have the class labels. The semi-supervised uses both labeled and unlabeled

examples when learning to model. Finally, active learning is the approach that lets the

user play an active role in the learning process because the user can be asked to label an

example optimizing the goal by knowledge [Han et al., 2011].

1.2.1 Models

The machine learning methods were evaluated according to their hyper-parameters

configurations targeting better accuracy during cross-validation [Bergstra et al., 2011].

Table 1 presented the general performance of machine learning methods for the dataset

produced using LASSO. This table shows the approximate execution time, their ranking

according to accuracy and the number of combinations of parameters to be explored for

each method. This number was fixed into 28 different setups for each machine learning

method. In the case of SVM, the kernel itself is a parameter. Thus, we had 14 parameters

for each kernel. Also, it is worth mentioning that NB is a parameter-free method.

Table 1 – Analysis of Machine Learning Methods

Method
Accuracy(%)

Elapsed

time

(hours)

Parameter

combina-

tions

NN 78.02 00:02 28
RF 77.94 00:01 28

SVMrbf
77.99 05:01 14

SVMtanh
77.99 03:09 14

NB 74.81 00:03 -

kNN 67.80 00:23 28

Therefore, based on the analysis performed, considering their accuracy ranking,

their execution time, and the number of combinations of parameters to be explored, the

machine learning method chosen for analysis of the preprocessing methods were random

forest (RF) and neural network with back-propagation (NN).
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Neural Networks (NN)

Neural Network (NN) is an information processing system like biological neural

networks as a generalization of the mathematical model of human cognition or neural

biology. It comprises a computational approach performing information processing in basic

units called neurons. Signals pass by these neurons through the connecting links.

Each connection link has an associated weight, which, in a typical neural network,

multiplies the transmitted signal. Each neuron applies an activation function to its network

input to determine its output signal [Fausett and others, 1994; Haykin et al., 2009].

As shown in Figure 16, a set of synapses, or connection links, each of which is

characterized by a weight associated. A An signal at the synapse input n connects to the

neuron t is multiplied by the synaptic weight wtn.

Figure 16 – Model of Neuron. Adapted from [Haykin et al., 2009]

The most common neural network is the multilayer perceptron Haykin et al. [2009].

). In this model, each neuron in the network includes a non-linear activation function,

which may contain one or more hidden layers from the input and outgoing nodes. The
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network has a distributed presence of non-linearity and high connectivity that tenders to a

more sophisticated theoretical analysis. Hidden neurons make it challenging to visualize

the learning process, with the research focused on a much larger space of possible

functions, and a choice has to be between alternative representations of the input pattern,

as depicted in figure 17. One popular method for the training of multilayer perceptron is a

backpropagation algorithm Fausett and others [1994].

Figure 17 – Multi-Layer Perceptron.

Random Forest

Breiman [2001] proposed Random Forests (RF) combining decision trees so that

each tree depends on the values of a vector sampled randomly independently and with

the same distribution for all trees in the forest. Each generated decision tree is a result of

an attributes random selection, done at each node, to determine the division [Han et al.,

2011].

After the forest formation, the model uses the vote to combine the predictions of

each tree. The most voted class is returned as a result of the forecast [Lantz, 2013] . Its

precision depends on the strength of each tree and the dependence between them, as

shown in Figure 18. The idea is to preserve the strength of each tree without increasing
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its correlations [Han et al., 2011]. The generalization error for a forest converges while

the number of trees in the forest is large, which makes the overfitting not being a problem

[Han et al., 2011]. Besides, it can handle a large dataset since the set uses only a small

random part of the original data set [Lantz, 2013].

Figure 18 – Random Forest Architecture.

1.3- Model Evaluation

After the construction of the classification models, it is necessary to quantify

its accuracy in a given data set, that is, to evaluate the effectiveness of the classifier

comparing the different models, selecting the best one for the dataset, adjusting and

tuning parameters [Aggarwal, 2015; Han et al., 2011].
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1.3.1 Cross-Validation

Cross-validation is a statistical method for evaluating and comparing machine

learning algorithms where data sets are divided into training and other test and/or model

validation segments with the possibility of training and validation sets passing by crossing

in successive rounds. The most commonly used methods are k-fold and holdout, however

there are other methods like Leave-One-Out cross-validation, Re-substitution Validation

[Refaeilzadeh et al., 2009].

K-Fold

The K-Fold cross-validation method consists of dividing the dataset into numerous k

groups (usually between 5 and 10 groups) with random selection of groups for validation or

testing. In this method there is repetition of training and validation iterations until all groups

have been contemplated as represented in Figure 19. At the end of the validation group, a

percentage of error is consolidated by representing the mean error of the model [Kohavi

et al., 1995]. As an advantage of this method is the accurate performance estimation Small

samples of performance estimation; But with disadvantage of overlapped training data,

causing low performance and underestimated performance variance or overestimated

degree of freedom for comparison.

Hold-out

Holdout method randomly divides labeled data into two disjoint sets: training

and test. The most used proportion for this division is about two-thirds for training and

the remainder for testing and derivation of the model, as represented in Figure 20. An

essential feature of this method is that because the model training process does not use

the set of tests. It is an indicator of how well the model performs in unseen data. Some
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Figure 19 – 5-Fold Example

of the problems of this method are over-representation of classes in training, especially

when the original class reveals an imbalance in its distribution [Aggarwal, 2015]. Still,

considering that the data are independent with a need for a single execution, there is

a lower computational cost. As a advantage of this method is the independent training

and test with reduced data for training and testing, improving performance; but has as an

disadvantage the large variance that can cause bias [Refaeilzadeh et al., 2009].

Figure 20 – Holdout - Measuring Performance. From Aggarwal [2015]
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1.3.2 Measuring and Classification Performance Metrics

The main goal in the classification of learning algorithms is the construction of a

classifier, which from a training set, can predict the test samples satisfactorily. Therefore,

it is necessary to measure the predictive capacity of the classification algorithm, either

by precision, accuracy, or other methods. However, in some cases, precision does not

consider prediction probability, either by the classifier or unbalance of the data set (usually

the class with the highest probability estimate is the same as the target). A more precise

classification may surpass other methods.

Confusion Matrix

A confusion matrix is a tool used to measure the performance of the classification

problem in machine learning, where the output can be of two or more classes, serving as

the basis for calculating many other measures of performance [Kelleher et al., 2015]. Each

cell represented in the confusion matrix represents one of four results (TP, FP, TN, FN) in

binary classification, counting the number of occurrences of the result when presented to

the test set as represented in Figure 21.

Figure 21 – Confusion Matrix
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The upper-left cell of the results in the confusion matrix, TP (True Positive), rep-

resents the quantification of the total of instances in the test set with predicted value as

positive and that they are positive values. Still in the upper cell, on the right, we have FP

(False Positive) that represents the quantification of the total number of instances of the

test set with the value predicted to be positive, but which were, in fact, negative values. In

the lower left-hand cell, we have FN (False Negative) that represents the quantification of

the total number of instances of the test set with predicted value as unfavorable. However,

they were negative values. Still, in the lower part of the array, but in the right cell, we

have TN (True Negative) that represents the quantification of the total instances of the test

set with predicted value as unfavorable, and that was negative. As shown in the Figure

21, the columns of the table are labeled Real Value, both positive and negative, with the

total positive value (RP) represented by equation 11, and the total negative value (RN) is

represented by equation 12. The table lines represent positive and negative predictive

values, with the positive predicted value (PP) represented by equation 13, and the total

negative value (PN) represented by equation 14.

RP = TP + FN (11)

RN = FP + TN (12)

PP = TP + FP (13)

PN = FN + TN (14)

Rate measurement (TPR, TNR, FPR, FNR) is one of the measurement methods

for verifying the actual prediction results. The equation 15 represents TPR (True Positive

Rate), which means the proportion of instances predicted as, and that was positive

concerning the total of really positive instances. TNR (True Negative Rate), represented

by the equation 16, means the proportion of instances predicted, as and that was negative

about the total of really negative instances.

TPR =
TP

(TP + FN)
(15)
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TNR =
TN

(TN + FP )
(16)

Rate measurement (TPR, TNR, FPR, FNR) is one of the measurement methods

for verifying the actual prediction results. The equation 15 represents TPR (True Positive

Rate), which means the proportion of instances predicted as, and that was positive

concerning the total of really positive instances. TNR (True Negative Rate), represented

by the equation 16, means the proportion of instances predicted as, and that was negative

about the total of really negative instances. FPR (False Positive Rate), represented by

the equation 17, means the proportion of instances predicted to be positive. However,

in reality, they did not concern the total of truly positive instances. FNR (False Negative

Rate), represented by the equation 18, means the proportion of negative, but in truth

positive, about the total number of really positive cases.

FPR =
FP

(TN + FP )
= 1− TNR (17)

FNR =
FN

(TP + FN)
= 1− TPR (18)

Accuracy

The accuracy of a classifier is a performance metric that, from a given set of tests,

independent of the number of examples it has, represents the percentage of instances in

the set of tests correctly sorted by the classifier [Han et al., 2011; Aggarwal, 2015]. It is

represented by the equation 19 below.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(19)
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Precision and Recall

Precision corresponds to a measure of exactness that reports the total percentage

of correctly classified instances, while Recall, or Sensibility, corresponds to the percentage

of true instances that have been correctly classified [Han et al., 2011; Aggarwal, 2015].

Precision and Recall are represented, respectively by the equation 20 and 21.

Precision =
TP

(TP + FP )
(20)

Sensitivity = Recall =
TP

(TP + FN)
(21)

F1 Score

F1 Score, also called F-Measure or F Score, is an accuracy measure that uses the

weighted harmonic mean of the test’s precision and recalls, as shown in Equation 22. This

measure is widely used for the classification evaluation of unbalanced data, reflecting how

good the classifier is in the presence of rare class [Han et al., 2011; Davis and Goadrich,

2006].

F1score = 2
(PrecisionXRecall)

(Precision+Recall)
(22)

Threshold

In classification, it is necessary to define a decision limit for mapping the values of

binary categories. For this purpose, this definition is called a classification threshold (also

called a decision threshold).

Often the use of conventional threshold, with the 50/50 ratio, is not enough. It
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frequently happens when applied over unbalanced data. For this, there are many ways to

maximize F1-Score in the context of binary classification [Krawczyk and Woźniak, 2015].

One way to calibrate the output is thresholding classifiers, reflecting the proportion of

data, i.e., respecting the proportion of the majority and minority classes called the majority

threshold [Lever et al., 2016]. Another possible way is to use cost-sensitive learning, which

can produce probability estimates on training and test examples [Sheng and Ling, 2006;

Lipton et al., 2014].
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2- Related Works

This chapter will present a two-step analysis of existing work on preprocessing

methods. Firstly, we will have a more general preliminary analysis of the techniques and

methods used for classification in machine learning, then this research will be refined with

a focus on preprocessing methods in relation to the context of this research that refers to

delays. on flights.

In this first step, to establish a literature review map that shows similarities and

differences when compared to the work presented, the string (”preprocessing” or ”prepro-

cessing method”) and (”classification” or ”prediction”) and ”machine learning ” was used to

search for publications in the Science Direct database in June 2019. The search yielded

75 articles, out of a total of 455 results related to the topic. From these 75 articles, a

verification was performed from the analysis of the introduction, methodology and results,

which directly dealt with the use of processing methods, resulting in a complete reading of

a subset of 22 articles, which supported this first stage of the process review.

As shown in Chapter 1, there are numerous preprocessing techniques. The related

works, quantitatively, used the techniques and models according to Tables 2 and 3.

Table 2 – Comparison of the techniques used in the related works for Pre-Processing

Preprocessing Techniques

Integration Cleaning Reduction Transformation Balancing

5 11 17 17 8

Table 3 – Comparison of the Models used in the related works for Classification

Supervised Models

NB SVM MLP RF KNN Others

5 8 7 3 8 10

Torunoğlu et al. [2011]; Uysal and Gunal [2014] performed analysis on data prepro-

cessing techniques in text mining, aiming at classification in the text using a wide range of

datasets. Extensive experiments use stop-word, stemming, and weighting of words, and

report their effect on classification performance. For this, classifiers such as Naive Bayes,

Support Vector Machines, and K-Nearest Neighbor.
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Nikulin et al. [1998] addressed the extraction (data reduction) method explicitly

designed for preprocessing magnetic resonance spectra of biomedical origin to search

for and select optimal spectral subregions. This research demonstrates the method

in two biomedical examples: discrimination between meningioma and astrocytoma in

biopsies of brain tissue, and a colorectal classification biopsy in normal and tumor classes.

Both preprocessing methods lead to classification accuracies greater than 97% for both

examples. A similar approach was dealt with in AlMuhaideb and Menai [2016]; Bilski

[2014]; Luypaert et al. [2004].

Garcı́a et al. [2012] evaluated how learning is affected when different resampling

algorithms transform the originally unbalanced date into artificially balanced class distribu-

tions, mainly on the influence of the imbalance ratio and the classifier on the effectiveness

of the most popular resampling strategies. Classification uses the rule of k-neighbors

closer (1,7,13-NN), a multilayer perceptron (MLP), a support vector machine (SVM), Naive

Bayes classifier (NBC), a decision tree (J48), and a base function network (RBF). Iliou

et al. [2017]; López et al. [2012]; Tsoi and Back [1995]; Marques et al. [2011] applies a

similar approach.

Majidi and Oskuoee [2015] propose new methods for data preprocessing based on

the first, second, and infinite signal norm. It also uses the autocorrelation function (ACF),

performing resource extraction and data compression in a single step, as well as the

fractional resources extraction. The neural network pattern recognition toolbox (nprtool)

supported the standards classification.

Li et al. [2008]; Xiang-wei and Yian-fang [2012] addressed the effects of noise,

distortion, observational environment, and other factors that make preprocessing adequate

before automatic sorting. For this purpose, preprocessing may include, for example, noise

elimination, calibration, flow standardization, continuous normalization, wild point removal,

skyline subtraction, feature extraction to improve the quality of spectral data, suppression

of unnecessary distortion to raise specific spectral characteristics of automatic processing.

The classification method used several methods, including k-nearest neighbor classifier

(KNN), the Fisher linear discriminant analysis (FDA), and the vector support machine

(SVM).

Kamiran and Calders [2012]; Lavangnananda and Waiwing [2015]; Luypaert et al.

[2004] target to improve the accuracy of the classifier, but without discrimination of its

predictions. Existing data experienced the use of preprocessing techniques coupled with
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the suppression of the sensitive attribute, modifying the dataset by changing the class

labels or replacing/resampling the data to remove discrimination without reclassifying the

instances.

Kotsiantis et al. [2006] demonstrate the data preparation and filtering steps pro-

cessing time in machine learning problems, with data preprocessing including various

methods of cleaning, normalization, transformation, extraction of characteristics, and

selection. Huang et al. [2015]; Garcı́a et al. [2016] applies a similar approach.

Dara et al. [2008] try to determine whether major preprocessing complaints before

automatically classifying them improves classification performance. It uses preprocessed

master complaints using two preprocessors (CCP and EMT-P) and evaluating whether

classification performance for a probabilistic classifier (CoCo) or a classifier based on

keywords (modification of the New York Department of Health) and Mental Hygiene coder

chief of complaints (KC)).

Hoshyar et al. [2014]; Xu et al. [2016] involves preprocessing of images for im-

provement in pattern recognition and classification.

Table 4 shows the related works selected after the search.

Table 4 – Related Publications

Pub Reference

1 Torunoğlu et al. [2011]

2 Nikulin et al. [1998]

3 Garcı́a et al. [2012]

4 Majidi and Oskuoee [2015]

5 Li et al. [2008]

6 Kamiran and Calders [2012]

7 Kotsiantis et al. [2006]

8 AlMuhaideb and Menai [2016]

9 Huang et al. [2015]

10 Iliou et al. [2017]

11 Xiang-wei and Yian-fang [2012]

12 Garcı́a et al. [2016]

13 Tsoi and Back [1995]

14 Bilski [2014]

15 Luypaert et al. [2004]

16 Lavangnananda and Waiwing [2015]

17 Luypaert et al. [2002]

18 Xu et al. [2016]

19 Dara et al. [2008]

20 Uysal and Gunal [2014]

21 Marques et al. [2011]

22 López et al. [2012]
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Tables 5 and 6 summarize the number of citations and lists related jobs that use the

data preprocessing and machine learning techniques described in the background sections.

The end of each table exhibits the percentages of use of each of the preprocessing

techniques and classification models.

Table 5 – Publications on preprocessing methods for classification

Pub. Preprocessing Techniques

Integration Cleaning Reduction Transformation Balancing

1 X

2 X

3 X

4 X X

5 X X

6 X X X

7 X X X X

8 X X X

9 X X

10 X X X X

11 X X

12 X X X X X

13 X

14 X

15 X X X

16 X X X

17 X X X

18 X X X

19 X X X X

20 X X X X

21 X X X X X

22 X

Total 22.7% 50% 77.2% 77.2% 36.3%



51

Table 6 – Publications on preprocessing methods for classification

Pub. Classification Models

NB SVM MLP RF KNN Others1

1 X X X

2 X

3 X X X X X X

4 X X X

5 X X

6 X

7

8

9 X X

10 X X X X X

11 X

12

13 X

14 X X X

15 X

16 X

17 X

18 X

19 X

20 X X X X

21 X

22 X X X

Total 22.7% 36.3% 31.8% 13.6% 36.3% 45.4%

From the overview of the preprocessing methods obtained through the survey,

a second step of this literature review was performed in order to establish a view that

demonstrates the similarities and differences compared to the present work. It wishes to

demonstrate the use of preprocessing methods in the context of flight delays. Hence, a

1LDA,JR48,RBF,CBR,CART,KeywordClassifier,SOM,RoughSets,Fuzzy,BayesNet.
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search was carried out in Science Direct Database publications on October 2019, using the

search string (”classification” or ”prediction”) and (”flight” or ”air”) and ”machine learning”

and ”delay.” This search resulted in approximately 44 results within 276 items returned

from this set of articles related to the topic, after an abstract observation. From that 44

results, nine were selected for a complete read because of a direct relationship with this

research, after a complete reading.The other works not selected to a complete read was

retired as example in lecture of introduction for presenting themes like mapping causal,

ticket price and Arrival time prediction, that are not the guideline of this work. Tables 7 and

8 presents the selected related works and data used in each work after the search. Table

9 presents the better results achieved in those related works.

Table 7 – Selected Related Works

Pub. Reference Main Target

1 Rebollo and Balakrishnan [2014] Prediction of air traffic delays

2 Cao and Fang [2012] Airport Flight Departure Delay

3 Khaksar and Sheikholeslami [2019] Predict Delay Occurence and Magnitude

4 Chakrabarty et al. [2019] Delay prediction of individual flight

5 Choi et al. [2016] Prediction of Weather-induced Airline Delays

6 Nigam and Govinda [2017] Flight Delay Prediction

7 Choi et al. [2017] Cost-sensitive Prediction of Airline Delays

8 Saadat and Moniruzzaman [2019] Airlines Delay Prediction

9 Belcastro et al. [2016] Predicting Flight Delays

10 Henriques and Feiteira [2018] Predict arrival delays of individual flight

Table 8 – Data used in Selected Related Works

Pub. Related Data

1 Historical Flight Data and weather information

2 Historical Flight data

3 Historical Flight Data and weather information

4 Historical Flight data

5 Historical Flight Data and weather information

6 Historical Flight Data and weather information

7 Historical Flight Data and weather information

8 Historical Flight Data

9 Historical Flight data and weather information

10 Historical Flight data; Weather data; Airplane info; Delay Propagation information

Rebollo and Balakrishnan [2014] use Random Forest to predict Flight Delays with

data from Historical flight and forecast weather data, considering both temporal and spatial

delay states. The authors were able to achieve 81% accuracy and 76.40% Recall of the
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model in best predictions.

In Cao and Fang [2012], based on the flight data created a BN model and Ex-

periments show that parameters learning can reflect departure delay, achieving 88.33%

accuracy of the model in best predictions.

Khaksar and Sheikholeslami [2019] objective is to predict flight delay with different

machine learning algorithms approachs as bayesian modeling, decision tree, cluster

classification, random forest and hybrid method to estimate the occurrences and magnitude

of delay in network, using Us flight and Iranian airline datasets (specially visibility, wind

and departure time). The authors were able to achieve 76.44% accuracy and 60% Recall

of the model in best predictions.

Chakrabarty et al. [2019] analyse arrival delay of the flights using data mining and

supervised machine learning algorithms [random forest, Support Vector Machine (SVM),

Gradient Boosting Classifier (GBC) and k-nearest neighbour algorithm(KNN)] to obtain

the best performing classifier with data collected from BTS, United States Department

of Transportation(flights operated by American Airlines, connecting the top five busiest

airports of United States in the years 2015 and 2016). Some of features utilized: Year,

Quarter, Month, Day of Month, Day of Week, Flight Num, Origin Airport ID, Origin World

Area Code, Destination Airport ID, Destination World Area Code, CRS Departure Time,

CRS Arrival Time, Arr Del 15. With use of Gradient boosting, the authors were able to

achieve 79.72% accuracy, 76% Precision, 80% Recall and 74% F-Score of the model in

best predictions.

Choi et al. [2016] predict airline delays caused by inclement weather conditions

using data mining and supervised machine learning algorithms[Decision Trees(DT), Ran-

dom Forest(RF), AdaBoost, k-Nearest-Neighbors Classifier (kNN)]. The data used refers

to US domestic flight and the weather conditions from 2005 to 2015. Some example of

data used is: Quarter of Year, Month, Day of Month, Day of Week, Departure and Arrival

Schedule in Local Time, Arrival Delay Indicator, Wind Direction Angle [deg], Wind Speed

Rate [m/s], Visibility [m], Precipitation [mm], Snow Depth [cm], Snow Accumulation [cm]

and others. With use of Random Forest, the authors were able to achieve 83.4% accuracy

of the model in best predictions.

Nigam and Govinda [2017] forecast Flight delay logist regression supervised

learning method, using historical flight data and weather data such as temperature,

humidity, precipitation and dew point. The authors were able to achieve 80.6% accuracy,



54

32.1% Precision, 11.5% Recall and 20.9% F-Score of the model in best predictions.

Choi et al. [2017] use a combining of the sampling method called costing and

supervised machine learning algorithms to predict individual flight delays. The costing

method converts cost-insensitive classifiers to cost-sensitive ones by subsampling ex-

amples from the original training dataset according to their misclassification costs. This

study uses flight and weather data ( Destination, Quarter of Year, Month, Day of Month,

Day of Week, Scheduled Departure Time in Local Time, Scheduled Arrival Time in Local

Time, Arrival Delay Indicator,Wind Direction Angle [deg], Wind Speed Rate [m/s], Visibility

[m], Precipitation [mm] , Snow Depth [cm] and others). The authors were able to achieve

83.07% accuracy of the model in best predictions.

Saadat and Moniruzzaman [2019] predict airlines flight delays by analyzing flight

data, especially, for the domestic Airlines those moves around the United States of America.

In order to transform the high dimension data into a low dimension Principal component

analysis is used. This work uses Deep learning algorithms [ Recursive Neural Network

(RNN), Deep Neural Network (DNN), Convolutional neural network (CNN), Deep belief

network (DBN) and more. With this deep learning approach the authors were able to

achieve 82.1% accuracy of the model in best predictions.

Belcastro et al. [2016] predict arrival delay uses flight information (origin airport,

destination airport, scheduled departure and arrival time) and weather forecast at origin

airport and destination airport according to the flight timetable and as supervised machine

learning the Random Forest(RF) algorithm, achieving 85.8% accuracy and 86.9% Recall

of the model in best predictions.

Henriques and Feiteira [2018] objective to predict the occurrence of delays in

arrivals at the international airport of Hartsfield-Jackson using several data mining tech-

niques and historical flight and weather data, besides delay propagation. This work uses

Decision Trees, Random Forest and Multilayer Perceptron as machine learning classifiers.

The authors were able to achieve 85.63% accuracy of the model in best predictions.
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Table 9 – Results achieved in Selected Related Works

Pub. Classifier Threshold Results

Accuracy Precision Recall F1-score

1 Random Forest Conventional 81.00% - 76.40% -

2 Bayesian network Conventional 88.33% - - -

3

Hybrid(decision tree

combined with cluster

classification )

Conventional 76.44% - 60.00% -

4 Gradient boosting Conventional 79.72% 76.00% 80.00% 74.00%

5 Random Forest Conventional 83.40% - - -

6 Logistic Regression Conventional 80.60% 32.10% 11.50% 20.90%

7 Adaboost Conventional 83.07% - - -

8 Deep Learning Conventional 82.10% - - -

9 Random Forest Conventional 85.80% - 86.90% -

10 MLP Conventional 85.63% - - -

Taking into consideration the description presented in related works, this work

intends to through the massive use of transformation techniques, as well as other pre-

processing techniques such as integration, cleaning, reduction and balancing in order to

understand and improve the performance of models already presented with this approach

for the prediction of flight delays.
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3- Methodology

This work aims at evaluating data preprocessing methods for predicting Brazilian

flight delays optimizing the accuracy, sensitivity and F1-Score of the prediction models,

considering all the factors involved and collected by the dataset.Those measure meters

were considered basicaly because is important to show if accuracy is higher than the

proportion of the majority class and together with the sensitivity, which is directly linked to

the true positives, that is, how many of these delays were correctly classified, in addition

to the F1- Score that will show in a balanced way the set of the classifier in terms of

sensitivity and precision.

Specifically, this work focus on transformation strategies as demonstrated on

Subsection 1.1.3: 1) normalization, that transforms the scale of the values of an attribute

so that they fit into a new range; 2) categorical mapping, when the original attribute needs

to be grouped by values that present similar target statistics to become effective [Micci-

Barreca, 2001]; and 3) discretization, replacing raw values of numerical attributes by

interval or conceptual labels [Han et al., 2011], in addition to the tuning of hyperparameters

in the machine learning process. A proposed methodology helps to evaluate these

preprocessing methods.

The methodology used to analyze flight delays is composed of six steps, as

presented in the workflow of Figure 22. Step 1 (Section 3.1, 3.2 and 3.3) consists on the

databases integration, selection of relevant data and cleaning and removal of the outliers.

Step 2 (Section 3.4) addresses data processing and consolidation. Step 3 (Section 3.5)

is responsible for performing training and test sampling. Step 4 (Section 3.6) applies

balancing methods to the training data. Step 5 (Section 3.7) is responsible for treating

the curse of dimensionality (a term coined by Bellman and Dreyfus [2015], which refers

to the phenomena caused by the exponential increase in data volume associated with a

large number of dimensions in a mathematical space). It also conducts different attribute

selections in the data. Step 6 (Section 3.8) consists of applying machine learning methods,

performing hold-out validation, optimizing hyper-parameters and evaluation.
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Figure 22 – Workflow
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3.1- Integration

ANAC is responsible for regulating and supervising civil aviation activities in Brazil,

which includes all commercial flight takeoffs and landings on Brazilian airports. The

agency provides a public dataset named VRA [ANAC, 2016], updated monthly. It contains

information about flight operations, such as the scheduled time for departure and arrival in

each airport, as well as actual departure and arrival times.

VRA dataset has no weather information. Thus, to create a complete flight dataset,

an integrated dataset was formed using data from the weather service provider Weather

Underground (WU). WU provides hourly information about weather conditions (as temper-

ature, pressure, humidity) for each airport. The integration process considered weather

conditions closest to the scheduled departure and arrival times of each airport for all

flights.

Tables 10 and 11 contains the source data descriptions, regarding the type of

variable and description of VRA and WU to the integration process.

The data integration (Figure 23) illustrates the concept of the data integration

process from data extraction of two bases, one of the realized flights (VRA) and one of the

meteorological data (WU - Weather Underground) that converges, after several selections,

to VRA-WU integrated database.

Figure 23 – Data Integration Concept.
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Table 10 – VRA Attributes

Attribute Type Description

destiny char(4) Destiny of Flight

origin char(4) Origin of Flight

airlines char(3) Name of the company that provides air transport services

flight Seq Number of Flight

autho code char(1) Identification of flight Authorization

line type char(1) Identification of Type of Line

depart expect Datetime Date and Time of Expected Depart

depart Datetime Date and Time of Real Depart

arrival expect Datetime Date and Time of Expected Arrival

arrival Datetime Date and Time of Real Arrival

status char Status of Flight

observation char(2) Observations about Flight

depart expect date Date Date of Expected Depart

depart expect hour Time Time of Expected Depart

arrival expect date Date Date of Expected Arrival

arrival expect hour Time Time of Expected Arrival

departure delay Integer Delay of Departure

arrival delay Integer Delay of Arrival

duration expect Integer Expected Duration of Flight

duration Integer Real Duration of Flight

duration delta Integer Difference Between Real and Expected Duration

name.x String Complete Name of Origin

city.x String City of Origin

state.x String State of Origin

name.y String Complete Name of Destiny

city.y String City of Destiny

state.y String State of Destiny

Table 11 – Weather Attributes

Attribute Type Description

data.airport char(4) Airport Code

data.date Date Date of Weather Forecast

data.hour Time Time of Weather Forecast

data.temperature Integer Temperature

data.dewpoint Integer Dew Point

data.humidity Integer Humidity

data.pressure Integer Pressure

data.visibility Integer Visibility

data.events String Events

data.conditions String Description of Conditions

Using the conceptual model that demonstrates the integrated data schema from

the VRA and WU databases is another way to represent this integration. It describes
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the structure of the system, presenting its classes, relations, and attributes. Figure 24

represents this model, by the classes Airports, Flight and Weather and their respective

attributes; and the relations between flight and airport that represent the origin and destiny

of flights, beyond the relationship between flight and weather that represents the weather

conditions on departure and arrival.

Figure 24 – Data Integration Schema.

Figure 25 exemplifies a way of practically data integration VRA and Weather WU

databases. In the first tuple of the flight data table (marked in gold color), there are data

from a flight that departed from SBGL to CYYZ, with their respective date and hour.

Figure 25 – Data Integration Example.
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3.2- Selection

Firstly, the airport presentation attended ANAC database, which contains more

than 200 airports. Based on these data, the analysis of the number of flights per airport

was carried out, resulting in the choice that concentrates 94% of the trips made in the

country, as shown Distribution Diagram in Figure 26.

That analysis returned the major 62 airports shown in Figure 27, that interact with

Brazilian flight mesh. They correspond to 94% of all monitored flights by ANAC. Ten of

these are foreign airports (KMIA, SAEZ, SABE, SCEL, MPTO, LPPT, SUMU, SPJC, SKBO,

KJFK).

Figure 26 – Distribution Diagram

Selected airports guided the selection of the travel data (arrivals and departures)

from the ANAC database (VRA), as shown in Table 12 and Figure 28. This list summarizes

the number of original records and the resulting value of the integration and selection of

flight data. 24/5000 Even considering the selection task, one can notice a reduction of the

number of records to approximately 82, 5% at the end of this step.

Aviation data ranging from January 2009 to December 2017 Ogasawara [2018] 1

marked the integrated database construction, followed by a data cleansing process.

1https://github.com/eogasawara/flight-data
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Figure 27 – Selected Airports.

Table 12 – Number of Records after Selection Step

Initial Dataset Dataset with Airport Selection

10517228 8683195

Figure 28 – The number of flight records after Airport Selection.

3.3- Cleaning

Two steps define the cleaning process. The first one refers to the verification

of inconsistencies (identification and treatment of upper and lower cases and removing

of empty spaces; identification and correcting of outliers; and another inconsistencies

filtering). The second considered verification and treatment of missing data, as shown in
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Figure 29.

Figure 29 – The workflow of Data Integration and Cleaning

3.3.1 Verifying Inconsistencies

Table 13 exposes different motivations and conditions of data cleaning caused by

outlier identification and inconsistency filtering. Subsequently, there is a more detailed

description of some domain inconsistencies in the definition of ANAC for delays.

According to Brazilian regulations, a flight with a balance greater than 24 hours

is considered canceled. Other types of inconsistencies are related to arrivals of flights

occurring before departure, or flights of negative duration, as well as flights of the same

origin and destination.
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The relative humidity is the ratio of the partial pressure of the water vapor in the air

to the vapor pressure of the water at room temperature [Perry et al., 2015]. It is usually

expressed as a percentage, on a scale of zero to one hundred, where a more significant

percentage means that a moister air-water mixture. In an aspect of the motivation of

cleaning, this item defines humidity over 100%.

Another analyzed factor refers to the minimum and maximum temperature. Mea-

surement failures can occur in the sensors, generating a non-consistent data. For this,

there were temperatures in the dataset that already recorded on an inhabited planet area -

the highest temperature, 56.7oCelsius; and as lowest, −68oCelsius, already recorded on an

inhabited planet area, as available in Weather Underground and Guinness[Organization,

2018; Records, 2018a,b].

Dew point is the temperature to which air must be cooled to become saturated,

called dew. The higher dew point registered in the planet was 84oC and this [Underground,

2011].

Barometric pressure, also known as atmospheric pressure, is the mass of an entire

air column in a unit of sea-level surface area, usually expressed in millibars (mbar). This

measure is widely used in meteorological observations on the movement of fronts and

meteorological systems [noa, 2011b]. The pattern values are situated between 860 mbar

and 1080 mbar [noa, 2010, 2011a].

Visibility is a weather measure that indicates how far away the air can perceive

an object or light. This measure is dependent on the transparency of the air and affects

all forms of traffic, from the road to air and sea, being expressed in miles or kilometers

[Seinfeld and Pandis, 2016]. The highest visibility in the cleanest possible atmosphere is

limited about 184 miles or 296km.

Considering the cleaning tasks performed for each attribute described in Table

13, there are a set of tuples that satisfied these conditions, according to the Table 14

and Figure 30. The dataset comprises a high number of flights canceled (in the range

of 830 thousand records), and the number of records with destination equal to the origin

(something like 15 thousand records).

The cleaning process reduced the data in 10% . Compared to the airport selection,

there was a decrease of 18% in the total number of records, as shown in Figure 31.
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Table 13 – Motivation for Cleaning

Motivation Feature Value Condition

depature time occuring after arrival time arrival/depart arrival<=depart

depature equals arrival orgin/destination origin==destiny

flight with a negative duration duration duration<0

flight lasting more than 24 hours duration duration>1440

canceled flight status status!=”DONE”

humidity over 100 %
arrival humidity

depart humidity

arrival humidity>100

departure humidity>100

temperature Over 57oC
arrival temperature

depart temperature

arrival temperature>57

depart temperature>57

dew Point over 84oC
arrival dew point

depart dew point

arrival dew point>84

depart dew point>84

pressure under 860 mbar
arrival pressure

depart pressure

arrival pressure<860

depart pressure<860

pressure over 1084 mbar
arrival pressure

depart pressure

arrival pressure>1084

depart pressure>1084

visibility over 184 miles
arrival visibility

depart visibility

arrival visibility>184

depart visibility>184

Table 14 – Numbers of Cleaning

Condition Quantity

canceled flights 830436

departure time occurring after arrival time 1758

departure equals arrival 15775

negative flight duration 1758

flight duration greater than one day 2349

too low or too high-temperature values 0

too high dew point 0

invalid humidity range 21

invalid pressure range 139

invalid visibility range 2

3.3.2 Data Filtering

A major remodeling of the infrastructure of Brazilian airports occurred due to the

great World Cup Soccer 2014 and Olympics 2016, in order to meet the high demand

of tourists who traveled to the country. Before data cleaning, data were selected for the

analysis since 2015 to represent the current infrastructure of Brazilian airports, considering

all improvements completed, excluding data for 2018. They were not yet available for
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Figure 30 – Data Cleaning - Inconsistencies

Figure 31 – Result of Data Cleaning

download at the time of data acquisition.

After the execution of this data filtering, we obtain 1.652.941 records, a subset that

represents 21% of the original data, in order to give a greater representativity of that data.

Initial Dataset With Airport Selection With Cleaning After Filtering(2015-2017)

10517228 8683195 783638 1652941
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Figure 32 – Data Filtering

3.3.3 Verifying Missing Data

Listwise deletion (removal of lines that contain null values on their attributes) was

the first method chosen to treat missing data. This missing data treatment does not require

any previous verification. It solves the data lack the problem quickly. Thus, after selection

and simplified withdrawal, the reduction of the records to 35% of the observed in the

selection step was observed, as shown in Figure 33.

Figure 33 – Data After Filtering and Listwise Deletion.



68

Figure 34 presents features with the most percentage of missing data are visibility

(departure) - in the range of 30%(28.77% exactly) - followed by departure pressure and

dew point.

Figure 34 – Understanding Missing Data - After Filtering

Table 15 – Fields with missing data

Field Percentual Missing

departure visibility 28,77

departure pressure 7,43

departure dew point 3,27

departure humidity 2,71

departure temperature 2,60

other fields 0,00

Imputation

Listwise deletion revealed a total of 30% of missing data. Hence, a necessary data

imputation to avoid analysis distortions that could be generated by the simple withdrawal

of these values.

Therefore, the hot-deck imputation method substituted missing values of one or

more variables of a non-respondent, replacing it to similar observed values of a respondent
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or donor.

Figure 35 presents the application of the imputation method organized by the

departure. It exhibits existing records in blue and imputations one in orange.

Figure 35 – Hot-Deck Imputation before Filtering

Imputation has restored the original number of records, softening the listwise

deletion effects, as presented in Figure 36.

Figure 36 – Data After Imputing Comparison.
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3.4- Transformation

Data transformation follows the integration, cleaning, and data filtering steps, as

presented in Figure 37. Discretization (Binning), Categorical Mapping, and Conceptual

Hierarchy compose this step. Its primary purpose is to improve data quality, increasing the

significant classifier predictions probability. Data normalization should also follow these

transformations.

Figure 37 – The workflow of Data Transformation

Listwise deletion revealed a total of 30% of missing data. Hence, a necessary data
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imputation to avoid analysis distortions that could be generated by the simple withdrawal

of these values. Transformation encompasses Discretization-Binning (bin), Conceptual

Hierarchy (CH), Categorical Mapping (CM), and unused data (removed). Table 16 presents

data used in the other steps with descriptions of the transformations made.The delay

feature was demarked with class one to delayed flights and zero to flights on time, accord-

ing the difference over 15 minutes of flight depart time expected and real appured. As

described in id line one, the departure and arrival date and time feature as well as the

flight duration, were removed after that delay check and establishment of the target class

delayed. More specific details about transformations are provided in Appendix A.

Table 16 – Transformed Data Dictionary

ID Description Attributes Type

0 remove flight;departure expect;arrival expect;duration

Factor;

Datetime (POSIXct);

Datetime (POSIXct)

Integer

1 basic airline;departure;arrival; Factor

2 CH
departure year;departure month;

departure day;departure hour
Numeric

3 bin departure hour bin Numeric

4 original

departure temperature;departure dew point;

departure humidity;departure pressure;

departure visibility

Numeric

5 bin

departure temperature bin;departure dew point bin;

departure humidity bin;departure pressure bin;

departure visibility bin

Numeric

6 original departure events Factor

7 CM departure events Numeric

8 original departure conditions Factor

9 CM departure conditions Numeric

10 Target delayed Factor

11 CM airline Numeric
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Table 16 – Transformed Data Dictionary

ID Description Attributes Type

12 CH departure time Time(ITime)

13 CM departure Numeric

14 CM arrival Numeric

15 CH departure weekday Numeric

99 original departure time original Datetime (POSIXct)

3.4.1 Discretization

Discretization was applied in several attributes, for example, in temperature. For

the binning, an unsupervised method was used, transforming the numerical variables into

categorical variables, dividing the data into ranges of values, according to their frequency.

Values were mapped to one of six possible values (ranging from 1 to 6), as exhibited in

Figure 38.

Figure 38 – Example of Binning Discretization

Figure 39 presents the discretization effects, contrasting the original temperature

(arrival temperature and departure temperature columns) and the respectively discretized

one (columns arrival temperature bin and depart temperature bin ).
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Figure 39 – Example of Discretization

3.4.2 Conceptual Hierarchy

The attribute depart expect received conceptual hierarchy technique application,

slicing it in the attributes year, month, day, day of the week and time, as represented in

figure 41.

Figure 40 – Example of Conceptual Hierarchy

3.4.3 Categorical Mapping

For the categorical mapping technique, the event attribute was chosen, in cases

referring to the events recorded in the flight departure: Gentle Breeze, Light Breeze,

Moderate Breeze, None, Strong Breeze. These records were transformed into columns,

using ”0” when they did not occur, and ”1” when they occurred (Figure 41).
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Figure 41 – Example of Categorical Mapping

At the end of the application of these three techniques (Discretization, Conceptual

Hierarchy, and Categorical Mapping), new attributes were generated, as exhibited in

Table 16. These changes are quantified in Table 17, where it is verified the high number

of attributes generated with the categorical mapping. Table 18 shows the consolidated

numbers of transformation techniques compared to original data.

Table 17 – Numbers of Transformation

Transformation Technique Number of Original Number after Technique

Discretization (Binning- bin) 6 12

Conceptual Hierarchy (CH) 1 7

Categorical Mapping (CM) 5 162

Table 18 – Consolidated Numbers of Transformation

Original After Transformation

12 181

3.4.4 Normalization

Typically, machine learning algorithms try to find trends in the data by comparing

resources of the data points [Han et al., 2011]. In the given flight delay data situation,

some features are at drastically different scales, such as departure dew point and de-

part temperature, which can generate dominance of one of these. Normalization aims at
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softening this kind of noise. Initially, the min-max technique was applied; however, this

technique does not work very well with outliers. Therefore, Z-score data normalization

was also used to avoid this problem. Those techniques were applied only in training set.

Figures 42, 43 and 44 show, respectively, the data without normalization and after

the application of the min-max and Z-score.

Figure 42 – Data Without Normalization

Figure 43 – Data with Min-max Normalization

Figure 44 – Data with Z-score Normalization

3.5- Sampling

After transformation and normalization, the dataset was divided into training and

test sets in the 80:20 ratio, as shown in Figures 45 and 46.
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Figure 45 – Data Sampling

Figure 46 – Train and Testing

3.6- Balancing

Data unbalance verification is the step following data sampling. Random Sub-

sampling (RS) and Synthetic Minority Over-sampling Technique (SMOTE) balancing

techniques were applied to the training sets, maintaining the original unbalance of the test

sets.

The unbalance of the data set is 85,69% without delay and 14,31% delayed (ratio

86:14, approximately), and balanced with the application of the balancing techniques, as

indicated in Figure 48.

Figure 49 and Table 19 presents a quantity comparison using balancing techniques
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Figure 47 – The workflow of Data Balancing

Figure 48 – Balancing Distribution - Original/RS/SMOTE

over the training set. RS reduces the number of records without delay (minority class),

matching the same number of records with delay. Still, SMOTE includes random records

in the minority class to match the number of records without delay (dominant class).
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Table 19 – Data Balancing Numbers

Without Balancing With Balancing (RS) With Balancing (SMOTE)

With Delay 189418 189418 1133050

Without Delay 1132935 189418 1133050

Total 1322353 378836 2266100

Figure 49 – Data Balancing Comparison

3.7- Feature Selection and Extraction

After finished balancing, the next step to perform the step focused on data reduction,

more specifically feature selection and extraction represented in Figure 50.

For the application of the feature selection strategies (LASSO, CFS, IG) and feature

extraction (PCA), the attributes that best fit this technique applied and gathered in sets,

called workflows, are chosen, as exhibited in Figures 50 and 51.

Table 20 reveals all the workflows assembled for evaluation in this work.
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Figure 50 – The workflow of Feature Extraction

Figure 51 – Workflow Mounting
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Table 20 – Workflow Description

Workflow Description ID(Dictionary)

0 Attributes[1,99] 1,2,99,10

1 Attributes[1,2,12] 1,2,12,10

2 Attributes[1,2,12,15] 1,2,12,15,10

3 Attributes[1,12] 1,12,10

4 Attributes[1,2,12] + Conditions[8] 1,2,12,8,10

5 Attributes[1,2,12] + Conditions[9] (PCA) 1,2,12,9,10

6 Attributes[1,2,12] + Conditions[9] (PCA+LASSO) 1,2,12,9,10

7 Attributes[1,2,12] + Conditions[9] (PCA+INFOGAIN) 1,2,12,9,10

8 Attributes[1,2,12] + Conditions[9] (PCA+CFS) 1,2,12,9,10

9 Attributes[1,2,12] + Conditions[9] (LASSO) 1,2,12,9,10

10 Attributes[1,2,12] + Conditions[9] (INFOGAIN) 1,2,12,9,10

11 Attributes[1,2,12] + Conditions[9] (CFS) 1,2,12,9,10

12 Attributes[1,2,12] + Events[6] 1,2,12,6,10

13 Attributes[1,2,12] + Events[7] (PCA+LASSO) 1,2,12,7,10

14 Attributes[1,2,12]+ Events[7] (CFS) 1,2,7,12,10

15
Attributes[1,2,12] + Events[7](LASSO)+

Conditions[9](CFS)
1,2,7,9,12,10

16
Attributes[1,2,12] + Events[7](PCA+LASSO)+

Conditions[9] (PCA+CFS)
1,2,7,9,12,10

17 Attributes[1,6,8,99] 1,6,8,99,10

18 Attributes[2,12] 2,12,10

19 Attributes[2,12]+ Airlines[11](PCA+INFOGAIN) 2,10,11,12

20 Attributes[2,12]+ Departure[13](PCA+INFOGAIN) 2,12,10,13

21 Attributes[2,12]+ Arrival[14](PCA+CFS) 2,12,10,14

22
Attributes[2,12]+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
2,12,11,13,14,10

23
Attributes[2,12]+ Airlines[11](CFS)+Departure[13](CFS)+

Arrival[14](CFS)
2,12,11,13,14,10
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Table 20 continued from the previous page

Workflow Description ID(Dictionary)

24

Attributes[2,12]+ Events[7](PCA+CFS)+

Airlines[11](PCA+CFS)+Departure[13](PCA+CFS)+

Arrival[14](PCA+CFS)

2,12,7,11,13,14,10

25
Attributes[2,12]+ Conditions[9](CFS)+ Airlines[11](CFS)+

Departure[13](CFS)+Arrival[14](CFS)
2,12,9,11,13,14,10

26
Attributes[2,12]+Conditions[8]+Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
2,8,11,13,14,12,10

27
Attributes[2,12]+ Events[7](CFS)+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
2,12,7,11,13,14,10

28

Attributes[2,12]+ Conditions[9](CFS)+

Airlines[11](PCA+CFS)+Departure[13](PCA+CFS)+

Arrival[14](PCA+CFS)

2,12,9,11,13,14,10

29
Attributes[2,12]+ [Events[7]+ Airlines[11]+Departure[13]+

Arrival[14]](PCA+CFS)
2,12,7,11,13,14,10

30 Attributes[1,3,12] 1,3,12,10

31
Attributes[3,12]+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
3,12,11,13,14,10

32 Attributes[1,4,12] 1,4,12,10

33
Attributes[4,12]+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
4,12,11,13,14,10

34 Attributes[1,5,12] 1,5,12,10

35
Attributes[5,12]+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
5,12,11,13,14,10

36 Attributes[1,2,4,12] 1,2,4,12,10

37
Attributes[2,4,12]+ Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+Arrival[14](PCA+CFS)
2,4,12,11,13,14,10

38 Attributes[1,3,5,12] 1,3,5,12,10

39
Attributes[3,5,12]+Airlines[11](PCA+CFS)+

Departure[13](PCA+CFS)+ Arrival[14](PCA+CFS)
2,4,12,11,13,14,10

40 Attributes[1,4,99] 1,4,6,99,10
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Table 21 presents, for each workflow assembled, the types of machine learning

applied, as well as the reduction strategies applied.

Table 21 – Workflow Machine Learning and Reduction Strategies

Reduction Strategies

ML Feature Selection Feature Extraction

Workflow RF NN LASSO(LS) INFOGAIN(IG) CFS PCA

0 X

1 X

2 X X

3 X

4 X

5 X X

6 X X X

7 X X X

8 X X X

9 X X

10 X X

11 X X

12 X

13 X X X

14 X X

15 X X X

16 X X X X

17 X

18 X X

19 X X X X

20 X X X X X

21 X X X X

22 X X X X

23 X X X

24 X X X

25 X X X X
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Table 21 continued from the previous page

Reduction Strategies

ML Feature Selection Feature Extraction

Workflow RF NN LASSO(LS) INFOGAIN(IG) CFS PCA

26 X X X X

27 X X X X X

28 X X X X

29 X X X X

30 X X

31 X X X X

32 X

33 X X X X

34 X

35 X X X X

36 X

37 X X X X

38 X

39 X X X X

40 X

3.8- Model Creation, Evaluation and Implementation

The classification task is binary which assigning an individual values to one of

two categories, by measuring a series of attributes Parmigiani [2001] as described in

transformation step. After all these preprocessing steps permitted the model conception,

applying optimized settings for Random Forest (RF) and Neural Networks (MLP) algorithms.

Therefore, the output model evaluation tests data sets. This process is demonstrated in

Figure 52. The experiments were conducted on a computer with a Xeon processor with

32GB of RAM and using Ubuntu 16.04 operating system and implemented in R for both

preprocessing and machine learning methods [Lantz, 2013]. The source code, dataset,
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and a Jupyter sample are made available at GitHub 2.

Figure 52 – The workflow of Model Creation and Evaluation

Due to the lower computational cost, the model training used the holdout method.

This process proceeded with the realization of Workflow Analysis and Results, as detailed

in Chapter 4.

2https://github.com/leonardosminfo/presentation
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4- Workflow Analysis and Results

Each experiment workflow, that was executed one time, considers a combination

of training datasets and machine learning methods. Model generation demands a reli-

able way to evaluate all experiments through the test data sets, verifying the predictive

capacity of the classification algorithm, either by precision, accuracy, or other methods.

Hence, experiments were performed for this evaluation, as listed in Table 22, and their

corresponding workflows.

Table 22 – Realized Experiments

Code Experiment Description Workflow

1 Comparison Between Original and Transformed Time 0,1,22

2
Comparison of Conceptual Hierarchy (Departure Time

Original)
0,1,2,3

3
Comparison of Feature Selection Techniques(CFS,

PCA,LASSO,IG) on Conditions
4;5:11;25,28

4
Comparison of Feature Selection Techniques(LASSO,

CFS,PCA) on Events
13,14;24,27,29

5
Comparison of Feature Selection Techniques(LASSO,

CFS,PCA) on Events and Conditions
15,16,17

6
Comparison of data with and without Airline,

Departure and Arrival fields
1,18

7
Comparison of impacts of separately and together with data of Airline,

Departure and Arrival
19,20,21,22

8
Comparison of Feature Selection to completely data

(Airline,Arrival,Departure)
22,23

9
Comparison of Best {Basics+Events} and CM

(Airline,Arrival,Departure)+ Events{7}
12,14,27

10
Comparison Between CM(Airline,Arrival,

Departure) + Conditions{8,9}
4,9,26,28
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Table 22 continued from the previous page

Code Experiment Description Workflow

11
Comparison between Original {2} and Discretized{3},

with and without CM(Airline,Departure,Arrival)
1,30,31

12
Comparison between Original {4} and Discretized{5},

with and without CM(Airline,Departure,Arrival)
1,32,33,34,35

13
Comparsion between include Discretized{4} on

Basic with and without CM(Airline, Departure,Arrival)
1,36,37,40

14 Comparsion between include Discretized{3,5} and Basic 1,38,39

15 Comparison of Normalization Methods All

16 Comparison of Balancing Methods All

17 Comparison of Threshold Approach All

18 Random Forest X Neural Networks All

19 Time Elapsed All

20 Accuracy, Sensibility and F1-Score All

All experiments are organized and presented according to the methods, techniques,

and strategies of transformation, normalization, data reduction, balancing, classifier limit

approach, learning, and elapsed time in a table format.

Consider the following legend:

Threshold - The approach used for the classifier limit

WF - Workflow Tested (0 to 40)

ML - Machine Learning Method (RF - Random Forest / NN - Neural Networks)

BL - Balancing Technique (IMB - Imbalanced / SUB-Random Subsampling /

SMOTE - Synthetic Minority Over-sampling Technique)

NM - Standardization Technique (WN- Without Normalization / MM - Min-max / ZS

- Z-score)

AC - Accuracy

SS / R - Sensibility / Recall

SP - Specificity

P - Precision

F1-Score - Accuracy that uses the weighted harmonic mean of the test’s precision

and recall
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Time - Time Elapsed in test

Next, the results of the experiments will be presented, evaluated and discussed

through the respective application of methods of Transformation (Conceptual Hierarchy,

Discretization, Categorical Mapping), Normalization, Feature Selection and Extraction,

Balancing, Threshold Approach and Machine Learning. At the end are also evaluated

aspects regarding the time elapsed to perform each experiment, better results (in aspect

of Accuracy, Sensitivity/Recall and F1-Score), as well as a comparison of the best results

achieved in this experiment and the best results achieved in related works.

4.1- Transformation

Transformation experiments focused on normalization, conceptual hierarchy, dis-

cretization, and categorical mapping. The objective is to analyze the impacts on results.

4.1.1 Comparison of Conceptual Hierarchy

Experiments 2 and 6 analyze the impacts of the conceptual hierarchy, as shown in

Tables 23 and 24.

Experiment 2

Experiment 2 (Table 23) compares the application of the conceptual hierarchy

through workflows 0, 1, 2, and 3. Workflow 0 uses the original attributes 1 (Airline,

Departure, Arrival) and 99 (depart date and time); workflow 1 uses of attributes 1, 2 (de-

parture year, departure month, departure day, departure hour), and 12 (departure time);

workflow 2, with attributes 1, 2, 12 and 15 (depart weekday); and workflow 3, has the

attribute sets 1 and 12 only.
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Table 23 – Comparison of Conceptual Hierarchy (Departure Time Original)

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional 0 RF SUB MM 0,647 0,644 0,648 0,235 0,344 1,385

Majority 1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

Majority 2 RF IMB WN 0,922 0,929 0,920 0,660 0,772 7,317

Majority 3 RF IMB MM 0,937 0,826 0,956 0,756 0,790 4,495

Results reveal that workflow 0 with original data produced a better result with

the sub-sampling method and normalization min-max, with a considerable low accuracy

compared to the other workflows from 1 to 3. On the scenario that uses the workflows

and conceptual hierarchy, the experiments revealed that the addition of the day of the

week (used in workflow 2) raised the sensitivity, but reduced all the other aspects faced to

workflow 1. This configuration revealed the best F1-Score. Workflow 3 obtained the best

accuracy of the set of workflows with a slightly lower sensitivity to workflows 1 and 2.

Experiment 6

Experiment 6 presented in Table 24 compares workflows 1 and 18, that is, between

workflow 1 that uses the set of attributes (1, 2 and 12), where attribute 1 corresponding to

airline, departure and arrival data; attribute 2, corresponding to the date of departure with

the application of the conceptual hierarchy, and attribute 12, the attribute of the departure

time. Workflow 18 uses only the set of attributes (2 and 12), which helps to evaluate the

impact on the use of attribute set 1.

Table 24 – Comparison of data with and without Airline,Departure and Arrival fields

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority
1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

18 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,878

Conventional 18 NN IMB WN 0,909 0,422 0,990 0,873 0,569 3,033

Now the scenario considers the conceptual hierarchy, but this time with the removal

of attribute 1 (referring to airline, departure, and arrival) in the workflow 18. Workflow 1

(using the attributes referring to airline, departure, and arrival) obtains better results than

workflow 18 both in accuracy and sensitivity, losing only in specificity and precision.
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4.1.2 Comparison of Discretization

To evaluate the impacts of the Discretization, experiments 11, 12, 13 and 14 were

performed as shown in Tables 25, 26 and 27.

Experiment 11

Table 25 refers to an evaluation comparing workflow 1 and workflow scenarios 30

and 31, applying the discretization transformation technique to an item of the attribute set

2, generating the attribute 3. Workflow 30 also has attributes 1 and 12. Workflow 31 has

attribute 12 and derived attributes produced by conceptual hierarchy with the application

of extraction and selection of PCA and CFS characteristics (11, 13 and 14).

Table 25 – Comparison between Original {2} and Discretized{3}

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority

1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

30 RF IMB MM 0,940 0,818 0,961 0,776 0,797 8,000

31 RF IMB ZS 0,927 0,660 0,971 0,793 0,720 7,771

Conventional 31 NN SUB MM 0,639 0,567 0,651 0,215 0,312 49,773

This experiment compares workflows 1, 30, and 3. The base workflow 1 obtained

better results insensitivity. However, according to the produced results of workflow 30,

the use of discretization on the set of attributes 2 (which generated the set of attributes

3) increased accuracy, specificity, and precision, slightly improving F1-Score. However,

workflow 31 did not offer any improvement in terms of accuracy and sensitivity, both with

machine learning RF and NN techniques, with small improvements in specificity and

precision.
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Experiment 12

Experiment 12 examines the basic workflow 1 and workflows 32, 33, 34, and 35.

While Workflows 32 and 33 counts with the original set of climate attributes (4), Workflows

34 and 35 also have these climate attributes (5) discretized. Workflows 32 and 34 have, in

addition to their climate data sets, the attribute sets 1 and 12. Workflows 33 and 35, in

addition to the climate data sets, have the attribute 12 and the attribute set 1 transformed

by conceptual hierarchy (11, 13, and 14).

Table 26 – Comparison between Original {4} and Discretized{5}

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority

1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

32 RF IMB WN 0,834 0,882 0,826 0,457 0,602 9,968

33 RF IMB WN 0,878 0,766 0,897 0,552 0,642 13,23

Conventional 33 NN SUB ZS 0,474 0,729 0,432 0,176 0,283 59,082

Majority

34 RF IMB WN 0,893 0,830 0,903 0,588 0,688 8,767

35 RF IMB ZS 0,907 0,742 0,935 0,655 0,695 11,845

35 NN IMB MM 0,523 0,649 0,501 0,179 0,280 2,829

Table 26 presents the results obtained with workflows 32 (which included the time

data set 4) and workflow 34 (which included the discretization of the time - result data

set in the data set 5). The use of discretization raised the results obtained in specificity,

accuracy, precision, and F1-Score in workflow 34 concerning workflow 32. Comparison

between data sets 33 and 35 revealed better results in specificity, accuracy, precision,

and F1-Score in workflow 35 concerning workflow 33 (according to the result obtained

between workflows 32 and 34). None of the results obtained in workflows 32,33, 34, and

35 were higher than those achieved by the base workflow 1, which did not contain the time

data set.

Experiments 13 and 14

Experiment 13 aims to compare workflows involving the basic attribute set (work-

flow 1) with sets containing the addition of time attribute set 4, with and without the



91

categorical mapping relationship in attribute 1 (airline, departure, and arrival), especially

in workflows 36, 37, and 40. Conversely, experiment 14, aims at the comparison of the

basic workflow 1, with the workflows 38 and 39 that have the use of sets of attributes 3, 5

and 12, besides the set of attributes 1, with or without the application of the technique of

transformation of hierarchy in workflows 39 and 38 respectively. Results are listed in Table

27.

Table 27 – Comparsion between include orginal{4} and discretized{5} on Basic with and

without CM(Airline, Departure,Arrival)

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority 1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

Conventional 36 RF IMB ZS 0,922 0,504 0,991 0,907 0,648 11,118

Majority 37 RF IMB WN 0,864 0,896 0,858 0,512 0,652 16,077

Conventional 37 NN IMB WN 0,907 0,409 0,990 0,876 0,557 6,359

Majority 38 RF IMB WN 0,905 0,846 0,914 0,621 0,716 9,670

39 RF IMB WN 0,917 0,758 0,944 0,691 0,723 13,286

40 RF IMB MM 0,666 0,655 0,668 0,248 0,359 8,767

Regarding the results obtained in workflows 36 and 37, workflow 1 obtained better

results only in specificity and precision, with a significant decrease in the sensitivity in

workflow 36. The overall results measured in F1-Score in workflow 40 were considerably

inferior compared to the other workflows tested, revealing the difference that the application

of the transformation techniques generated in the results. The workflows (38,39) using

discretization of attribute sets 2 and 4 (derived to the attribute sets 3 and 5), were not

superior to workflow 1, considering essential transformation. It loses in the overall result

as measured by F1-Score. However, it surpassed workflows 36 and 37.

4.1.3 Comparison of Categorical Mapping

Experiments 1, 7, 9, and 10 evaluate the impact of the categorical mapping. Tables

28, 29, 30 and 31 presents the obtained results.
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Experiment 1

Aiming at comparing categorical mapping, exhibited in Table 28, this experiment

examines the differences between workflow 0 (with the primary data and without transfor-

mation) and workflow 1. It obtained the best result with the conceptual hierarchy applied in

workflow 22, which uses the same attributes of workflow 1. However, attribute 1 (composed

of airline, departure, and arrival) was categorically mapped, aiming both this comparison

and the application in neural networks.

Table 28 – Comparison Between Original and Transformed Time

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional 0 RF SUB MM 0,647 0,644 0,648 0,235 0,344 1,385

Majority 1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

Majority 22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

Comparing workflow 1 (original attribute 1) and workflow 22 (attribute 1 transformed

in attributes 11,13 and 14), it occurred by part of workflow 22 a slight improvement in

accuracy and slight worsening in the sensitivity. Results were also superior in specificity

and precision. In the overall comparison, F1-Score obtained better results, albeit with an

overcome elapsed time.

Experiment 7

Table 29 – Comparison of impacts of separate data of Airline, Departure, and Arrival

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority 19 RF IMB WN 0,915 0,513 0,982 0,822 0,631 5,450

Majority 20 RF IMB WN 0,916 0,665 0,958 0,724 0,693 5,318

Majority 21 RF IMB ZS 0,912 0,728 0,942 0,678 0,702 5,076

Majority 22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

Conventional 19 NN IMB ZS 0,903 0,371 0,992 0,889 0,523 3,862

Conventional 20 NN IMB WN 0,909 0,423 0,990 0,872 0,570 3,088

Conventional 21 NN IMB WN 0,909 0,422 0,990 0,876 0,570 5,219

Conventional 22 NN IMB MM 0,903 0,360 0,993 0,896 0,514 6,115
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Next, as presented in Table 29, the categorical mapping tests considered sets of

attributes for airlines(workflow 19), departure(workflow 20), arrival(workflow 21) separately;

in addition to the set composed by the attributes of the arrival and departure airlines

(workflow 22), to verify which one could generate the greatest impact on the prediction.

Results using the Random Forest (RF) machine learning method, in terms of accuracy,

were very close between the separately arranged attributes (workflows 19,20,21) and a

slightly higher result when the attributes are arranged together (workflow 22). For the

Neural Network (NN) method, none of the workflows had a significant difference in terms

of accuracy. In terms of recall, in the RF machine learning method, there was an improved

highlight for workflow 22, with a more significant difference in workflow 21 sensitivity

(match), which was the best followed by the flow of work 20 (arrival) and 19 (airlines).

For the NN machine learning method, the results in terms of sensitivity were higher in

workflows 20 (categorized arrival attribute) and 21 (categorized departure attribute).

Experiment 9

This experiment, as presented in Table 30 has workflow 12 deals with the use of

the attributes related to sets (1,2,12) commonly with the original event attribute set (6).

Workflow 14 owns sets of attributes (1,2,12), besides the event attribute transformed by

categorical mapping (attribute set 7). Workflow 27 has the attributes (2,12), the event

transformed by categorical mapping (attribute set 7). It also has the categorical mapping

transformation of attribute 1, resulting in the attribute sets (11, Airlines; 13, Departure and

14, Arrival).

Table 30 – Comparison of Best {Basics+Events} and CM(Airline,Arrival,Departure)+

Events[7]

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional 12 RF SUB MM 0,656 0,703 0,648 0,252 0,371 1,789

Majority 14 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,695

Majority 27 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,415

Relatively to workflow 12, the workflows 14 and 27 show performance far superior

in all aspects, except on the elapsed time. It shows that the use of categorical mapping
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contributed to the increase in accuracy and sensitivity. The comparison between workflows

14 and 27 obtains a higher total workflow performance, mostly because of the F1-score.

Categorical mapping performs better not only on the attribute set 6 but also on the set of

attributes.

Experiment 10

Experiment 10 compares workflows 4, 9, 26, and 28. Workflow 4 has sets of

attributes (1,2,12) and original conditions (attribute 8). In workflow 9, we have the same

set of attributes (1,2,12) and the conditions transformed through the categorical mapping

(represented by the set of attributes 9). Workflow 28 has, as well in workflow 9, the

transformed conditions (set of attributes 9). However, it also presents attributes (2,12)

together with the transformation through categorical mapping of the attribute set 1, resulting

in sets of attributes 11 (Airlines), 13 (Departure), and 14 (Arrival). Workflow 26 presents

transformations by categorical mapping of the attribute set 1 (resulting in sets of attributes

11,13 and 14), but with the original set of the condition attribute (8). The results are

presented in Table 31.

Table 31 – Comparison Between CM(Airline,Arrival,Departure) + Conditions[8,9]

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional 4 RF IMB MM 0,943 0,674 0,988 0,902 0,772 8,252

Majority 9 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,874

Majority 26 RF IMB WN 0,914 0,878 0,920 0,645 0,744 11,816

Majority 28 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,508

Test results were very close between workflows. Comparing to the workflow 4,

workflow 9 (with the categorical mapping of the set of condition attributes) obtained a

slightly lower accuracy, but with a substantial increase of the sensitivity and reduction of the

elapsed time. However, workflow 26, which had the categorical mapping only concerning

the attribute set 1, obtained the worst result in all the queries tested, achieving the most

significant time elapsed. However, workflow 28, which had the categorical mapping both

relative to the set of attributes of conditions, and relative to the set of attributes 1 (airline,

departure, arrival), obtained the best performance of this experiment, with better F1-Score.
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4.1.4 Comparison of Normalization Methods

In order to evaluate normalization impacts, experiment 15 considered mean, maxi-

mum and minimum values (of the values obtained with all workflows [0 to 40]) and the use

of the two machine learning techniques, as shown in Tables 32 and 33.

Table 32 – Normalization - Random Forest

Machine Learning: Random Forest(RF)

C.R NM Threshold AC SS/R SP P F1-Score Time

MED WN Majority 0,521 0,884 0,460 0,334 0,424 10,002

MIN 0,143 0,203 0,000 0,139 0,201 1,102

MAX 0,940 1,000 0,982 0,822 0,806 39,522

MED MM Majority 0,520 0,885 0,460 0,334 0,423 9,891

MIN 0,143 0,211 0,000 0,139 0,201 1,164

MAX 0,940 1,000 0,988 0,845 0,801 39,029

MED ZS Majority 0,498 0,910 0,430 0,331 0,422 9,644

MIN 0,143 0,212 0,000 0,143 0,249 1,158

MAX 0,940 1,000 0,989 0,854 0,804 38,899

MED WN Conventional 0,722 0,625 0,738 0,503 0,450 10,002

MIN 0,193 0,039 0,064 0,101 0,074 1,102

MAX 0,946 0,969 0,999 0,948 0,786 39,522

MED MM Conventional 0,719 0,632 0,734 0,508 0,453 9,891

MIN 0,193 0,040 0,064 0,103 0,075 1,164

MAX 0,947 0,969 0,999 0,949 0,789 39,029

MED ZS Conventional 0,629 0,738 0,611 0,497 0,458 9,644

MIN 0,143 0,040 0,000 0,142 0,076 1,158

MAX 0,947 1,000 0,999 0,937 0,792 38,899

Results obtained with the Random Forest (RF) machine learning technique, pre-
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sented in Table 32, reveal a reduction of the elapsed time of the Min-Max (MM) and

Z-Score (ZS) techniques, comparing to the non-standardization method (WN), progres-

sively. There were no changes found on the maximum and minimum accuracy values

due to normalization. Nevertheless, there was a quality debase when using the Z-score

application comparing to Mix-Max method, or even when normalization was not used.

Regarding Sensibility/Recall, in the majority threshold approach, there was a progressive

increase in mean sensitivity, relative to non-use of the normalization method, and Min-

Max, and Z-score approaches, respectively. In the conventional threshold strategy, there

was an increase of the sensibility/recall when applying the Z-score technique concerning

Min-Max method and the non-use of normalization techniques. In both the majority and

the conventional threshold approach, there was no significant change in the maximum and

minimum values of the sensibility/recall. The use of Z-score reduced Specificity. There

were no significant variations between Precision and F1-Score.

Table 33 – Normalization - Neural Networks(NN)

Machine Learning: Neural Network(NN)

C.R NM Threshold AC SS/R SP P F1-Score Time

MED WN Majority 0,335 0,836 0,251 0,215 0,279 15,654

MIN 0,143 0,000 0,000 0,000 0,000 1,049

MAX 0,859 1,000 1,000 0,878 0,521 58,617

MED MM Majority 0,354 0,835 0,273 0,188 0,279 14,602

MIN 0,141 0,022 0,000 0,141 0,039 1,060

MAX 0,849 1,000 0,987 0,341 0,445 52,736

MED ZS Majority 0,362 0,773 0,294 0,194 0,246 13,977

MIN 0,142 0,016 0,000 0,142 0,031 1,245

MAX 0,857 1,000 0,998 0,539 0,453 59,082

MED WN Conventional 0,614 0,566 0,622 0,355 0,303 15,654

MIN 0,141 0,000 0,000 0,000 0,000 1,049

MAX 0,909 1,000 1,000 0,899 0,570 58,617

MED MM Conventional 0,603 0,538 0,614 0,402 0,283 14,602

MIN 0,141 0,000 0,000 0,000 0,000 1,060
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Table 33 – Normalization - Neural Networks(NN)

Machine Learning: Neural Network(NN)

MAX 0,903 1,000 1,000 0,948 0,516 52,736

MED ZS Conventional 0,628 0,474 0,653 0,451 0,226 13,977

MIN 0,143 0,005 0,000 0,143 0,009 1,245

MAX 0,904 1,000 1,000 0,935 0,524 59,082

Results obtained with Neural Network (NN) machine learning technique, presented

in Table 33, reveal a reduction in the elapsed time of the Min-Max (MM) techniques

concerning the non-use of normalization technique (WN), progressively.

Normalization caused no significant variations of the minimum and maximum

numbers in Accuracy. Still, on the average value measured in workflows, the accuracy

raised using Z-score standardization application instead of Min-Max and the non-use of

techniques of normalization, both in the majority and conventional threshold approach.

Regarding the Sensibility / Recall, in the majority threshold approach, there was a

decrease in the mean sensitivity about the use of Z-score normalization. In the conven-

tional threshold approach, there was a reduction of sensibility/recall when applying the

Min-max and Z-score techniques, progressively. In both the majority and the traditional

threshold approach, there was no significant change in the maximum and minimum values

of the sensibility/recall.

Results concerning Specificity revealed a progressive improvement in the majority

threshold approach when using Min-Max and Z-score methods, progressively. In the

conventional threshold approach, growth only occurred when the Z-score technique was

applied. Precision using majority threshold approach worsened in the application of Min-

Max and Z-score techniques. However, improvements occurred using the conventional

threshold approach applying normalization technique, instead of non-application. Z-score

outperformed the Min-Max method.

In the context of the conventional threshold approach, there was a progressive

worsening on the F1-Score, non-application of the normalization technique outperforming

the Min-Max, and Z-score techniques, respectively.
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4.2- Feature Selection and Extraction

Experiments 3, 4, 5, and 8 evaluate the impacts of the feature selection and

extraction, as shown in Tables 34, 35, 36, 37.

Experiment 3

This experiment evaluates workflows that applied feature selection and extraction

techniques. Workflow 4 consists of sets of attributes (1,2,12) and the original conditions

(8).

Transformation on workflows 5 and 11, composed by the attributes (1,2,12) and

the set of attributes transformed conditions (9), experienced numerous feature selection

techniques like LASSO, CFS, and INFOGAIN, as well as feature extraction method called

PCA.

There also have workflows 25 and 28. They present sets of attributes (2.12), the

transformed condition attribute set (9), and the set of transformed attributes 11, 13 and

14 (Airline, Departure, Arrival), resulting from the transformation of the attribute set 1. On

these two workflows, the feature selection (CFS) reduction occurred. One case applied

the feature extraction feature PCA. Results are presented in Table 34.

Workflows of 5 to 8 (respectively presenting the PCA and LASSO/PCA and IN-

FOGAIN/PCA and CFS techniques) revealed inferior results comparing to workflow 4

(composed of the original condition attributes). Still, the workflows from 9 to 11, which

had only the application of the feature selection techniques (LASSO, INFOGAIN, and

CFS, respectively), obtained the same result, being superior to both workflows of 4 and

numbered from 5 to 8.

Considering machine learning method RF, workflows 25 and 28 revealed the best

result. It significantly increased the sensitivity and the overall result in workflow 28, using

features selection CFS technique and extraction PCA. Related to the machine learning

method NN, workflow 25 manifested the best result (especially the one that refers to the

sensitivity), using only the feature selection CFS method. Contrasting to workflow 4 and
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Table 34 – Comparison of Feature Selection Techniques(CFS,PCA,LASSO,IG) on Condi-

tions

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional 4 RF IMB MM 0,943 0,674 0,988 0,902 0,772 8,252

Majority

5 RF IMB MM 0,910 0,786 0,930 0,653 0,713 14,264

6 RF IMB ZS 0,898 0,857 0,905 0,601 0,707 12,564

7 RF IMB WN 0,891 0,914 0,888 0,575 0,706 9,163

8 RF IMB WN 0,894 0,866 0,898 0,586 0,699 9,844

9 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,874

10 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,091

11 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,080

25 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,947

Conventional 25 NN IMB WN 0,909 0,422 0,990 0,873 0,569 2,992

Majority 28 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,508

Conventional 28 NN IMB MM 0,903 0,360 0,993 0,896 0,514 5,918

workflows 5 to 11, workflow 28 with the machine learning method RF also showed higher

performance.

Experiment 4

In experiment 4 experience, workflows try to evaluate different aspects of feature

selection. Workflows 13 and 14 compare the transformed set of event attributes (7),

applying feature selection and extraction PCA and LASSO algorithms in workflow 13, and

feature selection technique CFS in workflow 14. Attributes (1, 2, and 12) integrates both

of them.

Workflows 24, 27, and 29 have in common the use of sets of attributes (2,12).

There were applied feature extraction and selection methods PCA and CFS on the sets

of attributes (7,11,13,14) of workflow 24. In workflow 27, there were used CFS feature

selection techniques on the set of event attributes (7) and individually the application

of the techniques of feature extraction and selection, PCA and CFS. Finally, workflow

29 experienced the use of feature extraction and selection PCA and CFS methods,

considering the complete set of attributes (7,11,13,14).

Table 35 illustrates the effects obtained using workflows 13 and 14. There was no

difference in the results regarding the application of the feature selection technique CFS
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Table 35 – Comparison of Feature Selection Techniques(LASSO,CFS,PCA) on Events

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority 13 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,069

Majority 14 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,695

Majority 24 RF IMB WN 0,939 0,881 0,949 0,740 0,805 10,732

Conventional 24 NN IMB ZS 0,896 0,375 0,983 0,786 0,507 6,430

Majority 27 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,415

Conventional 27 NN IMB MM 0,903 0,360 0,993 0,896 0,514 6,047

Majority 29 RF IMB MM 0,937 0,883 0,946 0,733 0,801 13,638

Conventional 29 NN IMB WN 0,909 0,422 0,990 0,873 0,569 4,468

(workflow 14) and feature extraction and selection, PCA, and LASSO (workflow 13).

On workflows 24, 27, and 29, evaluation befalls in two parts. Firstly, results

regarding machine learning RF algorithms were very close, highlighting better F1-Score

on workflow 27, achieving the best overall effect of this experiment. Regarding the

neural networks, there was a slight difference, mainly in what concerns the accuracy, with

workflow 29 standing out among the three workflows tested with higher F1-Score and

shorter time elapsed.

Experiment 5

Experiment 5 embraces tests regarding workflows 15,16 and 17, for sets of event

attributes and conditions (original and transformed). Both workflows 15 and 16 use the

basic set of attributes (1,2,12). Besides, workflow 15 also has the application of the

LASSO feature selection technique, on the set of events (7) and the CFS technique on the

set of conditions (9). The set of attributes (1,2,12) of workflow 16 held feature extraction

and selection techniques PCA and LASSO for the set of event attributes (7), and PCA and

CFS methods for the set of condition attributes (9). In workflow 17, the goal is to analyze

the set with original data for Airline, Departure, Arrival (1); Events (6); Conditions (8); and

the original data set of the departure date and time (99).

Table 36 highlights results on workflow 15, except for referring to the elapsed

time, revealing that the application of feature extraction technique before feature selection

may not be the best choice in this situation. Still, a significantly lower result occurred in
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Table 36 – Comparison of Feature Selection Techniques(LASSO,CFS,PCA) on Events

and Conditions

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority
15 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,620

16 RF IMB WN 0,894 0,866 0,898 0,586 0,699 9,764

Conventional 17 RF SUB MM 0,655 0,637 0,658 0,238 0,347 1,549

almost all the questions, is the best only in the time elapsed, in workflow 17, presenting

inadequate performance using original attributes.

Experiment 8

One goal in experiment 8 is to evaluate the application of feature selection tech-

niques on workflows 1, 22, and 23. Workflow 1 has the underlying attribute schema,

considering the transformation of the data only of the departure date (2.12) in addition to

original set 1 (Airline, Departure, Arrival). Workflows 22 and 23 have the basic attribute

sets (2.12). Besides the set of primary attributes, workflow 22 has the data sets (11,13,14)

with the individual application of feature extraction and selection PCA and CFS algorithms.

On workflow 23, the experiment considered only the individual application of the feature

selection method CFS.

Table 37 – Comparison of Feature Selection to completely data(Airline,Arrival,Departure)

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority 1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

Majority 22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

Conventional 22 NN IMB MM 0,903 0,360 0,993 0,896 0,514 6,115

Majority 23 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,953

Conventional 23 NN IMB WN 0,909 0,422 0,990 0,873 0,569 2,951

Results related to workflows 22 and 23, presented in Table 37, referring to work-

flows 22 and 23, considered the use of the machine learning RF technique initially. In this

context, workflow 22 presented a far superior result in practically all aspects tested, losing

only in the time elapsed. This scenario reveals that the use of the techniques of feature

extraction and selection proved very productive in this situation. Results involving machine



102

learning technique NN on workflow 23 was the opposite - superior to that obtained in

workflow 22. Comparing to base workflow 1, the result obtained in workflow 22 using

machine learning RF method was superior, revealing itself as the best of this experiment.

4.3- Comparison of Balancing Methods

In order to evaluate the impacts of the application of balancing techniques, exper-

iment 16 presents the consolidated results in their mean and minimum and maximum

values with the Tables 38 and 39.

Table 38 – Balancing Results - Random Forest

Machine Learning Method: Random Forest(RF)

C.R BL Threshold AC SS/R SP P F1-Score Time

MED IMB Majority 0,900 0,756 0,923 0,646 0,677 8,362

MIN 0,666 0,203 0,668 0,246 0,267 3,149

MAX 0,940 0,933 0,989 0,854 0,806 16,597

MED SUB Majority 0,446 0,973 0,358 0,206 0,339 2,273

MIN 0,194 0,893 0,062 0,149 0,259 1,102

MAX 0,691 0,995 0,647 0,310 0,469 3,879

MED SMOTE Majority 0,193 0,950 0,067 0,147 0,252 18,902

MIN 0,143 0,362 0,000 0,139 0,201 9,044

MAX 0,729 1,000 0,773 0,254 0,329 39,522

MED IMB Conventional 0,908 0,402 0,993 0,886 0,532 8,362

MIN 0,859 0,039 0,981 0,524 0,074 3,149

MAX 0,947 0,700 0,999 0,949 0,792 16,597

MED SUB Conventional 0,826 0,809 0,829 0,463 0,585 2,273

MIN 0,634 0,633 0,627 0,231 0,341 1,102

MAX 0,912 0,896 0,915 0,637 0,745 3,879

MED SMOTE Conventional 0,335 0,783 0,261 0,158 0,243 18,902

MIN 0,143 0,068 0,000 0,101 0,087 9,044

MAX 0,854 1,000 0,982 0,433 0,273 39,522

The application of the Random Forest balancing method reveals that the use of un-

balanced data produces the best average accuracy results (considering both conventional

and majority threshold approach). Table 38 presents the related results. In the majority

approach, the SUB and SMOTE methods had incredibly lower results regarding accuracy.

In the conventional approach, the subsampling technique was slightly inferior to the use of
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unbalanced data. In this case, the SMOTE technique presented a significantly lower result

comparing to the two other states previously mentioned (unbalanced and SUB). Regarding

sensibility/recall, the use of balancing techniques produced a significant increase in the

values obtained, both in the conventional and in the majority threshold approach.

In the majority threshold approach, the Specificity and Precision, as well as ob-

served regarding the accuracy, had much lower results in sets that had the balancing

techniques applied. In the Conventional approach, concerning the average values, the

same phenomenon occurred; however, for the maximum values of Specificity, Precision,

and F1-Score were very close in the different balancing techniques.

Table 39 – Balancing Results - Neural Networks

Machine Learning Method: Neural Networks(NN)

C.R BL Threshold AC SS/R SP P F1-Score Time

MED IMB Majority 0,741 0,450 0,790 0,308 0,300 4,533

MIN 0,305 0,000 0,204 0,000 0,000 1,060

MAX 0,859 0,913 1,000 0,878 0,521 50,456

MED SUB Majority 0,163 0,997 0,024 0,146 0,254 32,937

MIN 0,142 0,989 0,000 0,142 0,249 1,049

MAX 0,222 1,000 0,095 0,155 0,268 59,082

MED SMOTE Majority 0,146 0,997 0,005 0,143 0,250 6,423

MIN 0,141 0,974 0,000 0,141 0,247 1,084

MAX 0,177 1,000 0,043 0,146 0,253 18,068

MED IMB Conventional 0,880 0,182 0,996 0,759 0,260 4,533

MIN 0,857 0,000 0,983 0,000 0,000 1,060

MAX 0,909 0,423 1,000 0,948 0,570 50,456

MED SUB Conventional 0,739 0,468 0,784 0,300 0,298 32,937

MIN 0,352 0,014 0,272 0,100 0,027 1,049

MAX 0,859 0,836 0,999 0,659 0,470 59,082

MED SMOTE Conventional 0,226 0,928 0,109 0,149 0,255 6,763

MIN 0,141 0,300 0,000 0,141 0,220 1,084

MAX 0,697 1,000 0,763 0,174 0,271 18,068

Results considering the use of Neural Networks method, as shown in Table 39),

reveals the best average accuracy results considering unbalanced data. It considers

conventional and with the majority threshold approach. It was a similar scenario to the

RF machine learning method. In the majority threshold approach, the SUB and SMOTE

methods had incredibly lower results regarding accuracy. The subsampling and smote

techniques were slightly inferior to the use of the unbalanced data in the conventional

threshold approach. Regarding Sensibility/Recall, the use of balancing techniques caused
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a significant increase in the values obtained, both in the conventional and in the majority

threshold approach.

The Specificity and Precision, in the majority threshold approach, as well as

observed regarding the accuracy, had much lower results in sets that had the applied

balancing techniques. All balancing techniques revealed similar values of F1-Score,

considering the difference between the maximum values found in the unbalanced data

sets. It happened in the majority approach and with the use of the conventional threshold.

4.4- Comparison of Threshold Approach

Experiment 17 evaluates the impacts of the application of the threshold approach

(Conventional and Majority). Table 40 and Figure 53 present consolidated results (mean,

minimum, and maximum values).

Figure 53 – Threshold Results

Accuracy results produced by the application of the Random Forest (RF) learning
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method presents that the conventional approach shows a much higher average result.

The minimum results in both approaches are very similar. Regarding Sensibility/Recall,

the opposite occurs: the average value is higher in the majority approach compared to the

conventional approach. On the specificity, precision, and F1-Score, the average values of

the conventional approach surpass those of the majority approach. However, evaluating

the maximum values found, the majority approach reveals slightly higher results.

Concerning the Neural Networks (NN) machine learning method, results resemble

similar to that found in the RF learning method. However, evaluating the maximum values

found, the conventional approach reveals slightly higher overall results, unlike the other

method analyzed.

Table 40 – Threshold Result

C.R Threshold ML AC SS/R SP P F1-Score Time

MED Conventional RF 0,690 0,665 0,694 0,503 0,454 9,846

MIN 0,143 0,039 0,000 0,101 0,074 1,102

MAX 0,947 1,000 0,999 0,949 0,792 39,522

MED Majority RF 0,513 0,893 0,450 0,333 0,423 9,846

MIN 0,143 0,203 0,000 0,139 0,201 1,102

MAX 0,940 1,000 0,989 0,854 0,806 39,522

MED Conventional NN 0,632 0,564 0,643 0,443 0,320 13,201

MIN 0,141 0,000 0,000 0,000 0,000 1,049

MAX 0,909 1,000 1,000 0,948 0,570 59,082

MED Majority NN 0,371 0,810 0,298 0,227 0,278 13,201

MIN 0,141 0,000 0,000 0,000 0,000 1,049

MAX 0,859 1,000 1,000 0,878 0,521 59,082

4.5- Machine Learning: Random Forest X Neural Networks

Experiment 18 evaluates the impacts of the Machine Learning RF / NN methods,

with best results presented in Table 41.
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Table 41 – Machine Learning

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Majority
22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

18 NN IMB WN 0,859 0,537 0,913 0,505 0,521 3,033

Conventional
2 RF IMB ZS 0,947 0,700 0,989 0,912 0,792 7,638

20 NN IMB WN 0,909 0,423 0,990 0,872 0,570 3,088

This scenario presents the best results obtained using RF/NN methods combined

with each threshold approach (Majority/Conventional). Random Forest machine learning

method was superior in the two threshold approaches in all analyzed factors, such as

accuracy, sensibility, F1-Score, except for the elapsed time. Neural Networks machine

learning method obtained its best results with a much shorter time.

Figure 54 – Machine Learning
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4.6- Evaluation of Time Elapsed

In order to evaluate the impacts on the Elapsed Times, especially concerning the

balancing and normalization, experiment 19 exhibits the best and worst results in Table

42.

Table 42 – Time Elapsed - Balancing and Normalization

Machine Learning : RF Machine Learning : NN

Time - Balancing Time - Balancing

CR IMB SUB SMOTE CR IMB SUB SMOTE

MED 8,362 2,273 18,902 MED 4,533 32,937 6,763

MIN 3,149 1,102 9,044 MIN 1,060 1,049 1,084

MAX 16,597 3,879 39,522 MAX 50,456 58,617 18,068

Time - Normalization Time - Normalization

CR WN MM ZS CR WN MM ZS

MED 10,002 9,782 9,644 MED 15,654 14,602 13,977

MIN 1,102 1,164 1,158 MIN 1,049 1,060 1,245

MAX 39,522 39,029 38,899 MAX 57,399 49,953 57,384

Random Forest presented inferior average times using balancing SUB, followed by

Imbalanced, and with superior time considering SMOTE technique. Table 42 consolidates

these experiment results.

For the Neural Networks machine learning method, SUB had the worst result,

followed by SMOTE, and the best result was not to use balance techniques. Normalization

results were very close in all techniques in the two methods of machine learning.

Considering the aspect of better and worse elapsed time results, as shown in

Figures 55 and 56, Random Forest produced the worst results (higher times) with the

SMOTE balancing technique. Neural Networks method obtained all higher times results

using the SUB balancing technique.

The use of the SUB balancing technique unveiled the best results (lower times) for

the Random Forest method. Considering Neural Networks, several methods achieved the

fleetest times, as, for example, SUB (workflows 31, 21 and 19), SMOTE (workflow 24),

and IMB (workflow 24).
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Figure 55 – Time - Balancing

Figure 56 – Time - Normalization

4.7- Accuracy, Sensibility/Recall, and F1-Score

Experiment 20 evaluates the best results of Accuracy, Sensibility/Recall, and

F1-Score, with the best results presented in table 43.
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Table 43 – Better F1-Score

Threshold WF ML BL NM AC SS/R SP P F1-Score Time

Conventional

2 RF IMB ZS 0,947 0,700 0,989 0,912 0,792 7,638

2 RF IMB MM 0,947 0,695 0,989 0,911 0,789 7,855

2 RF IMB WN 0,946 0,691 0,989 0,911 0,786 7,317

4 RF IMB MM 0,943 0,674 0,988 0,902 0,772 8,252

4 RF IMB ZS 0,942 0,674 0,987 0,897 0,770 7,981

Majority

22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

27 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,415

28 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,508

24 RF IMB WN 0,939 0,881 0,949 0,740 0,805 10,732

22 RF IMB ZS 0,938 0,896 0,945 0,729 0,804 9,777

This experiment selected the five best F1-Score results for both the conventional

threshold approach and the Majority approach. In this selection, the learning method

of random forest machine had all the results of this ranking. The results where the

normalization technique did not occur were the most frequent among those ranked with

five items among the ten most, being a vast majority in the approach threshold majority.

Then Z-score with three items and Min-Max with two items.

The Accuracy of this coming in all the best-ranked results, getting in the range of

94%.

Sensibility/Recall presented its best results in the majority threshold approach,

ranging from 87.5% to 89.6%. Meanwhile, in the conventional approach, the results were

between 67.4% and 70%.

The F1-Score showed, in general, in this listing results always higher than 77%,

reaching results of 80.6%.

4.8- Comparison With Related Works

The two best results obtained in this work (workflow 2 with Conventional Threshold

and Worflow 22 with Majority Threshold) were then selected for comparison and evaluation

with the best results obtained in the related works as present in Table 44. That comparison

with these related works used normalized improvement, so as not to overestimate any

improvement obtained.
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Figure 57 – Accuracy, Sensibility/Recall, Specificity and F1-Score

Figure 58 – Accuracy, Sensibility/Recall, Specificity and F1-Score

Comparing the best results achieved in the work related to the results achieved in

this work in terms of Accuracy, Precision, Recall, F1-Score, promising results were found

as expressed in Figure 59.

Regarding Accuracy, in relation to the work related to the best results presented by

Cao and Fang [2012] which obtained 0.883; This work obtained 0.947 (with conventional

Threshold) and 0.940 (with Majority Threshold). Comparatively, considering a normalized

improvement, the improvement rate was 54.70% and 48.72% respectively in this study.

In aspect of Precision, the related work that presented the best results was that of

Belcastro et al. [2016] with 0.869; In relation to this research was not achieved a significant

improvement, having obtained the best result, in its version with Majority Threshold, the
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Table 44 – Better Results achieved in in this work and related works.

Pub. Threshold Results

Accuracy Precision Recall F1-score

Rebollo and Balakrishnan [2014] Conventional 0.810 - 0.764 -

Cao and Fang [2012] Conventional 0.883 - - -

Khaksar and Sheikholeslami [2019] Conventional 0.764 - 0.600 -

Chakrabarty et al. [2019] Conventional 0.797 0.760 0.800 0.740

Choi et al. [2016] Conventional 0.834 - - -

Nigam and Govinda [2017] Conventional 0806 0.321 0.1150 0.209

Choi et al. [2017] Conventional 0.831 - - -

Saadat and Moniruzzaman [2019] Conventional 0.821 - - -

Belcastro et al. [2016] Conventional 0.858 - 0.869 -

Henriques and Feiteira [2018] Conventional 0.856 - - -

This Work Conventional 0.947 0.912 0.700 0.792

This Work Majority 0.940 0.746 0.875 0.806

value 0.875. That is, a 4.58% normalized improvement rate over the best result observed

in the related works.

Regarding Recall, the best related work was in Chakrabarty et al. [2019] with 0.760.

Already in this research was obtained as best result 0.912 (Conventional Threshold).

Comparing the results achieved in this research with those of the best related work, a

normalized improvement rate of 63.33% was achieved.

Regarding F1-Score, the work related to best result was also Chakrabarty et al.

[2019] with 0.740. In this current work we obtained results of 0.792 (Conventional Thresh-

old) and 0.806 (Majority Threshold). These results were in terms of normalized improved

20% and 25.38% higher, respectively, than the best result achieved in related work.
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Figure 59 – Normalized Improvement
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Conclusions

In this work, we performed an experimental evaluation of data preprocessing

methods, especially normalization, categorical mapping and discretization to optimize the

accuracy and sensitivity of the prediction models.

To produce this assessment, a database was built with the integration of multiple

data sources, such as flight data (called VRA [ANAC, 2016]) and weather data (Weather

Underground (WU), collected for each airport. From there, a selection of the airports

with the highest number of flights was carried out, besides a data cleaning segmented

in two steps: first was a verification of the inconsistencies; and second, verification and

processing of missing data. However, as a remodeling of the infrastructure of Brazilian

airports took place due to the great events of the World Cup and Olympics, it was

also necessary to select data for analysis from 2015, in order to represent the current

infrastructure of the Brazilian airports with the improvements already completed.

The data transformation process was performed after the proper verification of

each field, in the application of techniques such as Binning, Categorical Mapping, and

Conceptual Hierarchy were applied in this data, increasing the probability of significant

predictions by the classifier. In addition to these techniques, the data normalization was

also applied, generating three distinct data sets: one without normalization, and another

two with the application of the Min-max and Z-score techniques, respectively.

With the transformation adequately applied, these data sets were divided into

training and test sets, in the ratio 80:20, allowing the continuity of the tests. Then, a

new round of data was applied to the training data sets with three levels of distinct sets:

one without imbalanced and two with Random Subsampling (RS) and Synthetic Minority

Over-sampling Technique (SMOTE), respectively.

To optimize the experiments with the selection of more representative features,

data reduction was also performed, more specifically feature selection (LASSO, CFS, IG)

and feature extraction (PCA).

Workflows have been developed thinking for each training dataset and machine

learning methods from the creation of an evaluation model. With model generation, it was

possible to carry out the appropriate analysis of the test datasets and verification of the
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predictive capacity of the classification algorithm.

Based on these workflows, and as a way of evaluating the impact transformations

caused on reaching results, twenty experiments were carried out.

Experiment analysis points out that the application of the transformation techniques

allowed a considerable improvement of the results obtained in the prediction models,

optimizing Accuracy, Sensitivity, and F1-Score. It is necessary to emphasize that the

transformation of the data (conceptual hierarchy, categorical mapping, and application of

the data type ITime) and data reduction (feature selection and extraction) generated a

absolute difference that increased in more than 130% the results of F1-Score, 40% the

results of Accuracy, 35% the sensitivity results, compared with the original data. Compared

to the related studies, with the use of a normalized improvement, results were obtained

up to 54.70% superior in terms of Accuracy; up to 4.58% higher in Precision terms; up to

63.33% higher in terms of Recall; and results about 25.38% higher in terms of F1-Score.

As suggestions for improvements and future work, it may be considered the applica-

tion of other transformation methods and strategies to the dataset and balancing. Another

possibility of improvement can be considered in the application of other limit modalities,

cost-sensitive learning, other approaches to tunning, application of hyperparameter search

techniques and machine learning methods, such as deep learning. Another interesting

new study consists of the analysis of the imputation methods applied to original missing

data using different techniques. Other opportunities for future improvements also include

comparing the periods before and after the refurbishment of airports to see if a classifier

trained in the period prior to the improvements would be able to make good recommen-

dations later. It is also worth checking the discretization of data that went through the

conceptual hierarchy semantically, such as grouping of months in season and hours in

shifts.
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A- Detailed Transformations

Table 45 – Data Transformation detailing

Dimension
Original

Attribute

Transformed

Attribute

Transformed

Values
Technique

Metereologic
Depart

Temperature

Depart

Temperature

1: below 14.2

2: 14.2 to 18.7

3: 18.8 to 22.6

4: 22.7 to 26.4

5: 26.5 to 30.0

6: above 30.0

Discretization

Binning

(Interval)

Metereologic
Depart

Dew Point

Depart

Dew Point

1: below 7.8

2: 7.8 to 12.7

3: 12.8 to 16.6

4: 16.7 to 20.5

5: 20.6 to 23.6

6: 23.7 to 27.4

7: above 27.4

Discretization

Binning

(Interval)

Metereologic
Depart

Humidity

Depart

Humidity

1: below 26.5

2: 26.5 to 41.6

3: 41.7 to 54.4

4: 54.5 to 67.3

5: 67.4 to 79.4

6: 79.5 to 92.5

6: above 92.5

Discretization

Binning

(Interval)
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Table 45 continued from the previous page

Dimension
Original

Attribute

Transformed

Attribute

Transformed

Values
Technique

Metereologic
Depart

Pressure

Depart

Pressure

1: below 1006.9

2: 1006.9 to 1010.8

3: 1010.9 to 1014.5

4: 1014.6 to 1018.4

5: 1018.5 to 1022.2

6: 1022.3 to 1026.3

7: above 1026.3

Discretization

Binning

(Interval)

Metereologic
Depart

Visibility

Depart

Visibility

1: below 2.3

2: 2.3 to 6.7

3: 6.8 to 10.0

4: 10.1 to 14.9

5: 15.0 to 20.0

6: 21.1 to 37.2

7: 37.3 to 54.1

8: 54.2 to 89.2

9: above 89.2

Discretization

Binning

(Interval)

Metereologic Events Events
Categorical

Mapping

Metereologic Conditions Conditions
Categorical

Mapping

Temporal
Departure

Expected

Year

Month

Day

WeekDay

Hour

2015 to 2017

1 to 12

1 to 30

1 to 7

00:00 to 23:59

Conceptual

Hierarchy
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Table 45 continued from the previous page

Dimension
Original

Attribute

Transformed

Attribute

Transformed

Values
Technique

Temporal Hour Departure Hour bin

1: 00:00 to 01:42

2: 01:43 to 06:18

3: 06:19 to 09:24

4: 09:25 to 13.24

5: 13:25 to 17:36

6: 17:37 to 21:19

7: 21:20 to 23:59

Discretization

Binning

(Interval)

Spatial Airline Airline
Categorical

Mapping

Spatial Arrival Arrival
Categorical

Mapping

Spatial Departure Departure
Categorical

Mapping
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B- Complete Test Results

B.1- Random Forest

B.1.1 Conventional Threshold

Table 46 – Results of Random Forest Workflow Tests - Conventional Threshold

WF ML BL NM AC SS/R SP P F1-Score Time

0 RF IMB WN 0,860 0,039 0,997 0,662 0,074 3,149

0 RF IMB MM 0,860 0,040 0,997 0,659 0,075 3,276

0 RF IMB ZS 0,860 0,040 0,997 0,669 0,076 3,265

0 RF SUB WN 0,645 0,645 0,645 0,232 0,341 1,427

0 RF SUB MM 0,647 0,644 0,648 0,235 0,344 1,385

0 RF SUB ZS 0,645 0,644 0,646 0,232 0,341 1,427

0 RF SMOTE WN 0,214 0,923 0,096 0,145 0,251 9,650

0 RF SMOTE MM 0,214 0,923 0,096 0,145 0,251 9,352

0 RF SMOTE ZS 0,214 0,923 0,096 0,145 0,251 9,275

1 RF IMB WN 0,926 0,518 0,994 0,936 0,667 5,481

1 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,731

1 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,635

1 RF SUB WN 0,886 0,876 0,888 0,565 0,687 1,999

1 RF SUB MM 0,884 0,876 0,886 0,563 0,685 2,053

1 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 1,957

1 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 14,009

1 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,385

1 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,700
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Table 46 continued from the previous page

WF ML BL NM AC SS/R SP P F1-Score Time

2 RF IMB WN 0,946 0,691 0,989 0,911 0,786 7,317

2 RF IMB MM 0,947 0,695 0,989 0,911 0,789 7,855

2 RF IMB ZS 0,947 0,700 0,989 0,912 0,792 7,638

2 RF SUB WN 0,908 0,891 0,911 0,624 0,734 2,566

2 RF SUB MM 0,909 0,893 0,911 0,628 0,738 2,620

2 RF SUB ZS 0,912 0,896 0,915 0,637 0,745 2,505

2 RF SMOTE WN 0,294 0,903 0,192 0,157 0,267 18,362

2 RF SMOTE MM 0,285 0,909 0,181 0,156 0,266 17,543

2 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,311

3 RF IMB WN 0,929 0,581 0,987 0,878 0,699 4,030

3 RF IMB MM 0,928 0,576 0,987 0,879 0,696 4,495

3 RF IMB ZS 0,929 0,584 0,986 0,876 0,701 4,029

3 RF SUB WN 0,889 0,862 0,894 0,574 0,689 1,316

3 RF SUB MM 0,889 0,863 0,893 0,575 0,690 1,356

3 RF SUB ZS 0,892 0,862 0,896 0,580 0,694 1,263

3 RF SMOTE WN 0,262 0,876 0,160 0,148 0,253 9,635

3 RF SMOTE MM 0,262 0,876 0,160 0,148 0,253 9,163

3 RF SMOTE ZS 0,262 0,876 0,160 0,148 0,253 9,044

4 RF IMB WN 0,942 0,665 0,988 0,900 0,765 8,018

4 RF IMB MM 0,943 0,674 0,988 0,902 0,772 8,252

4 RF IMB ZS 0,942 0,674 0,987 0,897 0,770 7,981

4 RF SUB WN 0,884 0,891 0,883 0,559 0,687 2,617

4 RF SUB MM 0,884 0,892 0,882 0,561 0,689 2,558

4 RF SUB ZS 0,887 0,894 0,885 0,564 0,691 2,578

4 RF SMOTE WN 0,245 0,931 0,131 0,151 0,260 18,237

4 RF SMOTE MM 0,239 0,937 0,122 0,151 0,260 17,220

4 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,293

5 RF IMB WN 0,884 0,198 0,998 0,937 0,327 13,697

5 RF IMB MM 0,885 0,212 0,998 0,935 0,346 14,264

5 RF IMB ZS 0,884 0,200 0,998 0,930 0,329 12,917
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5 RF SUB WN 0,795 0,814 0,791 0,393 0,530 3,641

5 RF SUB MM 0,789 0,816 0,785 0,389 0,527 3,866

5 RF SUB ZS 0,792 0,822 0,787 0,391 0,530 3,739

5 RF SMOTE WN 0,827 0,073 0,952 0,201 0,107 19,747

5 RF SMOTE MM 0,838 0,068 0,966 0,247 0,106 18,532

5 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 18,952

6 RF IMB WN 0,927 0,543 0,991 0,908 0,680 9,144

6 RF IMB MM 0,927 0,541 0,991 0,909 0,678 9,232

6 RF IMB ZS 0,903 0,346 0,995 0,926 0,504 12,564

6 RF SUB WN 0,821 0,846 0,817 0,435 0,574 2,957

6 RF SUB MM 0,816 0,844 0,812 0,430 0,570 2,771

6 RF SUB ZS 0,815 0,841 0,810 0,424 0,564 3,592

6 RF SMOTE WN 0,742 0,187 0,835 0,158 0,171 15,098

6 RF SMOTE MM 0,720 0,219 0,804 0,156 0,182 15,631

6 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 15,250

7 RF IMB WN 0,931 0,571 0,990 0,907 0,701 9,163

7 RF IMB MM 0,931 0,576 0,990 0,907 0,704 9,265

7 RF IMB ZS 0,885 0,211 0,997 0,930 0,344 9,898

7 RF SUB WN 0,838 0,860 0,834 0,463 0,602 2,937

7 RF SUB MM 0,845 0,865 0,841 0,478 0,616 2,859

7 RF SUB ZS 0,811 0,839 0,807 0,419 0,559 2,926

7 RF SMOTE WN 0,683 0,310 0,745 0,168 0,218 19,010

7 RF SMOTE MM 0,651 0,369 0,697 0,169 0,231 19,099

7 RF SMOTE ZS 0,144 0,999 0,002 0,143 0,250 15,364

8 RF IMB WN 0,905 0,363 0,995 0,923 0,521 9,844

8 RF IMB MM 0,905 0,367 0,995 0,921 0,525 9,598

8 RF IMB ZS 0,906 0,376 0,995 0,921 0,534 9,916

8 RF SUB WN 0,841 0,862 0,838 0,469 0,608 2,826

8 RF SUB MM 0,871 0,879 0,870 0,532 0,663 2,619

8 RF SUB ZS 0,883 0,885 0,882 0,555 0,682 2,724
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8 RF SMOTE WN 0,275 0,913 0,168 0,154 0,264 17,862

8 RF SMOTE MM 0,269 0,916 0,161 0,154 0,263 17,377

8 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 18,156

9 RF IMB WN 0,926 0,518 0,994 0,936 0,667 5,874

9 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,461

9 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,652

9 RF SUB WN 0,886 0,876 0,888 0,565 0,687 2,066

9 RF SUB MM 0,884 0,876 0,886 0,563 0,685 1,973

9 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 2,002

9 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 13,320

9 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,254

9 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,711

10 RF IMB WN 0,926 0,518 0,994 0,936 0,667 6,091

10 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,421

10 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,644

10 RF SUB WN 0,886 0,876 0,888 0,565 0,687 2,006

10 RF SUB MM 0,884 0,876 0,886 0,563 0,685 2,012

10 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 1,981

10 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 13,368

10 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,748

10 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,768

11 RF IMB WN 0,926 0,518 0,994 0,936 0,667 6,080

11 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,357

11 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,713

11 RF SUB WN 0,886 0,876 0,888 0,565 0,687 1,969

11 RF SUB MM 0,884 0,876 0,886 0,563 0,685 1,984

11 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 2,138

11 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 13,306

11 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,893

11 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,970
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12 RF IMB WN 0,862 0,045 0,998 0,789 0,086 4,945

12 RF IMB MM 0,862 0,049 0,998 0,778 0,091 4,440

12 RF IMB ZS 0,862 0,048 0,998 0,765 0,091 4,528

12 RF SUB WN 0,655 0,704 0,647 0,249 0,368 1,864

12 RF SUB MM 0,656 0,703 0,648 0,252 0,371 1,789

12 RF SUB ZS 0,660 0,702 0,653 0,251 0,370 2,000

12 RF SMOTE WN 0,853 0,081 0,982 0,424 0,136 12,382

12 RF SMOTE MM 0,854 0,083 0,982 0,433 0,139 11,579

12 RF SMOTE ZS 0,143 1,000 0,001 0,143 0,250 11,692

13 RF IMB WN 0,926 0,518 0,994 0,936 0,667 6,069

13 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,418

13 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,554

13 RF SUB WN 0,886 0,876 0,888 0,565 0,687 2,085

13 RF SUB MM 0,884 0,876 0,886 0,563 0,685 1,961

13 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 2,155

13 RF SMOTE WN 0,229 0,946 0,110 0,150 0,259 17,005

13 RF SMOTE MM 0,224 0,951 0,104 0,150 0,259 16,785

13 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,319

14 RF IMB WN 0,926 0,518 0,994 0,936 0,667 5,695

14 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,372

14 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,637

14 RF SUB WN 0,886 0,876 0,888 0,565 0,687 2,040

14 RF SUB MM 0,884 0,876 0,886 0,563 0,685 1,994

14 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 2,157

14 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 13,645

14 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,457

14 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,555

15 RF IMB WN 0,926 0,518 0,994 0,936 0,667 5,620

15 RF IMB MM 0,925 0,515 0,994 0,935 0,664 5,344

15 RF IMB ZS 0,926 0,516 0,994 0,935 0,665 5,876
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15 RF SUB WN 0,886 0,876 0,888 0,565 0,687 1,949

15 RF SUB MM 0,884 0,876 0,886 0,563 0,685 1,969

15 RF SUB ZS 0,887 0,879 0,888 0,565 0,688 2,199

15 RF SMOTE WN 0,264 0,918 0,155 0,153 0,262 13,606

15 RF SMOTE MM 0,268 0,914 0,161 0,153 0,263 13,311

15 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,720

16 RF IMB WN 0,905 0,363 0,995 0,923 0,521 9,764

16 RF IMB MM 0,905 0,367 0,995 0,921 0,525 9,096

16 RF IMB ZS 0,906 0,376 0,995 0,921 0,534 9,404

16 RF SUB WN 0,841 0,862 0,838 0,469 0,608 2,799

16 RF SUB MM 0,871 0,879 0,870 0,532 0,663 2,624

16 RF SUB ZS 0,883 0,885 0,882 0,555 0,682 2,941

16 RF SMOTE WN 0,302 0,889 0,204 0,157 0,266 18,373

16 RF SMOTE MM 0,289 0,901 0,188 0,156 0,265 18,219

16 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,558

17 RF IMB WN 0,860 0,041 0,996 0,659 0,077 3,638

17 RF IMB MM 0,860 0,043 0,996 0,653 0,080 3,770

17 RF IMB ZS 0,860 0,045 0,996 0,643 0,083 3,778

17 RF SUB WN 0,655 0,633 0,659 0,236 0,344 1,550

17 RF SUB MM 0,655 0,637 0,658 0,238 0,347 1,549

17 RF SUB ZS 0,658 0,636 0,661 0,237 0,346 1,558

17 RF SMOTE WN 0,247 0,884 0,141 0,146 0,251 11,041

17 RF SMOTE MM 0,247 0,884 0,141 0,146 0,251 11,255

17 RF SMOTE ZS 0,247 0,884 0,141 0,146 0,251 11,179

18 RF IMB WN 0,907 0,407 0,990 0,875 0,556 3,878

18 RF IMB MM 0,906 0,398 0,991 0,876 0,548 3,964

18 RF IMB ZS 0,907 0,409 0,990 0,869 0,556 4,179

18 RF SUB WN 0,812 0,692 0,832 0,407 0,513 1,232

18 RF SUB MM 0,813 0,689 0,834 0,412 0,515 1,188

18 RF SUB ZS 0,815 0,689 0,836 0,411 0,515 1,300
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18 RF SMOTE WN 0,208 0,941 0,086 0,146 0,253 10,892

18 RF SMOTE MM 0,217 0,936 0,097 0,147 0,254 10,645

18 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,641

19 RF IMB WN 0,886 0,221 0,997 0,924 0,357 5,450

19 RF IMB MM 0,886 0,222 0,997 0,921 0,358 5,237

19 RF IMB ZS 0,866 0,067 0,999 0,926 0,124 3,975

19 RF SUB WN 0,702 0,660 0,709 0,274 0,387 1,220

19 RF SUB MM 0,689 0,676 0,691 0,269 0,385 1,164

19 RF SUB ZS 0,690 0,666 0,694 0,265 0,379 1,158

19 RF SMOTE WN 0,669 0,299 0,731 0,156 0,205 10,268

19 RF SMOTE MM 0,666 0,282 0,730 0,148 0,194 10,050

19 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,112

20 RF IMB WN 0,902 0,346 0,995 0,920 0,502 5,318

20 RF IMB MM 0,866 0,066 0,999 0,949 0,123 15,046

20 RF IMB ZS 0,866 0,069 0,999 0,937 0,128 16,023

20 RF SUB WN 0,730 0,729 0,730 0,310 0,435 2,599

20 RF SUB MM 0,712 0,716 0,711 0,294 0,417 2,145

20 RF SUB ZS 0,743 0,750 0,742 0,325 0,454 2,587

20 RF SMOTE WN 0,772 0,076 0,888 0,101 0,087 31,175

20 RF SMOTE MM 0,760 0,088 0,872 0,103 0,095 31,527

20 RF SMOTE ZS 0,144 0,997 0,002 0,142 0,249 31,830

21 RF IMB WN 0,877 0,148 0,999 0,948 0,255 5,373

21 RF IMB MM 0,878 0,157 0,999 0,947 0,269 5,480

21 RF IMB ZS 0,914 0,449 0,991 0,896 0,598 5,076

21 RF SUB WN 0,802 0,742 0,812 0,397 0,517 1,568

21 RF SUB MM 0,852 0,782 0,864 0,491 0,604 1,913

21 RF SUB ZS 0,837 0,770 0,848 0,456 0,573 2,027

21 RF SMOTE WN 0,364 0,760 0,299 0,153 0,254 21,857

21 RF SMOTE MM 0,365 0,762 0,299 0,153 0,255 21,882

21 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,544
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22 RF IMB WN 0,923 0,494 0,994 0,933 0,646 10,296

22 RF IMB MM 0,921 0,480 0,994 0,932 0,634 9,430

22 RF IMB ZS 0,935 0,597 0,992 0,925 0,726 9,777

22 RF SUB WN 0,883 0,833 0,891 0,561 0,670 2,031

22 RF SUB MM 0,898 0,867 0,903 0,601 0,710 2,168

22 RF SUB ZS 0,876 0,858 0,879 0,541 0,663 2,694

22 RF SMOTE WN 0,463 0,680 0,427 0,165 0,265 24,156

22 RF SMOTE MM 0,457 0,684 0,420 0,164 0,264 24,444

22 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,719

23 RF IMB WN 0,907 0,407 0,990 0,875 0,556 3,953

23 RF IMB MM 0,906 0,398 0,991 0,876 0,548 3,988

23 RF IMB ZS 0,907 0,409 0,990 0,869 0,556 3,904

23 RF SUB WN 0,812 0,692 0,832 0,407 0,513 1,190

23 RF SUB MM 0,813 0,689 0,834 0,412 0,515 1,304

23 RF SUB ZS 0,815 0,689 0,836 0,411 0,515 1,210

23 RF SMOTE WN 0,208 0,941 0,086 0,146 0,253 10,853

23 RF SMOTE MM 0,217 0,936 0,097 0,147 0,254 10,817

23 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,556

24 RF IMB WN 0,925 0,510 0,994 0,930 0,659 10,732

24 RF IMB MM 0,925 0,515 0,994 0,931 0,663 9,336

24 RF IMB ZS 0,934 0,589 0,992 0,924 0,719 9,790

24 RF SUB WN 0,865 0,827 0,871 0,517 0,636 2,110

24 RF SUB MM 0,900 0,870 0,905 0,607 0,715 2,167

24 RF SUB ZS 0,844 0,825 0,847 0,473 0,601 2,581

24 RF SMOTE WN 0,471 0,661 0,440 0,164 0,263 25,640

24 RF SMOTE MM 0,469 0,669 0,436 0,165 0,264 25,116

24 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 23,259

25 RF IMB WN 0,907 0,407 0,990 0,875 0,556 3,947

25 RF IMB MM 0,906 0,398 0,991 0,876 0,548 3,965

25 RF IMB ZS 0,907 0,409 0,990 0,869 0,556 4,131
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25 RF SUB WN 0,812 0,692 0,832 0,407 0,513 1,252

25 RF SUB MM 0,813 0,689 0,834 0,412 0,515 1,267

25 RF SUB ZS 0,815 0,689 0,836 0,411 0,515 1,291

25 RF SMOTE WN 0,208 0,941 0,086 0,146 0,253 10,706

25 RF SMOTE MM 0,217 0,936 0,097 0,147 0,254 10,774

25 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,626

26 RF IMB WN 0,916 0,450 0,994 0,923 0,605 11,816

26 RF IMB MM 0,916 0,451 0,994 0,926 0,607 10,639

26 RF IMB ZS 0,929 0,554 0,991 0,914 0,690 11,517

26 RF SUB WN 0,851 0,827 0,855 0,487 0,613 2,332

26 RF SUB MM 0,865 0,857 0,866 0,518 0,645 2,578

26 RF SUB ZS 0,850 0,850 0,850 0,485 0,618 3,010

26 RF SMOTE WN 0,460 0,690 0,422 0,166 0,267 26,069

26 RF SMOTE MM 0,468 0,681 0,432 0,166 0,267 25,927

26 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 24,651

27 RF IMB WN 0,923 0,494 0,994 0,933 0,646 10,415

27 RF IMB MM 0,921 0,480 0,994 0,932 0,634 9,009

27 RF IMB ZS 0,935 0,597 0,992 0,925 0,726 10,324

27 RF SUB WN 0,883 0,833 0,891 0,561 0,670 2,081

27 RF SUB MM 0,898 0,867 0,903 0,601 0,710 2,260

27 RF SUB ZS 0,876 0,858 0,879 0,541 0,663 2,507

27 RF SMOTE WN 0,463 0,680 0,427 0,165 0,265 24,276

27 RF SMOTE MM 0,457 0,684 0,420 0,164 0,264 23,913

27 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,715

28 RF IMB WN 0,923 0,494 0,994 0,933 0,646 10,508

28 RF IMB MM 0,921 0,480 0,994 0,932 0,634 9,401

28 RF IMB ZS 0,935 0,597 0,992 0,925 0,726 10,274

28 RF SUB WN 0,883 0,833 0,891 0,561 0,670 1,963

28 RF SUB MM 0,898 0,867 0,903 0,601 0,710 2,174

28 RF SUB ZS 0,876 0,858 0,879 0,541 0,663 2,410
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28 RF SMOTE WN 0,463 0,680 0,427 0,165 0,265 24,222

28 RF SMOTE MM 0,457 0,684 0,420 0,164 0,264 23,843

28 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,504

29 RF IMB WN 0,920 0,479 0,993 0,924 0,631 14,362

29 RF IMB MM 0,928 0,545 0,992 0,920 0,684 13,638

29 RF IMB ZS 0,909 0,398 0,995 0,924 0,556 16,597

29 RF SUB WN 0,899 0,880 0,902 0,600 0,713 2,366

29 RF SUB MM 0,895 0,875 0,898 0,591 0,706 2,581

29 RF SUB ZS 0,899 0,882 0,902 0,598 0,713 3,103

29 RF SMOTE WN 0,496 0,621 0,475 0,164 0,260 36,602

29 RF SMOTE MM 0,494 0,620 0,474 0,164 0,259 37,142

29 RF SMOTE ZS 0,143 1,000 0,001 0,143 0,250 38,899

30 RF IMB WN 0,922 0,512 0,991 0,900 0,653 4,860

30 RF IMB MM 0,923 0,516 0,991 0,901 0,656 8,000

30 RF IMB ZS 0,922 0,511 0,990 0,899 0,652 4,843

30 RF SUB WN 0,883 0,852 0,889 0,560 0,676 1,482

30 RF SUB MM 0,885 0,854 0,890 0,566 0,681 1,414

30 RF SUB ZS 0,887 0,857 0,892 0,569 0,684 1,438

30 RF SMOTE WN 0,193 0,969 0,064 0,147 0,255 12,165

30 RF SMOTE MM 0,193 0,969 0,064 0,147 0,255 9,988

30 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,004

31 RF IMB WN 0,880 0,178 0,997 0,911 0,298 10,364

31 RF IMB MM 0,879 0,168 0,998 0,919 0,283 11,394

31 RF IMB ZS 0,892 0,268 0,996 0,913 0,414 7,771

31 RF SUB WN 0,770 0,685 0,784 0,346 0,459 1,102

31 RF SUB MM 0,785 0,730 0,794 0,373 0,494 1,281

31 RF SUB ZS 0,839 0,810 0,843 0,462 0,588 1,868

31 RF SMOTE WN 0,322 0,856 0,233 0,156 0,265 20,066

31 RF SMOTE MM 0,322 0,856 0,233 0,156 0,265 19,989

31 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,739
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32 RF IMB WN 0,909 0,441 0,987 0,851 0,581 9,968

32 RF IMB MM 0,910 0,447 0,987 0,850 0,586 16,000

32 RF IMB ZS 0,909 0,445 0,986 0,844 0,583 10,130

32 RF SUB WN 0,811 0,827 0,808 0,417 0,555 2,947

32 RF SUB MM 0,811 0,830 0,808 0,421 0,559 2,934

32 RF SUB ZS 0,812 0,833 0,808 0,419 0,557 2,987

32 RF SMOTE WN 0,731 0,312 0,800 0,206 0,248 22,567

32 RF SMOTE MM 0,499 0,587 0,485 0,159 0,251 22,879

32 RF SMOTE ZS 0,144 0,999 0,001 0,143 0,250 22,875

33 RF IMB WN 0,891 0,274 0,994 0,879 0,418 13,230

33 RF IMB MM 0,886 0,237 0,995 0,883 0,374 14,212

33 RF IMB ZS 0,898 0,337 0,992 0,870 0,486 12,982

33 RF SUB WN 0,750 0,747 0,751 0,333 0,460 2,438

33 RF SUB MM 0,792 0,784 0,794 0,390 0,521 2,574

33 RF SUB ZS 0,788 0,771 0,790 0,379 0,508 2,848

33 RF SMOTE WN 0,777 0,209 0,871 0,212 0,211 39,454

33 RF SMOTE MM 0,689 0,325 0,749 0,177 0,229 32,771

33 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 29,051

34 RF IMB WN 0,909 0,430 0,989 0,869 0,575 8,767

34 RF IMB MM 0,910 0,441 0,989 0,866 0,584 8,998

34 RF IMB ZS 0,910 0,442 0,988 0,864 0,585 9,055

34 RF SUB WN 0,828 0,826 0,829 0,445 0,578 2,721

34 RF SUB MM 0,827 0,828 0,827 0,445 0,579 2,705

34 RF SUB ZS 0,829 0,828 0,829 0,445 0,579 2,693

34 RF SMOTE WN 0,757 0,233 0,844 0,199 0,215 22,765

34 RF SMOTE MM 0,754 0,238 0,840 0,198 0,216 15,326

34 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 15,273

35 RF IMB WN 0,888 0,247 0,995 0,892 0,387 12,017

35 RF IMB MM 0,883 0,204 0,996 0,894 0,332 10,569

35 RF IMB ZS 0,897 0,319 0,993 0,883 0,469 11,845
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WF ML BL NM AC SS/R SP P F1-Score Time

35 RF SUB WN 0,752 0,735 0,755 0,333 0,458 2,070

35 RF SUB MM 0,794 0,778 0,796 0,391 0,521 2,341

35 RF SUB ZS 0,783 0,763 0,786 0,372 0,500 2,589

35 RF SMOTE WN 0,805 0,131 0,917 0,208 0,160 26,593

35 RF SMOTE MM 0,803 0,137 0,914 0,209 0,166 26,144

35 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 24,320

36 RF IMB WN 0,920 0,485 0,992 0,911 0,633 10,833

36 RF IMB MM 0,921 0,496 0,992 0,911 0,642 11,063

36 RF IMB ZS 0,922 0,504 0,991 0,907 0,648 11,118

36 RF SUB WN 0,838 0,862 0,834 0,463 0,602 3,317

36 RF SUB MM 0,837 0,864 0,833 0,465 0,604 3,313

36 RF SUB ZS 0,838 0,868 0,833 0,463 0,604 3,270

36 RF SMOTE WN 0,368 0,814 0,294 0,161 0,269 26,601

36 RF SMOTE MM 0,280 0,889 0,179 0,153 0,260 26,331

36 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 26,267

37 RF IMB WN 0,911 0,409 0,994 0,920 0,566 16,077

37 RF IMB MM 0,909 0,395 0,995 0,923 0,553 14,176

37 RF IMB ZS 0,917 0,461 0,993 0,913 0,612 15,550

37 RF SUB WN 0,824 0,814 0,826 0,437 0,569 2,994

37 RF SUB MM 0,858 0,851 0,859 0,504 0,633 3,462

37 RF SUB ZS 0,853 0,853 0,853 0,490 0,622 3,879

37 RF SMOTE WN 0,491 0,670 0,461 0,171 0,273 39,522

37 RF SMOTE MM 0,448 0,716 0,403 0,166 0,270 39,029

37 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 34,956

38 RF IMB WN 0,920 0,504 0,989 0,887 0,643 9,670

38 RF IMB MM 0,921 0,512 0,989 0,883 0,648 9,493

38 RF IMB ZS 0,920 0,508 0,988 0,878 0,644 9,570

38 RF SUB WN 0,854 0,838 0,857 0,493 0,621 2,759

38 RF SUB MM 0,854 0,845 0,856 0,497 0,626 2,750

38 RF SUB ZS 0,855 0,845 0,856 0,494 0,623 2,762
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38 RF SMOTE WN 0,310 0,874 0,216 0,156 0,265 16,664

38 RF SMOTE MM 0,313 0,871 0,220 0,157 0,265 16,842

38 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,685

39 RF IMB WN 0,905 0,371 0,994 0,907 0,527 13,286

39 RF IMB MM 0,900 0,331 0,994 0,907 0,485 11,705

39 RF IMB ZS 0,913 0,441 0,992 0,898 0,591 12,988

39 RF SUB WN 0,796 0,757 0,802 0,389 0,514 2,260

39 RF SUB MM 0,832 0,802 0,837 0,453 0,579 2,522

39 RF SUB ZS 0,855 0,830 0,859 0,494 0,620 3,151

39 RF SMOTE WN 0,475 0,635 0,449 0,161 0,257 28,555

39 RF SMOTE MM 0,486 0,625 0,462 0,162 0,257 28,769

39 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 26,085

40 RF IMB WN 0,860 0,124 0,982 0,532 0,202 8,984

40 RF IMB MM 0,859 0,129 0,981 0,531 0,208 8,767

40 RF IMB ZS 0,859 0,128 0,981 0,524 0,206 8,658

40 RF SUB WN 0,635 0,673 0,628 0,231 0,344 3,189

40 RF SUB MM 0,634 0,678 0,627 0,234 0,348 3,188

40 RF SUB ZS 0,634 0,675 0,627 0,231 0,344 3,200

40 RF SMOTE WN 0,630 0,347 0,677 0,152 0,211 23,395

40 RF SMOTE MM 0,522 0,480 0,529 0,145 0,223 23,145

40 RF SMOTE ZS 0,144 0,998 0,002 0,143 0,250 23,009

B.1.2 Majority Threshold

Table 47 – Results of Random Forest Workflow Tests - Majority Threshold

WF ML BL NM AC SS/R SP P F1-Score Time

0 RF IMB WN 0,841 0,203 0,948 0,392 0,267 3,149
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WF ML BL NM AC SS/R SP P F1-Score Time

0 RF IMB MM 0,840 0,211 0,945 0,389 0,274 3,276

0 RF IMB ZS 0,839 0,212 0,943 0,383 0,273 3,265

0 RF SUB WN 0,353 0,913 0,260 0,170 0,287 1,427

0 RF SUB MM 0,358 0,913 0,265 0,173 0,291 1,385

0 RF SUB ZS 0,355 0,915 0,262 0,171 0,288 1,427

0 RF SMOTE WN 0,171 0,974 0,037 0,144 0,251 9,650

0 RF SMOTE MM 0,171 0,974 0,037 0,144 0,251 9,352

0 RF SMOTE ZS 0,171 0,974 0,037 0,144 0,251 9,275

1 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,481

1 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,731

1 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,635

1 RF SUB WN 0,462 0,990 0,374 0,208 0,344 1,999

1 RF SUB MM 0,463 0,990 0,374 0,210 0,347 2,053

1 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 1,957

1 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 14,009

1 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,385

1 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,700

2 RF IMB WN 0,922 0,929 0,920 0,660 0,772 7,317

2 RF IMB MM 0,920 0,932 0,918 0,654 0,769 7,855

2 RF IMB ZS 0,920 0,933 0,918 0,654 0,769 7,638

2 RF SUB WN 0,506 0,990 0,426 0,223 0,364 2,566

2 RF SUB MM 0,507 0,990 0,426 0,225 0,366 2,620

2 RF SUB ZS 0,518 0,989 0,440 0,227 0,369 2,505

2 RF SMOTE WN 0,143 1,000 0,001 0,143 0,250 18,362

2 RF SMOTE MM 0,143 1,000 0,001 0,143 0,250 17,543

2 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,311

3 RF IMB WN 0,937 0,824 0,956 0,757 0,789 4,030

3 RF IMB MM 0,937 0,826 0,956 0,756 0,790 4,495

3 RF IMB ZS 0,937 0,825 0,955 0,754 0,788 4,029

3 RF SUB WN 0,682 0,961 0,636 0,305 0,463 1,316
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WF ML BL NM AC SS/R SP P F1-Score Time

3 RF SUB MM 0,682 0,960 0,635 0,307 0,465 1,356

3 RF SUB ZS 0,691 0,959 0,647 0,310 0,469 1,263

3 RF SMOTE WN 0,178 0,964 0,047 0,144 0,251 9,635

3 RF SMOTE MM 0,178 0,964 0,047 0,144 0,251 9,163

3 RF SMOTE ZS 0,178 0,964 0,047 0,144 0,251 9,044

4 RF IMB WN 0,902 0,926 0,897 0,600 0,728 8,018

4 RF IMB MM 0,900 0,928 0,895 0,596 0,726 8,252

4 RF IMB ZS 0,900 0,928 0,895 0,597 0,726 7,981

4 RF SUB WN 0,496 0,989 0,414 0,219 0,359 2,617

4 RF SUB MM 0,498 0,990 0,415 0,221 0,362 2,558

4 RF SUB ZS 0,504 0,989 0,424 0,222 0,362 2,578

4 RF SMOTE WN 0,143 1,000 0,001 0,143 0,250 18,237

4 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 17,220

4 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,293

5 RF IMB WN 0,910 0,773 0,932 0,655 0,709 13,697

5 RF IMB MM 0,910 0,786 0,930 0,653 0,713 14,264

5 RF IMB ZS 0,908 0,779 0,929 0,648 0,707 12,917

5 RF SUB WN 0,348 0,991 0,241 0,178 0,302 3,641

5 RF SUB MM 0,344 0,991 0,235 0,179 0,303 3,866

5 RF SUB ZS 0,346 0,991 0,239 0,178 0,301 3,739

5 RF SMOTE WN 0,391 0,767 0,329 0,160 0,264 19,747

5 RF SMOTE MM 0,422 0,733 0,371 0,162 0,266 18,532

5 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 18,952

6 RF IMB WN 0,887 0,910 0,883 0,564 0,697 9,144

6 RF IMB MM 0,883 0,911 0,878 0,554 0,689 9,232

6 RF IMB ZS 0,898 0,857 0,905 0,601 0,707 12,564

6 RF SUB WN 0,358 0,992 0,253 0,181 0,306 2,957

6 RF SUB MM 0,357 0,993 0,250 0,182 0,308 2,771

6 RF SUB ZS 0,362 0,992 0,258 0,181 0,307 3,592

6 RF SMOTE WN 0,269 0,901 0,164 0,152 0,260 15,098
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WF ML BL NM AC SS/R SP P F1-Score Time

6 RF SMOTE MM 0,258 0,913 0,149 0,151 0,260 15,631

6 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 15,250

7 RF IMB WN 0,891 0,914 0,888 0,575 0,706 9,163

7 RF IMB MM 0,888 0,916 0,883 0,566 0,700 9,265

7 RF IMB ZS 0,904 0,790 0,923 0,632 0,702 9,898

7 RF SUB WN 0,389 0,992 0,288 0,188 0,316 2,937

7 RF SUB MM 0,399 0,992 0,299 0,192 0,322 2,859

7 RF SUB ZS 0,349 0,992 0,243 0,179 0,303 2,926

7 RF SMOTE WN 0,206 0,962 0,080 0,148 0,257 19,010

7 RF SMOTE MM 0,204 0,961 0,078 0,148 0,256 19,099

7 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 15,364

8 RF IMB WN 0,894 0,866 0,898 0,586 0,699 9,844

8 RF IMB MM 0,888 0,869 0,892 0,572 0,690 9,598

8 RF IMB ZS 0,892 0,868 0,895 0,581 0,696 9,916

8 RF SUB WN 0,394 0,992 0,295 0,190 0,318 2,826

8 RF SUB MM 0,445 0,991 0,353 0,205 0,339 2,619

8 RF SUB ZS 0,470 0,990 0,383 0,210 0,347 2,724

8 RF SMOTE WN 0,143 1,000 0,001 0,143 0,250 17,862

8 RF SMOTE MM 0,143 1,000 0,001 0,143 0,250 17,377

8 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 18,156

9 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,874

9 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,461

9 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,652

9 RF SUB WN 0,462 0,990 0,374 0,208 0,344 2,066

9 RF SUB MM 0,463 0,990 0,374 0,210 0,347 1,973

9 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 2,002

9 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,320

9 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,254

9 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,711

10 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,091
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10 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,421

10 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,644

10 RF SUB WN 0,462 0,990 0,374 0,208 0,344 2,006

10 RF SUB MM 0,463 0,990 0,374 0,210 0,347 2,012

10 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 1,981

10 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,368

10 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,748

10 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,768

11 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,080

11 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,357

11 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,713

11 RF SUB WN 0,462 0,990 0,374 0,208 0,344 1,969

11 RF SUB MM 0,463 0,990 0,374 0,210 0,347 1,984

11 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 2,138

11 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,306

11 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,893

11 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,970

12 RF IMB WN 0,851 0,275 0,947 0,463 0,345 4,945

12 RF IMB MM 0,850 0,295 0,942 0,461 0,359 4,440

12 RF IMB ZS 0,847 0,290 0,940 0,446 0,352 4,528

12 RF SUB WN 0,254 0,975 0,135 0,158 0,272 1,864

12 RF SUB MM 0,259 0,974 0,138 0,160 0,274 1,789

12 RF SUB ZS 0,257 0,976 0,138 0,158 0,272 2,000

12 RF SMOTE WN 0,729 0,466 0,773 0,254 0,329 12,382

12 RF SMOTE MM 0,727 0,467 0,770 0,252 0,327 11,579

12 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 11,692

13 RF IMB WN 0,934 0,895 0,941 0,716 0,795 6,069

13 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,418

13 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,554

13 RF SUB WN 0,462 0,990 0,374 0,208 0,344 2,085
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13 RF SUB MM 0,463 0,990 0,374 0,210 0,347 1,961

13 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 2,155

13 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 17,005

13 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 16,785

13 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,319

14 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,695

14 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,372

14 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,637

14 RF SUB WN 0,462 0,990 0,374 0,208 0,344 2,040

14 RF SUB MM 0,463 0,990 0,374 0,210 0,347 1,994

14 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 2,157

14 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,645

14 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,457

14 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,555

15 RF IMB WN 0,934 0,895 0,941 0,716 0,795 5,620

15 RF IMB MM 0,931 0,896 0,937 0,705 0,789 5,344

15 RF IMB ZS 0,930 0,899 0,935 0,698 0,786 5,876

15 RF SUB WN 0,462 0,990 0,374 0,208 0,344 1,949

15 RF SUB MM 0,463 0,990 0,374 0,210 0,347 1,969

15 RF SUB ZS 0,469 0,990 0,383 0,210 0,347 2,199

15 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,606

15 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 13,311

15 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 12,720

16 RF IMB WN 0,894 0,866 0,898 0,586 0,699 9,764

16 RF IMB MM 0,888 0,869 0,892 0,572 0,690 9,096

16 RF IMB ZS 0,892 0,868 0,895 0,581 0,696 9,404

16 RF SUB WN 0,394 0,992 0,295 0,190 0,318 2,799

16 RF SUB MM 0,445 0,991 0,353 0,205 0,339 2,624

16 RF SUB ZS 0,470 0,990 0,383 0,210 0,347 2,941

16 RF SMOTE WN 0,143 1,000 0,001 0,143 0,250 18,373
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16 RF SMOTE MM 0,143 1,000 0,001 0,143 0,250 18,219

16 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,558

17 RF IMB WN 0,842 0,207 0,948 0,397 0,272 3,638

17 RF IMB MM 0,840 0,215 0,944 0,391 0,278 3,770

17 RF IMB ZS 0,839 0,218 0,943 0,390 0,279 3,778

17 RF SUB WN 0,332 0,924 0,234 0,167 0,283 1,550

17 RF SUB MM 0,334 0,923 0,235 0,169 0,285 1,549

17 RF SUB ZS 0,336 0,923 0,239 0,167 0,284 1,558

17 RF SMOTE WN 0,171 0,976 0,037 0,144 0,251 11,041

17 RF SMOTE MM 0,171 0,976 0,037 0,144 0,251 11,255

17 RF SMOTE ZS 0,171 0,976 0,037 0,144 0,251 11,179

18 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,878

18 RF IMB MM 0,906 0,507 0,973 0,757 0,607 3,964

18 RF IMB ZS 0,906 0,507 0,972 0,754 0,607 4,179

18 RF SUB WN 0,475 0,928 0,399 0,204 0,335 1,232

18 RF SUB MM 0,475 0,928 0,399 0,206 0,337 1,188

18 RF SUB ZS 0,473 0,929 0,397 0,204 0,334 1,300

18 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,892

18 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 10,645

18 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,641

19 RF IMB WN 0,915 0,513 0,982 0,822 0,631 5,450

19 RF IMB MM 0,914 0,512 0,981 0,818 0,630 5,237

19 RF IMB ZS 0,902 0,377 0,989 0,854 0,523 3,975

19 RF SUB WN 0,441 0,909 0,363 0,192 0,317 1,220

19 RF SUB MM 0,422 0,916 0,339 0,189 0,313 1,164

19 RF SUB ZS 0,435 0,913 0,355 0,190 0,315 1,158

19 RF SMOTE WN 0,345 0,797 0,270 0,154 0,258 10,268

19 RF SMOTE MM 0,351 0,780 0,280 0,153 0,255 10,050

19 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,112

20 RF IMB WN 0,916 0,665 0,958 0,724 0,693 5,318
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20 RF IMB MM 0,903 0,398 0,988 0,845 0,541 15,046

20 RF IMB ZS 0,904 0,413 0,986 0,834 0,553 16,023

20 RF SUB WN 0,410 0,956 0,319 0,189 0,316 2,599

20 RF SUB MM 0,408 0,948 0,317 0,189 0,316 2,145

20 RF SUB ZS 0,419 0,959 0,329 0,192 0,320 2,587

20 RF SMOTE WN 0,589 0,362 0,627 0,139 0,201 31,175

20 RF SMOTE MM 0,591 0,362 0,629 0,139 0,201 31,527

20 RF SMOTE ZS 0,143 0,999 0,001 0,143 0,249 31,830

21 RF IMB WN 0,914 0,531 0,978 0,797 0,637 5,373

21 RF IMB MM 0,914 0,544 0,976 0,792 0,645 5,480

21 RF IMB ZS 0,912 0,728 0,942 0,678 0,702 5,076

21 RF SUB WN 0,414 0,964 0,323 0,191 0,319 1,568

21 RF SUB MM 0,478 0,968 0,395 0,212 0,348 1,913

21 RF SUB ZS 0,473 0,962 0,391 0,208 0,342 2,027

21 RF SMOTE WN 0,150 0,996 0,010 0,143 0,250 21,857

21 RF SMOTE MM 0,153 0,995 0,013 0,143 0,251 21,882

21 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,544

22 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,296

22 RF IMB MM 0,938 0,864 0,951 0,745 0,800 9,430

22 RF IMB ZS 0,938 0,896 0,945 0,729 0,804 9,777

22 RF SUB WN 0,525 0,978 0,450 0,228 0,370 2,031

22 RF SUB MM 0,528 0,986 0,451 0,232 0,375 2,168

22 RF SUB ZS 0,501 0,985 0,421 0,220 0,360 2,694

22 RF SMOTE WN 0,154 0,997 0,014 0,144 0,252 24,156

22 RF SMOTE MM 0,155 0,997 0,015 0,144 0,252 24,444

22 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,719

23 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,953

23 RF IMB MM 0,906 0,507 0,973 0,757 0,607 3,988

23 RF IMB ZS 0,906 0,507 0,972 0,754 0,607 3,904

23 RF SUB WN 0,475 0,928 0,399 0,204 0,335 1,190
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23 RF SUB MM 0,475 0,928 0,399 0,206 0,337 1,304

23 RF SUB ZS 0,473 0,929 0,397 0,204 0,334 1,210

23 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,853

23 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 10,817

23 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,556

24 RF IMB WN 0,939 0,881 0,949 0,740 0,805 10,732

24 RF IMB MM 0,937 0,879 0,947 0,734 0,800 9,336

24 RF IMB ZS 0,937 0,898 0,943 0,724 0,802 9,790

24 RF SUB WN 0,462 0,982 0,375 0,207 0,342 2,110

24 RF SUB MM 0,526 0,986 0,448 0,231 0,375 2,167

24 RF SUB ZS 0,450 0,984 0,361 0,204 0,338 2,581

24 RF SMOTE WN 0,155 0,996 0,015 0,144 0,252 25,640

24 RF SMOTE MM 0,158 0,995 0,018 0,144 0,252 25,116

24 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 23,259

25 RF IMB WN 0,908 0,508 0,974 0,765 0,610 3,947

25 RF IMB MM 0,906 0,507 0,973 0,757 0,607 3,965

25 RF IMB ZS 0,906 0,507 0,972 0,754 0,607 4,131

25 RF SUB WN 0,475 0,928 0,399 0,204 0,335 1,252

25 RF SUB MM 0,475 0,928 0,399 0,206 0,337 1,267

25 RF SUB ZS 0,473 0,929 0,397 0,204 0,334 1,291

25 RF SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,706

25 RF SMOTE MM 0,143 1,000 0,000 0,143 0,250 10,774

25 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,626

26 RF IMB WN 0,914 0,878 0,920 0,645 0,744 11,816

26 RF IMB MM 0,911 0,872 0,918 0,639 0,737 10,639

26 RF IMB ZS 0,910 0,901 0,912 0,630 0,742 11,517

26 RF SUB WN 0,418 0,986 0,323 0,195 0,326 2,332

26 RF SUB MM 0,434 0,990 0,340 0,201 0,335 2,578

26 RF SUB ZS 0,427 0,990 0,334 0,198 0,330 3,010

26 RF SMOTE WN 0,154 0,997 0,014 0,144 0,252 26,069
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WF ML BL NM AC SS/R SP P F1-Score Time

26 RF SMOTE MM 0,156 0,997 0,016 0,144 0,252 25,927

26 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 24,651

27 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,415

27 RF IMB MM 0,938 0,864 0,951 0,745 0,800 9,009

27 RF IMB ZS 0,938 0,896 0,945 0,729 0,804 10,324

27 RF SUB WN 0,525 0,978 0,450 0,228 0,370 2,081

27 RF SUB MM 0,528 0,986 0,451 0,232 0,375 2,260

27 RF SUB ZS 0,501 0,985 0,421 0,220 0,360 2,507

27 RF SMOTE WN 0,154 0,997 0,014 0,144 0,252 24,276

27 RF SMOTE MM 0,155 0,997 0,015 0,144 0,252 23,913

27 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,715

28 RF IMB WN 0,940 0,875 0,950 0,746 0,806 10,508

28 RF IMB MM 0,938 0,864 0,951 0,745 0,800 9,401

28 RF IMB ZS 0,938 0,896 0,945 0,729 0,804 10,274

28 RF SUB WN 0,525 0,978 0,450 0,228 0,370 1,963

28 RF SUB MM 0,528 0,986 0,451 0,232 0,375 2,174

28 RF SUB ZS 0,501 0,985 0,421 0,220 0,360 2,410

28 RF SMOTE WN 0,154 0,997 0,014 0,144 0,252 24,222

28 RF SMOTE MM 0,155 0,997 0,015 0,144 0,252 23,843

28 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 21,504

29 RF IMB WN 0,937 0,868 0,948 0,736 0,797 14,362

29 RF IMB MM 0,937 0,883 0,946 0,733 0,801 13,638

29 RF IMB ZS 0,936 0,848 0,950 0,739 0,790 16,597

29 RF SUB WN 0,573 0,983 0,505 0,248 0,396 2,366

29 RF SUB MM 0,560 0,983 0,489 0,244 0,392 2,581

29 RF SUB ZS 0,591 0,981 0,527 0,256 0,406 3,103

29 RF SMOTE WN 0,190 0,979 0,059 0,147 0,256 36,602

29 RF SMOTE MM 0,189 0,979 0,057 0,147 0,256 37,142

29 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 38,899

30 RF IMB WN 0,940 0,814 0,960 0,774 0,793 4,860
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30 RF IMB MM 0,940 0,818 0,961 0,776 0,797 8,000

30 RF IMB ZS 0,940 0,815 0,961 0,776 0,795 4,843

30 RF SUB WN 0,662 0,963 0,612 0,292 0,448 1,482

30 RF SUB MM 0,656 0,963 0,604 0,290 0,446 1,414

30 RF SUB ZS 0,657 0,964 0,606 0,289 0,445 1,438

30 RF SMOTE WN 0,160 0,992 0,022 0,144 0,252 12,165

30 RF SMOTE MM 0,160 0,992 0,022 0,144 0,252 9,988

30 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 10,004

31 RF IMB WN 0,920 0,596 0,974 0,795 0,681 10,364

31 RF IMB MM 0,914 0,516 0,980 0,812 0,631 11,394

31 RF IMB ZS 0,927 0,660 0,971 0,793 0,720 7,771

31 RF SUB WN 0,521 0,893 0,459 0,215 0,347 1,102

31 RF SUB MM 0,489 0,946 0,412 0,213 0,348 1,281

31 RF SUB ZS 0,579 0,960 0,515 0,247 0,393 1,868

31 RF SMOTE WN 0,191 0,973 0,061 0,147 0,255 20,066

31 RF SMOTE MM 0,191 0,973 0,061 0,147 0,255 19,989

31 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 17,739

32 RF IMB WN 0,834 0,882 0,826 0,457 0,602 9,968

32 RF IMB MM 0,831 0,886 0,821 0,453 0,600 16,000

32 RF IMB ZS 0,830 0,885 0,821 0,451 0,598 10,130

32 RF SUB WN 0,379 0,988 0,278 0,185 0,312 2,947

32 RF SUB MM 0,382 0,990 0,279 0,188 0,315 2,934

32 RF SUB ZS 0,381 0,990 0,280 0,186 0,313 2,987

32 RF SMOTE WN 0,291 0,879 0,193 0,153 0,261 22,567

32 RF SMOTE MM 0,173 0,977 0,039 0,145 0,252 22,879

32 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 22,875

33 RF IMB WN 0,878 0,766 0,897 0,552 0,642 13,230

33 RF IMB MM 0,870 0,752 0,890 0,532 0,623 14,212

33 RF IMB ZS 0,867 0,811 0,876 0,522 0,635 12,982

33 RF SUB WN 0,316 0,985 0,205 0,171 0,291 2,438
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33 RF SUB MM 0,353 0,988 0,246 0,181 0,305 2,574

33 RF SUB ZS 0,355 0,986 0,250 0,179 0,303 2,848

33 RF SMOTE WN 0,413 0,745 0,358 0,162 0,266 39,454

33 RF SMOTE MM 0,263 0,891 0,158 0,150 0,256 32,771

33 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 29,051

34 RF IMB WN 0,893 0,830 0,903 0,588 0,688 8,767

34 RF IMB MM 0,889 0,840 0,898 0,578 0,685 8,998

34 RF IMB ZS 0,889 0,838 0,898 0,577 0,684 9,055

34 RF SUB WN 0,488 0,980 0,406 0,215 0,353 2,721

34 RF SUB MM 0,489 0,980 0,407 0,217 0,356 2,705

34 RF SUB ZS 0,490 0,980 0,409 0,216 0,354 2,693

34 RF SMOTE WN 0,420 0,707 0,372 0,158 0,258 22,765

34 RF SMOTE MM 0,413 0,713 0,363 0,157 0,257 15,326

34 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 15,273

35 RF IMB WN 0,909 0,685 0,946 0,680 0,683 12,017

35 RF IMB MM 0,906 0,654 0,947 0,675 0,665 10,569

35 RF IMB ZS 0,907 0,742 0,935 0,655 0,695 11,845

35 RF SUB WN 0,411 0,963 0,320 0,191 0,318 2,070

35 RF SUB MM 0,433 0,978 0,342 0,200 0,332 2,341

35 RF SUB ZS 0,427 0,974 0,336 0,196 0,326 2,589

35 RF SMOTE WN 0,549 0,549 0,549 0,168 0,258 26,593

35 RF SMOTE MM 0,544 0,557 0,542 0,168 0,258 26,144

35 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 24,320

36 RF IMB WN 0,834 0,923 0,820 0,460 0,614 10,833

36 RF IMB MM 0,832 0,925 0,817 0,457 0,612 11,063

36 RF IMB ZS 0,836 0,924 0,821 0,463 0,617 11,118

36 RF SUB WN 0,313 0,995 0,199 0,171 0,292 3,317

36 RF SUB MM 0,319 0,995 0,205 0,174 0,296 3,313

36 RF SUB ZS 0,317 0,995 0,204 0,172 0,293 3,270

36 RF SMOTE WN 0,148 0,998 0,007 0,143 0,251 26,601
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36 RF SMOTE MM 0,144 1,000 0,001 0,143 0,250 26,331

36 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 26,267

37 RF IMB WN 0,864 0,896 0,858 0,512 0,652 16,077

37 RF IMB MM 0,857 0,893 0,851 0,500 0,641 14,176

37 RF IMB ZS 0,859 0,907 0,851 0,503 0,647 15,550

37 RF SUB WN 0,285 0,993 0,168 0,165 0,284 2,994

37 RF SUB MM 0,354 0,994 0,247 0,182 0,307 3,462

37 RF SUB ZS 0,351 0,994 0,244 0,179 0,304 3,879

37 RF SMOTE WN 0,157 0,996 0,018 0,144 0,252 39,522

37 RF SMOTE MM 0,149 0,998 0,008 0,143 0,251 39,029

37 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 34,956

38 RF IMB WN 0,905 0,846 0,914 0,621 0,716 9,670

38 RF IMB MM 0,903 0,854 0,911 0,615 0,715 9,493

38 RF IMB ZS 0,901 0,852 0,909 0,610 0,711 9,570

38 RF SUB WN 0,527 0,978 0,452 0,229 0,371 2,759

38 RF SUB MM 0,533 0,979 0,458 0,233 0,376 2,750

38 RF SUB ZS 0,530 0,978 0,456 0,230 0,372 2,762

38 RF SMOTE WN 0,179 0,981 0,045 0,146 0,254 16,664

38 RF SMOTE MM 0,179 0,981 0,046 0,146 0,254 16,842

38 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,685

39 RF IMB WN 0,917 0,758 0,944 0,691 0,723 13,286

39 RF IMB MM 0,915 0,734 0,945 0,691 0,712 11,705

39 RF IMB ZS 0,915 0,797 0,935 0,670 0,728 12,988

39 RF SUB WN 0,463 0,962 0,380 0,205 0,338 2,260

39 RF SUB MM 0,483 0,976 0,401 0,215 0,352 2,522

39 RF SUB ZS 0,539 0,975 0,467 0,233 0,376 3,151

39 RF SMOTE WN 0,209 0,963 0,084 0,149 0,258 28,555

39 RF SMOTE MM 0,211 0,961 0,087 0,149 0,258 28,769

39 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 26,085

40 RF IMB WN 0,672 0,642 0,677 0,248 0,358 8,984
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40 RF IMB MM 0,666 0,655 0,668 0,248 0,359 8,767

40 RF IMB ZS 0,666 0,649 0,669 0,246 0,357 8,658

40 RF SUB WN 0,194 0,986 0,062 0,149 0,259 3,189

40 RF SUB MM 0,196 0,987 0,063 0,151 0,261 3,188

40 RF SUB ZS 0,194 0,987 0,063 0,149 0,259 3,200

40 RF SMOTE WN 0,176 0,970 0,044 0,144 0,251 23,395

40 RF SMOTE MM 0,164 0,981 0,028 0,144 0,251 23,145

40 RF SMOTE ZS 0,143 1,000 0,000 0,143 0,250 23,009

B.2- Neural Networks

B.2.1 Conventional Threshold

Table 48 – Results of Neural Networks Workflow Tests - Conventional

WF ML BL NM AC SS/R SP P F1-Score T.EL

18 NN IMB WN 0,909 0,422 0,990 0,873 0,569 3,033

18 NN IMB MM 0,902 0,355 0,993 0,899 0,509 1,842

18 NN IMB ZS 0,859 0,013 1,000 0,863 0,026 1,353

18 NN SUB WN 0,785 0,631 0,811 0,356 0,456 51,144

18 NN SUB MM 0,755 0,672 0,769 0,328 0,441 40,813

18 NN SUB ZS 0,758 0,674 0,772 0,329 0,443 51,410

18 NN SMOTE WN 0,141 0,987 0,000 0,141 0,247 3,631

18 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,479

18 NN SMOTE ZS 0,143 0,999 0,001 0,143 0,249 1,377

19 NN IMB WN 0,859 0,013 1,000 0,880 0,026 1,430

19 NN IMB MM 0,902 0,354 0,993 0,896 0,508 4,203
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19 NN IMB ZS 0,903 0,371 0,992 0,889 0,523 3,862

19 NN SUB WN 0,804 0,610 0,836 0,382 0,470 1,049

19 NN SUB MM 0,754 0,673 0,767 0,327 0,440 44,465

19 NN SUB ZS 0,760 0,672 0,775 0,331 0,444 57,384

19 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 5,959

19 NN SMOTE MM 0,141 0,987 0,000 0,141 0,247 6,999

19 NN SMOTE ZS 0,319 0,865 0,228 0,157 0,266 1,889

20 NN IMB WN 0,909 0,423 0,990 0,872 0,570 3,088

20 NN IMB MM 0,859 0,013 1,000 0,899 0,026 1,925

20 NN IMB ZS 0,859 0,013 1,000 0,869 0,027 2,657

20 NN SUB WN 0,784 0,634 0,808 0,355 0,455 1,348

20 NN SUB MM 0,754 0,675 0,767 0,328 0,442 1,577

20 NN SUB ZS 0,855 0,019 0,994 0,347 0,035 42,433

20 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,350

20 NN SMOTE MM 0,347 0,831 0,266 0,158 0,266 3,581

20 NN SMOTE ZS 0,337 0,851 0,251 0,159 0,268 3,762

21 NN IMB WN 0,909 0,422 0,990 0,876 0,570 5,219

21 NN IMB MM 0,901 0,350 0,993 0,894 0,503 3,964

21 NN IMB ZS 0,903 0,369 0,992 0,889 0,522 4,187

21 NN SUB WN 0,784 0,634 0,809 0,356 0,456 49,842

21 NN SUB MM 0,755 0,673 0,769 0,328 0,441 1,108

21 NN SUB ZS 0,759 0,675 0,773 0,330 0,443 1,245

21 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 6,981

21 NN SMOTE MM 0,143 0,999 0,001 0,143 0,249 1,346

21 NN SMOTE ZS 0,311 0,873 0,218 0,156 0,265 2,403

22 NN IMB WN 0,857 0,000 1,000 0,000 0,000 2,199

22 NN IMB MM 0,903 0,360 0,993 0,896 0,514 6,115

22 NN IMB ZS 0,859 0,013 1,000 0,869 0,026 2,809

22 NN SUB WN 0,791 0,630 0,817 0,365 0,462 57,399

22 NN SUB MM 0,598 0,223 0,661 0,100 0,138 32,969
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22 NN SUB ZS 0,858 0,015 0,998 0,516 0,028 26,592

22 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,795

22 NN SMOTE MM 0,353 0,819 0,276 0,158 0,265 3,634

22 NN SMOTE ZS 0,311 0,875 0,217 0,157 0,266 3,052

23 NN IMB WN 0,909 0,422 0,990 0,873 0,569 2,951

23 NN IMB MM 0,902 0,355 0,993 0,899 0,509 1,787

23 NN IMB ZS 0,859 0,013 1,000 0,863 0,026 1,404

23 NN SUB WN 0,785 0,631 0,811 0,356 0,456 53,624

23 NN SUB MM 0,755 0,672 0,769 0,328 0,441 40,734

23 NN SUB ZS 0,758 0,674 0,772 0,329 0,443 51,137

23 NN SMOTE WN 0,141 0,987 0,000 0,141 0,247 3,718

23 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,248

23 NN SMOTE ZS 0,143 0,999 0,001 0,143 0,249 1,399

24 NN IMB WN 0,857 0,000 1,000 0,000 0,000 50,456

24 NN IMB MM 0,859 0,014 1,000 0,903 0,028 1,060

24 NN IMB ZS 0,896 0,375 0,983 0,786 0,507 6,430

24 NN SUB WN 0,785 0,635 0,810 0,357 0,457 1,305

24 NN SUB MM 0,845 0,022 0,983 0,175 0,038 32,337

24 NN SUB ZS 0,352 0,836 0,272 0,160 0,269 30,016

24 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 1,084

24 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 12,076

24 NN SMOTE ZS 0,378 0,777 0,312 0,158 0,263 5,128

25 NN IMB WN 0,909 0,422 0,990 0,873 0,569 2,992

25 NN IMB MM 0,902 0,355 0,993 0,899 0,509 1,836

25 NN IMB ZS 0,859 0,013 1,000 0,863 0,026 1,377

25 NN SUB WN 0,785 0,631 0,811 0,356 0,456 53,093

25 NN SUB MM 0,755 0,672 0,769 0,328 0,441 42,876

25 NN SUB ZS 0,758 0,674 0,772 0,329 0,443 48,161

25 NN SMOTE WN 0,141 0,987 0,000 0,141 0,247 3,570

25 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,277
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25 NN SMOTE ZS 0,143 0,999 0,001 0,143 0,249 1,270

27 NN IMB WN 0,857 0,000 1,000 0,000 0,000 2,280

27 NN IMB MM 0,903 0,360 0,993 0,896 0,514 6,047

27 NN IMB ZS 0,859 0,013 1,000 0,869 0,026 2,820

27 NN SUB WN 0,791 0,630 0,817 0,365 0,462 58,617

27 NN SUB MM 0,598 0,223 0,661 0,100 0,138 32,769

27 NN SUB ZS 0,858 0,015 0,998 0,516 0,028 27,531

27 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,761

27 NN SMOTE MM 0,353 0,819 0,276 0,158 0,265 3,442

27 NN SMOTE ZS 0,311 0,875 0,217 0,157 0,266 2,871

28 NN IMB WN 0,857 0,000 1,000 0,000 0,000 2,243

28 NN IMB MM 0,903 0,360 0,993 0,896 0,514 5,918

28 NN IMB ZS 0,859 0,013 1,000 0,869 0,026 2,743

28 NN SUB WN 0,791 0,630 0,817 0,365 0,462 52,133

28 NN SUB MM 0,598 0,223 0,661 0,100 0,138 29,838

28 NN SUB ZS 0,858 0,015 0,998 0,516 0,028 25,002

28 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,836

28 NN SMOTE MM 0,353 0,819 0,276 0,158 0,265 3,329

28 NN SMOTE ZS 0,311 0,875 0,217 0,157 0,266 2,826

29 NN IMB WN 0,909 0,422 0,990 0,873 0,569 4,468

29 NN IMB MM 0,903 0,362 0,993 0,900 0,516 5,478

29 NN IMB ZS 0,902 0,357 0,993 0,890 0,510 5,514

29 NN SUB WN 0,788 0,635 0,813 0,361 0,460 1,364

29 NN SUB MM 0,756 0,677 0,769 0,330 0,444 49,953

29 NN SUB ZS 0,854 0,017 0,993 0,298 0,032 36,639

29 NN SMOTE WN 0,144 0,999 0,001 0,143 0,250 13,616

29 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 18,068

29 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 11,678

31 NN IMB WN 0,872 0,118 0,998 0,899 0,208 4,809

31 NN IMB MM 0,868 0,083 0,999 0,948 0,152 4,721
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31 NN IMB ZS 0,869 0,088 0,999 0,935 0,161 5,651

31 NN SUB WN 0,630 0,545 0,644 0,203 0,296 1,192

31 NN SUB MM 0,639 0,567 0,651 0,215 0,312 49,773

31 NN SUB ZS 0,639 0,569 0,651 0,213 0,310 1,245

31 NN SMOTE WN 0,299 0,906 0,198 0,158 0,269 10,256

31 NN SMOTE MM 0,143 0,999 0,001 0,143 0,249 1,337

31 NN SMOTE ZS 0,315 0,870 0,222 0,157 0,266 2,939

33 NN IMB WN 0,857 0,000 1,000 0,000 0,000 1,689

33 NN IMB MM 0,857 0,000 1,000 0,000 0,000 2,355

33 NN IMB ZS 0,858 0,005 1,000 0,789 0,009 2,502

33 NN SUB WN 0,430 0,777 0,372 0,171 0,280 53,056

33 NN SUB MM 0,470 0,719 0,428 0,175 0,281 46,964

33 NN SUB ZS 0,474 0,729 0,432 0,176 0,283 59,082

33 NN SMOTE WN 0,697 0,300 0,763 0,174 0,220 17,126

33 NN SMOTE MM 0,330 0,862 0,242 0,159 0,268 5,214

33 NN SMOTE ZS 0,303 0,840 0,214 0,151 0,256 7,732

35 NN IMB WN 0,858 0,002 1,000 0,653 0,003 3,831

35 NN IMB MM 0,857 0,000 1,000 0,533 0,001 2,829

35 NN IMB ZS 0,858 0,005 1,000 0,751 0,009 2,084

35 NN SUB WN 0,851 0,020 0,989 0,244 0,038 22,958

35 NN SUB MM 0,842 0,023 0,980 0,160 0,041 23,141

35 NN SUB ZS 0,846 0,021 0,983 0,174 0,038 33,412

35 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 1,357

35 NN SMOTE MM 0,143 0,999 0,001 0,143 0,249 1,731

35 NN SMOTE ZS 0,337 0,818 0,257 0,155 0,260 11,923

37 NN IMB WN 0,907 0,409 0,990 0,876 0,557 6,359

37 NN IMB MM 0,859 0,014 1,000 0,902 0,027 2,032

37 NN IMB ZS 0,904 0,372 0,992 0,888 0,524 7,679

37 NN SUB WN 0,767 0,648 0,786 0,335 0,442 1,983

37 NN SUB MM 0,846 0,021 0,985 0,192 0,038 26,862
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37 NN SUB ZS 0,859 0,014 0,999 0,659 0,027 36,127

37 NN SMOTE WN 0,164 0,969 0,031 0,143 0,248 17,281

37 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 2,226

37 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,474

39 NN IMB WN 0,873 0,119 0,998 0,899 0,210 6,511

39 NN IMB MM 0,868 0,084 0,999 0,939 0,154 4,818

39 NN IMB ZS 0,867 0,081 0,999 0,907 0,149 4,012

39 NN SUB WN 0,854 0,019 0,993 0,315 0,036 42,847

39 NN SUB MM 0,643 0,571 0,655 0,218 0,316 52,736

39 NN SUB ZS 0,642 0,589 0,650 0,218 0,319 1,685

39 NN SMOTE WN 0,297 0,909 0,195 0,158 0,269 14,547

39 NN SMOTE MM 0,252 0,953 0,136 0,155 0,267 13,075

39 NN SMOTE ZS 0,317 0,892 0,221 0,160 0,271 7,971

B.2.2 Majority Threshold

Table 49 – Results of Neural Networks Workflow Tests - Majority

WF ML BL NM AC SS/R SP P F1-Score T.EL

18 NN IMB WN 0,859 0,537 0,913 0,505 0,521 3,033

18 NN IMB MM 0,760 0,655 0,778 0,330 0,439 1,842

18 NN IMB ZS 0,677 0,327 0,735 0,171 0,224 1,353

18 NN SUB WN 0,143 1,000 0,000 0,143 0,250 51,144

18 NN SUB MM 0,211 0,991 0,080 0,153 0,266 40,813

18 NN SUB ZS 0,218 0,990 0,090 0,153 0,265 51,410

18 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 3,631

18 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,479

18 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 1,377
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WF ML BL NM AC SS/R SP P F1-Score T.EL

19 NN IMB WN 0,859 0,013 1,000 0,878 0,026 1,430

19 NN IMB MM 0,772 0,636 0,795 0,341 0,444 4,203

19 NN IMB ZS 0,780 0,639 0,803 0,351 0,453 3,862

19 NN SUB WN 0,143 1,000 0,000 0,143 0,250 1,049

19 NN SUB MM 0,209 0,991 0,078 0,153 0,265 44,465

19 NN SUB ZS 0,205 0,992 0,074 0,151 0,262 57,384

19 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 5,959

19 NN SMOTE MM 0,141 0,988 0,000 0,141 0,247 6,999

19 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 1,889

20 NN IMB WN 0,857 0,541 0,910 0,500 0,520 3,088

20 NN IMB MM 0,839 0,029 0,974 0,155 0,048 1,925

20 NN IMB ZS 0,857 0,016 0,998 0,539 0,031 2,657

20 NN SUB WN 0,143 1,000 0,000 0,143 0,250 1,348

20 NN SUB MM 0,217 0,990 0,087 0,154 0,267 1,577

20 NN SUB ZS 0,143 1,000 0,000 0,142 0,249 42,433

20 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,350

20 NN SMOTE MM 0,177 0,980 0,043 0,146 0,253 3,581

20 NN SMOTE ZS 0,167 0,982 0,032 0,144 0,252 3,762

21 NN IMB WN 0,854 0,537 0,906 0,488 0,512 5,219

21 NN IMB MM 0,771 0,630 0,794 0,338 0,440 3,964

21 NN IMB ZS 0,779 0,635 0,803 0,350 0,451 4,187

21 NN SUB WN 0,143 1,000 0,000 0,143 0,250 49,842

21 NN SUB MM 0,214 0,991 0,083 0,154 0,266 1,108

21 NN SUB ZS 0,222 0,989 0,095 0,153 0,266 1,245

21 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 6,981

21 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 1,346

21 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 2,403

22 NN IMB WN 0,305 0,913 0,204 0,160 0,272 2,199

22 NN IMB MM 0,764 0,660 0,782 0,336 0,445 6,115

22 NN IMB ZS 0,854 0,022 0,993 0,348 0,041 2,809
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Table 49 continued from the previous page

WF ML BL NM AC SS/R SP P F1-Score T.EL

22 NN SUB WN 0,174 0,997 0,038 0,147 0,256 57,399

22 NN SUB MM 0,144 1,000 0,000 0,144 0,252 32,969

22 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 26,592

22 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,795

22 NN SMOTE MM 0,161 0,983 0,024 0,144 0,250 3,634

22 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 3,052

23 NN IMB WN 0,859 0,537 0,913 0,505 0,521 2,951

23 NN IMB MM 0,760 0,655 0,778 0,330 0,439 1,787

23 NN IMB ZS 0,677 0,327 0,735 0,171 0,224 1,404

23 NN SUB WN 0,143 1,000 0,000 0,143 0,250 53,624

23 NN SUB MM 0,211 0,991 0,080 0,153 0,266 40,734

23 NN SUB ZS 0,218 0,990 0,090 0,153 0,265 51,137

23 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 3,718

23 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,248

23 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 1,399

24 NN IMB WN 0,857 0,000 1,000 0,000 0,000 50,456

24 NN IMB MM 0,849 0,022 0,987 0,213 0,039 1,060

24 NN IMB ZS 0,773 0,640 0,795 0,343 0,446 6,430

24 NN SUB WN 0,143 1,000 0,000 0,143 0,250 1,305

24 NN SUB MM 0,144 1,000 0,000 0,144 0,252 32,337

24 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 30,016

24 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 1,084

24 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 12,076

24 NN SMOTE ZS 0,158 0,988 0,020 0,144 0,251 5,128

25 NN IMB WN 0,859 0,537 0,913 0,505 0,521 2,992

25 NN IMB MM 0,760 0,655 0,778 0,330 0,439 1,836

25 NN IMB ZS 0,677 0,327 0,735 0,171 0,224 1,377

25 NN SUB WN 0,143 1,000 0,000 0,143 0,250 53,093

25 NN SUB MM 0,211 0,991 0,080 0,153 0,266 42,876

25 NN SUB ZS 0,218 0,990 0,090 0,153 0,265 48,161
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Table 49 continued from the previous page

WF ML BL NM AC SS/R SP P F1-Score T.EL

25 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 3,570

25 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 6,277

25 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 1,270

27 NN IMB WN 0,305 0,913 0,204 0,160 0,272 2,280

27 NN IMB MM 0,764 0,660 0,782 0,336 0,445 6,047

27 NN IMB ZS 0,854 0,022 0,993 0,348 0,041 2,820

27 NN SUB WN 0,174 0,997 0,038 0,147 0,256 58,617

27 NN SUB MM 0,144 1,000 0,000 0,144 0,252 32,769

27 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 27,531

27 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,761

27 NN SMOTE MM 0,161 0,983 0,024 0,144 0,250 3,442

27 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 2,871

28 NN IMB WN 0,305 0,913 0,204 0,160 0,272 2,243

28 NN IMB MM 0,764 0,660 0,782 0,336 0,445 5,918

28 NN IMB ZS 0,854 0,022 0,993 0,348 0,041 2,743

28 NN SUB WN 0,174 0,997 0,038 0,147 0,256 52,133

28 NN SUB MM 0,144 1,000 0,000 0,144 0,252 29,838

28 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 25,002

28 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 10,836

28 NN SMOTE MM 0,161 0,983 0,024 0,144 0,250 3,329

28 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 2,826

29 NN IMB WN 0,855 0,541 0,907 0,491 0,514 4,468

29 NN IMB MM 0,765 0,657 0,783 0,336 0,445 5,478

29 NN IMB ZS 0,778 0,626 0,803 0,346 0,446 5,514

29 NN SUB WN 0,145 1,000 0,003 0,143 0,250 1,364

29 NN SUB MM 0,222 0,990 0,092 0,155 0,268 49,953

29 NN SUB ZS 0,143 1,000 0,001 0,142 0,249 36,639

29 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 13,616

29 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 18,068

29 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 11,678
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Table 49 continued from the previous page

WF ML BL NM AC SS/R SP P F1-Score T.EL

31 NN IMB WN 0,659 0,541 0,678 0,218 0,311 4,809

31 NN IMB MM 0,665 0,509 0,691 0,215 0,303 4,721

31 NN IMB ZS 0,652 0,521 0,674 0,211 0,300 5,651

31 NN SUB WN 0,143 1,000 0,000 0,143 0,250 1,192

31 NN SUB MM 0,144 1,000 0,000 0,144 0,252 49,773

31 NN SUB ZS 0,143 1,000 0,000 0,142 0,249 1,245

31 NN SMOTE WN 0,151 0,994 0,011 0,143 0,250 10,256

31 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 1,337

31 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 2,939

33 NN IMB WN 0,853 0,018 0,992 0,280 0,034 1,689

33 NN IMB MM 0,542 0,610 0,530 0,178 0,276 2,355

33 NN IMB ZS 0,849 0,023 0,987 0,220 0,041 2,502

33 NN SUB WN 0,143 1,000 0,000 0,143 0,250 53,056

33 NN SUB MM 0,144 1,000 0,000 0,144 0,252 46,964

33 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 59,082

33 NN SMOTE WN 0,161 0,974 0,026 0,143 0,249 17,126

33 NN SMOTE MM 0,146 0,998 0,004 0,143 0,250 5,214

33 NN SMOTE ZS 0,145 0,998 0,003 0,143 0,250 7,732

35 NN IMB WN 0,540 0,624 0,526 0,180 0,279 3,831

35 NN IMB MM 0,523 0,649 0,501 0,179 0,280 2,829

35 NN IMB ZS 0,848 0,023 0,986 0,213 0,042 2,084

35 NN SUB WN 0,143 1,000 0,000 0,143 0,250 22,958

35 NN SUB MM 0,144 1,000 0,000 0,144 0,252 23,141

35 NN SUB ZS 0,142 1,000 0,000 0,142 0,249 33,412

35 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 1,357

35 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 1,731

35 NN SMOTE ZS 0,143 0,999 0,001 0,143 0,250 11,923

37 NN IMB WN 0,852 0,528 0,906 0,482 0,504 6,359

37 NN IMB MM 0,843 0,025 0,980 0,175 0,044 2,032

37 NN IMB ZS 0,777 0,642 0,799 0,348 0,451 7,679
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WF ML BL NM AC SS/R SP P F1-Score T.EL

37 NN SUB WN 0,143 1,000 0,000 0,143 0,250 1,983

37 NN SUB MM 0,144 1,000 0,000 0,144 0,252 26,862

37 NN SUB ZS 0,143 1,000 0,000 0,142 0,249 36,127

37 NN SMOTE WN 0,143 1,000 0,000 0,143 0,250 17,281

37 NN SMOTE MM 0,143 1,000 0,000 0,143 0,250 2,226

37 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 16,474

39 NN IMB WN 0,687 0,507 0,717 0,229 0,316 6,511

39 NN IMB MM 0,665 0,513 0,691 0,217 0,305 4,818

39 NN IMB ZS 0,718 0,385 0,773 0,221 0,281 4,012

39 NN SUB WN 0,143 1,000 0,000 0,143 0,250 42,847

39 NN SUB MM 0,144 1,000 0,000 0,144 0,252 52,736

39 NN SUB ZS 0,144 1,000 0,002 0,143 0,249 1,685

39 NN SMOTE WN 0,153 0,993 0,013 0,143 0,250 14,547

39 NN SMOTE MM 0,151 0,995 0,010 0,143 0,250 13,075

39 NN SMOTE ZS 0,143 1,000 0,000 0,143 0,250 7,971


