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RESUMO

Avaliação Comparativa de Previsões de Séries Temporais Não-estacionárias

Pré-processamento de dados é um passo crucial para mineração e aprendizado a
partir de dados, e uma de suas atividades principais é a transformação de dados. Esta
atividade é particularmente importante no contexto de previsão de séries temporais já
que a maioria dos modelos de séries temporais assume a propriedade de estacionar-
iedade, i.e., propriedades estatı́sticas não mudam ao longo do tempo, o que na prática é
a exceção e não a regra para a maioria dos conjuntos de dados. Existem vários métodos
de transformação desenvolvidos para tratar a não-estacionariedade em séries temporais.
Entretanto, a escolha de uma transformação que seja apropriada ao modelo de dados e à
série temporal de uma aplicação em particular não é uma tarefa simples. Este trabalho
fornece um estudo e uma análise experimental de métodos para transformação de séries
temporais não-estacionárias. O foco deste trabalho é prover conhecimento relacionado
ao tópico e uma discussão quanto às suas vantagens e limitações para com o problema
de previsão de séries temporais. O conhecimento adquirido neste estudo foi encapsulado
em um framework sistemático para análise, comparação e seleção de configurações
transformação-modelo para previsão de séries temporais não-estacionárias. Um subcon-
junto dos métodos de transformação estudados é comparado através de uma avaliação
experimental usando-se conjuntos de dados referenciais advindos de competições de
previsão de séries temporais e outros conjuntos de dados macroeconômicos. Métodos de
transformação de séries temporais não-estacionárias adequados forneceram melhorias
de mais de 30% em acurácia de previsão para metade das séries temporais avaliadas e
melhoraram a previsão em mais de 95% para 10% das séries temporais. Além disso, a
adoção de uma fase de validação durante o treinamento de modelos permite a seleção
de métodos de transformação adequados.

Palavras-chave: Não-estacionariedade; Séries temporais; Transformação de dados;
Previsão; Framework



ABSTRACT

Benchmarking Nonstationary Time Series Prediction

Data preprocessing is a crucial step for mining and learning from data, and one
of its primary activities is the transformation of data. This activity is very important in the
context of time series prediction since most time series models assume the property of
stationarity, i.e., statistical properties do not change over time, which in practice is the
exception and not the rule in most real datasets. There are several transformation methods
designed to treat nonstationarity in time series. However, the choice of a transformation
that is appropriate to a particular data model and time series of an application is not a
simple task. This work provides a review and experimental analysis of methods for trans-
formation of nonstationary time series. The focus of this work is to provide a background
on the subject and a discussion on their advantages and limitations to the problem of
time series prediction. Knowledge acquired in this review has been encapsulated in a
systematic framework for benchmarking and selecting adequate transformation-model
setups for nonstationary time series prediction. A subset of the reviewed transformation
methods is compared through an experimental evaluation using benchmark datasets from
time series prediction competitions and other real macroeconomic datasets. Suitable
nonstationary time series transformation methods provided improvements of more than
30% in prediction accuracy for half of the evaluated time series and improved the prediction
in more than 95% for 10% of the time series. Furthermore, the adoption of a validation
phase during model training enables the selection of suitable transformation methods.

Keywords: Nonstationarity; Time series; Transformation methods; Prediction; Frame-
work
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Introduction

Adequate data preprocessing is an important activity in any application aiming

at data analytics. It generally demands a long time and dedication (PYLE, 1999; HAN;

KAMBER; PEI, 2011). The main objective of data preprocessing is ensuring the quality of

data serving as input to applied learning methods and therefore avoid obtaining inaccurate

and/or incorrect results and conclusions (OGASAWARA et al., 2010). Among the activities

commonly performed during preprocessing, one can list data cleaning, feature and sample

selection, outlier removal, normalization, and data transformation.

The data transformation activity becomes particularly important in the context of

prediction (HAN; KAMBER; PEI, 2011; ESLING; AGON, 2012). Prediction is knowingly

a crucial aspect to decision-making activities. The future states of information about a

problem can massively impact on the success or failure of its solution. The time series

analysis and its prediction are object of interest of many researchers due to increasing

importance and applications in science, business and government (SALLES et al., 2015).

The prediction context encompasses both problems of classification (prediction of discrete

data) and regression (prediction of continuous data) (HAN; KAMBER; PEI, 2011; ESLING;

AGON, 2012; BUZA, 2018). However, henceforth this work only focus on the problem of

predicting numeric time series data through regression. For simplicity, this work may refer

to prediction and regression interchangeably.

Although a great variety of time series prediction methods exists in literature

(CHENG et al., 2015), many of these methods and the majority of works that handle

time series assume that the available time series is stationary (GUJARATI, 2002). In

a stationary time series, statistical properties, such as mean, variance and covariance,

remain constant over time and in any sample of data (GUJARATI, 2002; SHUMWAY;

STOFFER, 2017). However, in practice, it is observed that such properties are not

constant in the majority of real-world time series, especially in socioeconomics (TSAY,

2010), where many of them are nonstationary. Thus, when observed the presence of

nonstationarity in a time series, it is a usual approach to search for ways to transform them

to achieve stationarity so that the known time series prediction methods can be applied.

There exist several transformation methods in literature for coping with nonsta-
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tionarity in times series. However, the choice for an adequate method to a particular

time series application is not a simple task. The analysis of their features and expected

advantages is crucial. Some of the features that should be considered are their initial data

assumptions (including different kinds of nonstationarity, linearity, and seasonality) and

their intrinsic properties (mathematical transformation or computational algorithm). In this

context, a thorough overview of different transformation methods for handling nonstation-

ary time series and their respective features becomes particularly important. However,

not many authors focus on studying transformation methods for nonstationarity treatment

(YANG; ZURBENKO, 2010; CHENG et al., 2015).

Furthermore, there is a wide variety of models for time series prediction, each

one having different properties and complexities, and many of them are generated by

state-of-the-art machine learning methods (MLM). Still, none of them is a silver bullet for

prediction of time series data. Additionally, the presence of nonstationarity leads to the

possibility of exploring different data transformation and model fitting methods for obtaining

predictions. The number of modeling alternatives and combinations may become very

high. Finding an adequate transformation-model combination that solves a time series

prediction problem is similar to solving an optimization problem (WOLPERT; MACREADY,

1997).

Performance evaluation of a transformation-model combination for time series

prediction generally involves performing three different and consecutive tasks: (i) pre-

processing, i.e., applying transformation methods to a time series data; (ii) training, i.e.,

finding adjusted parameters that fit a model to a (transformed) time series given as input;

(iii) testing, i.e., predicting subsequent values for the observed time series and comparing

them against the actual ones by using an adequate error measure (OGASAWARA et al.,

2009). With this purpose, one usually needs to partition the available time series into two

sets, respectively, the training1 and testing sets. This approach can be used to consistently

evaluate the performance of a transformation-MLM combination and appraise its results

and errors. Moreover, the prediction performance metrics of different transformation-

MLM combinations can be comparatively analyzed in a benchmarking process. Such

benchmarking process provides a way of assessing the relative quality of predictions

and selecting adequate transformation-model combinations for a particular time series

application.
1During training, it is a common practice to add a validation phase to measure the quality of fitted model.

In such cases, the entire training set is partitioned into actual training and validation sets.
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There are several works that present benchmarking frameworks and tools for

MLM performance assessment such as the provided by Diebold and Mariano (2002),

Eugster and Leisch (2008), Ramey (2013) and Kumar et al. (2016). There are also

works developed to facilitate automatic time series prediction such as the provided by

Hyndman and Khandakar (2008) and Moreno, Rivas, and Godoy (2018). Nonetheless,

there are no works that propose and implement a systematic benchmarking framework

that focus on (i) time series prediction; (ii) addressing nonstationary properties; and

(iii) comparing and selecting adequate transformation-MLM combinations. This gap

aggravates the already intricate problem of selecting adequate transformation-model

setups for a particular nonstationary time series prediction application. Moreover, there are

no works that focus on the study of different ways to coerce a time series into stationarity

and their effects on univariate time series prediction.

This work targets the mentioned gaps and contributes by providing:

• A thorough review of nonstationary time series transformation methods for time

series prediction organized in categories.

• A timeline of related works presenting the evolution of data transformation methods

for nonstationary time series prediction grouped by their domain of application.

• A systematic framework for benchmarking transformation methods and models for

univariate nonstationary time series prediction.

• A benchmarking and experimental analysis of representative transformation methods

for the time series prediction problem.

• Use case examples of the framework usability for benchmarking transformation

methods and MLM modeling.

The proposed benchmarking framework encapsulates the knowledge acquired

through the review of nonstationary time series transformation methods. Moreover, the

framework enables the application of this knowledge together with the predictive capa-

bilities of the most commonly used MLM and linear models (LM). The application of

user-defined transformations and/or models is also possible. The framework provides

means of benchmarking nonstationary time series predictions. The results of benchmark-

ing can be useful either for indicating demands for prediction improvement or for selecting

adequate transformation-model combinations. The implementation of the framework is
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within the version 5.0 of the R-Package TSPred (SALLES; OGASAWARA, 2018), which

was made available worldwide.

The developed framework was used for performing the benchmarking and ex-

perimental analysis of the reviewed transformation methods. The goal is to provide a

practical point of view regarding their advantages and limitations to the univariate time

series prediction problem. According to the experimental evaluation conducted, suitable

nonstationary time series transformation methods provided improvements of more than

30% in prediction accuracy for approximately half (130/262) of the evaluated time series.

Accuracy improvements reached more than 95% for over 10% of the evaluated time series.

This observed outcome suggests the need for considering these transformation methods

and for comparing them during time series prediction. Additionally, the adoption of a

validation phase for exploring different transformation methods generally led to selecting

one of the top 5 most appropriate for a particular time series.

Besides this introduction, the remainder of this work is organized as follows. Chap-

ter 1 provides concepts regarding nonstationarity in time series. It presents (i) a review of

the most researched transformation methods for coping with nonstationary time series

for the problem of prediction; (ii) a timeline of publications grouped by their domain of

application of the reviewed transformation methods; (iii) a description of other relevant

techniques for modeling times series; and (iv) a background of related tools for benchmark-

ing time series prediction. Chapter 2 describes the proposed benchmarking framework

and its implementation. Chapter 3 benchmarks different transformation methods and

discusses their effects to the problem of prediction of nonstationary time series. Chapter 4

gives use case examples of the usability of the developed framework for benchmarking

transformation methods with MLM modeling. Finally, Section 4.4 concludes.
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1- Time series and nonstationarity

A time series is a sequence of observations of an object of interest collected over

time. When observations are related to a single variable, a time series is referenced

as a univariate one. Commonly, the behavior of a univariate time series is studied as

a function of its past data (HANSSENS; PARSONS; SCHULTZ, 2003). Generally, one

may consider a univariate time series X as a stochastic process, that is, a sequence of

n random variables, <x1, x2, x3, . . . , xn>, where x1 represents the value assumed by the

series at the first (oldest) time point and xn represents the value of the series at the newest

time point (ESLING; AGON, 2012; SHUMWAY; STOFFER, 2017). The length n of a time

series X is represented as |X| and a specific time series observation is referenced as, xt,

indexed in time by t = 1, . . . , n.

Most methods applied for time series prediction assume that the behavior of a

time series presents a level of regularity over time, which is generally approached with the

study of the concept of stationarity (GUJARATI, 2002; SHUMWAY; STOFFER, 2017). The

following sections formalize the different types of stationarity.

1.1- Strict stationarity

In a strictly stationary time series, the probabilistic behavior of every possible

sequence of values <xt1 , xt2 , . . . , xtk> is equal to that of the time shifted sequence

<xt1+h
, xt2+h

, . . . , xtk+h
>. Therefore, Equation 1 is valid for all k = 1, 2, . . . , all arbitrary

integer time points t1, t2, . . . , tk, all arbitrary numbers c1, c2, . . . , ck, and all possible time

shifts h = 0,±1,±2, . . . (SHUMWAY; STOFFER, 2017).

P{xt1 ≤ c1, . . . , xtk ≤ ck} = P{xt1+h
≤ c1, . . . , xtk+h

≤ ck} (1)

Usually, the definition of strict stationarity is considered too strong for most applica-

tions. Such definition implies that all possible distribution functions for all subsets of a time
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series must be in agreement with their counterparts in the shifted sequence for all values

of h. This property is scarcely observed in most time series. Moreover, when handling a

single dataset, the evaluation of strict stationarity is often not straightforward (SHUMWAY;

STOFFER, 2017).

1.2- Weak stationarity

A more widely adopted version of stationarity, namely weak stationarity, gives a

milder definition of the property. A weakly stationary time series, X, is a finite variance

stochastic process such that: (i) the mean function, E(xt) = µt = µ, is constant and does

not depend on time t; and (ii) the autocovariance function, γ(s, t), between xt and the

time-shifted time series value xs depends only on the difference |s− t| (GUJARATI, 2002;

SHUMWAY; STOFFER, 2017).

In other words, a weakly stationary time series presents constant mean and vari-

ance, and its covariance function depends only on the time difference (YANG; ZURBENKO,

2010). These constraints are very important since they enable statistical inference to be

drawn based on any sampled subset of a time series (HANSSENS; PARSONS; SCHULTZ,

2003). As in most works in literature, henceforth the term stationary refers to a weakly

stationary process.

An example of a stationary time series may be visualized in Figure 1a, where one

may observe mean and variance functions which are independent of time. It represents

a first order autoregressive model (AR(1)), which is defined as in Equation 2, where α

is a constant and ωt ∼ N(0, σ2
ω) (GUJARATI, 2002). In Figure 1a, σ2

ω = 2, θ = 0.5, and

α = 0. Since 0 < θ < 1, any relevant impacts of past observations eventually become

negligible and do not affect the global behavior of the time series. It follows that this

model presents constant statistical properties such as E(xt) = µt = α/(1 − θ) = 0 and

V AR(xt) = σ2
ω/(1− θ2) ∼ 2, hence being considered stationary.

xt = α+ θxt−1 + ωt, 0 < θ < 1 (2)
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1.3- Nonstationarity

If a time series X violates any of the constraints imposed by a stationary process,

it is considered a nonstationary time series. Nonstationarity may manifest in many different

ways. Generally, it implies that the mean and/or variance functions of a time series are

non-constant and vary over time, that is, they are dependent on time t. The changes

in mean and/or variance in time series are often due to deterministic trends, structural

breaks, level shifts or changing variances (a condition known as heteroscedasticity). They

can also be due to the presence of unit roots (HANSSENS; PARSONS; SCHULTZ, 2003).

Figure 1(b-e) shows representative nonstationary time series.

A trended model might be considered the simplest form of nonstationary time series.

This model represents a process that has stationary behavior around a deterministic trend.

This trend shifts the mean of a time series causing it to increase or decrease over time.

Commonly, the deviations of a systematic trend may be a stationary variable, known as a

detrended variable, which may be analyzed instead of the original time series. In that case,

usual stationary models are applicable (HANSSENS; PARSONS; SCHULTZ, 2003; YANG;

ZURBENKO, 2010). A time series that presents this behavior is called trend stationary.

One may write an example model of such time series by adding a deterministic linear

trend to the AR(1) model presented in Equation 2. This model is defined as in Equation 3,

where βt is the trend term and ωt ∼ N(0, σ2
ω) represents white noise. The mean function

of the process E(xt) = µt = βt varies over time, violating the stationarity constraints. The

time series represented in Equation 3 may be observed in Figure 1b where one can see

the linear increasing mean function. This model gives an example of a process which is

nonstationary in mean.

xt = α+ θxt−1 + βt+ ωt, 0 < θ < 1 (3)

Nonstationarity in a time series may also be caused by structural breaks, that

happen at specific points in time, usually due to environment changes. These structural

breaks may eventually result in level shifts in a time series, which cause the mean function

to be different for different portions of the series. In that case, a time series can be

partitioned, and one can separately analyze each data portion with different statistical
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Figure 1 – Examples of time series presenting the properties of (a) stationarity, and non-
stationarity in the form of (b) trend stationarity, (c) level stationarity, (d) heteroscedasticity
and (e) difference stationarity. The solid and dashed black lines represent the mean and
the variance functions of the time series, respectively.

properties, provided that the timing of a structural break is known (HANSSENS; PARSONS;

SCHULTZ, 2003). Another way to handle structural breaks and level shifts in the mean

function while modeling a time series is to make use of a dummy variable defined as zero

before the point of a structural break and one after it. In case a time series presents local

stationary properties on each different portion divided by a level shift it is known as being



24

level stationary. An example of a level stationary time series is observed in Figure 1c

where one can see the level shifts of the mean function. The plot in Figure 1c represents

the model in Equation 4 which is derived from Equation 2 by the addition of a dummy

variable dt, with the level shift δ = 5 and the time of the structural break tb = 100. This

model gives another example of nonstationarity in the mean.

xt = α+ θxt−1 + δdt + ωt, 0 < θ < 1, dt =


0, t ≤ tb,

1, t > tb.

(4)

Another cause of nonstationarity which results from structural breaks is the

change in variance over time, a condition which is commonly known as heteroscedas-

ticity (HANSSENS; PARSONS; SCHULTZ, 2003; SHUMWAY; STOFFER, 2017). Het-

eroscedasticity arises from environment changes that make the volatility of time series

observations increase/decrease over time. Time series which present this condition

are called heteroscedastic. Analogous to level shifts, the different variance properties

in different portions of a time series can be addressed by partitioning the series or by

modeling the changes in variance with a dependency on the structural breakpoints. An

example of heteroscedastic time series is depicted in Figure 1d where different variance

properties on the first and last portions of the series are easily observable. The series

presented in Figure 1d represent the same model defined in Equation 2 and the same

series of Figure 1a, but in this case, ωt is set as ωt ∼ N(0, σ2
ω = 2) for t = 1, . . . , 100 and

ωt ∼ N(0, σ2
ω = 4) for t = 101, . . . , 200. This model gives an example of a time series

which presents nonstationarity in the variance.

An important type of nonstationarity, which in many cases is observed in real-world

series, is caused by the presence of a unit root in the characteristic polynomial of a

time series model. Without a unit root, time series observations tend to fluctuate around

deterministic components such as a mean or a trend. Conversely, when a unit root is

present, observations do not revert to a historical level and may wander in any direction.

The presence of a unit root implies that the time series suffer from the influence of long-run

components or stochastic trends (HANSSENS; PARSONS; SCHULTZ, 2003). In that

case, the removal of a stochastic trend, usually done by the application of a process called

differencing, is often helpful to coerce such time series to stationarity. For that reason

nonstationary time series that present unit roots are also known as difference stationary

(BOX; JENKINS; REINSEL, 2008). A difference stationary time series is presented in

Figure 1e that represents the so-called random walk model, which can be formulated as
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in Equation 5. This model assumes that the value of a time series xt at a time t can be

explained by the value of the series at the time t− 1 plus a random movement represented

by ωt (SHUMWAY; STOFFER, 2017).

xt = α+ xt−1 + ωt = α+

t∑
i=1

ωi (5)

The random walk model in Equation 5 is also derived from the AR(1) model in

Equation 2 by defining θ = 1. The definition of θ = 1 implies that any impacts caused by

past observations result in a permanent effect on the global behavior of a time series. In

this case, the mean function of the process is not fixed, and the variance function tends to

increase over time (HANSSENS; PARSONS; SCHULTZ, 2003) as can be observed by

Equation 6. This model gives an example of a process which presents a unit root and is

nonstationary both in mean and in variance (YANG; ZURBENKO, 2010).

V AR(xt) = V AR(α) +

t∑
i=1

V AR(ωi) = tσ2
ω →∞ as t→∞ (6)

It is also important to remark that frequently the dependence of a time series on

past data may occur by multiples of some underlying seasonal lag S. In that case, a time

series presents periodic components, and therefore, its statistical properties such as mean

and variance may periodically change, creating a dependence on time t. This makes

seasonality another particular form of nonstationarity, which is often found in time series

(YANG; ZURBENKO, 2010).

Generally, any form of nonstationarity, if not adequately addressed, can have

a relevant impact on time series prediction applications. Overlooking nonstationarity

properties in a time series may lead to misleading statistical inferences and bad or

unexpected prediction results. The next section presents a categorization for some of the

most researched transformation methods prepared for application to nonstationary time

series.
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1.4- Nonstationary time series transformation methods

Nonstationarity poses challenges to time series prediction, especially since this

property is pervasive in many real-world scenarios. As a consequence, several methods

for statistical analysis of nonstationary time series have been developed (NACHANE;

CLAVEL, 2008). This section presents a discussion of some of the most researched time

series transformation methods for handling nonstationarity. Focus is given to the methods

generally applied to the problem of time series prediction. For providing a better overview

of the methods and for helping the discussion of their particular features it is introduced a

general categorization presented in Figure 2.

Split

Map Detrending

Differencing

Time-Frequency 
Domain

Moving 
Average-Based

Parametric Nonparametric

No Trend Estimation

Logarithmic transform
Box-Cox transform
Percentage Changes Transform

Detrending
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KZ filter
KZA algorithm

Transform
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Rigor in modeling 
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Moving Average Smoother

Mathematical 
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Frequency 
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Transformation 
Methods

Hilbert-Huang transform

Figure 2 – Categorization diagram for some of the most researched transformation meth-
ods for coping with nonstationarity in univariate time series prediction.
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1.4.1 Mapping and splitting classification of transformations

The diagram presented categorizes 18 of the most researched transformation

methods for handling nonstationarity in time series by their two main classes: (i) mapping-

based and (ii) splitting-based.

The mapping-based transformations correspond to methods that map the data

of a time series to another representation. They return a new time series generated

by passing each of its observations through a mathematical process. The transformed

time series usually presents interesting properties, including stationarity, that are useful

for the application of time series prediction methods that take them as input. The same

parameters of the undergone transformation process may afterward be used for reversing

it and obtaining time series data consistent with the original time series representation.

The splitting-based transformations refer to methods that are also able to produce

a new representation of time series data. These methods apply different techniques

for splitting a time series into a number of component series. Each component series

generally serve as simpler or even stationary inputs for time series prediction methods

that can analyze and predict them separately (DUDEK, 2016). The undergone decom-

position process may afterward be reversed, generally by an additive or multiplicative

combination of the component series, to obtain time series data consistent with the original

representation. Splitting-based transformation methods are drawing increasingly more

attention during the last few decades, especially when associated with computational

intelligence techniques (CHIROMA et al., 2016). However, it might still be considered

under-researched (NACHANE; CLAVEL, 2008; YANG; ZURBENKO, 2010).

1.4.2 Parametric and nonparametric methods

Within these two main classes, one can also categorize the methods into para-

metric and nonparametric according to their initial assumptions regarding the underlying

behavior of a time series. Parametric methods make relatively more rigorous and inflexible

assumptions about the parameters of the data distribution of a time series, whereas
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nonparametric methods are data-driven and generally try to infer the number and nature

of the parameters from the input time series (HAN; KAMBER; PEI, 2011).

From another view, parametric methods can be defined as having a fixed number

of data parameters, while nonparametric methods allow for the number of parameters to

grow with the amount of data in the training set. Although one can say that parametric

methods make stronger assumptions about the nature of the data distributions of a time

series, they are generally faster, straightforward to use, and easier to interpret. Moreover,

although nonparametric methods present more flexibility, they can often demand an

infeasible computational cost for large time series datasets and are prone to overfit the

data (MURPHY, 2012).

Some parametric methods practice trend estimation. The estimated trend of a

time series may be deterministic or stochastic. A deterministic trend is estimated as a

deterministic function over time, which can be modeled by a standard regression model or

a model of sine and cosine curves when a time series presents hidden cycles at different

frequencies. Conversely, a stochastic trend is modeled as a nondeterministic function over

time, such as an autoregressive moving average (ARMA) model, which usually serves as

a stochastic component (YANG; ZURBENKO, 2010).

1.4.3 General settings and time series properties

The categorization presented in this work also classifies the transformation meth-

ods for handling nonstationary time series according to a set of features that may often be

of interest to researchers, such as their class of implementation, the kinds of nonstationar-

ity and the time series properties considered by the method. The implementation classes

of the methods, being either a mathematical transform or a computational algorithm, are

represented by the different geometric icons associated with each method. Some of the

methods involve a time series transform that is performed by computational algorithms. In

that case, their icons are formed by two of the respective geometric symbols.

The kinds of nonstationarity discussed in Section 1.3, namely nonstationarity in

mean and in variance, which the transformation methods are prepared to handle, are also

represented in the categorization diagram by the background color of the icon of each
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method. Furthermore, some of the reviewed methods are also prepared to handle often

crucial time series properties such as nonlinearity and seasonality. These methods and

the properties they consider are represented in Figure 2 by the patterns (horizontal/vertical

lines) which fill their respective icons.

1.4.4 Mapping-based transformation methods

Mapping-based transformation methods derive new mapped representations of

a time series usually by undergoing one of three processes: (i) basic mathematical

transformation, based on the use of standard mathematical operations and manipulation;

(ii) detrending, based on the removal of a deterministic trend; or (iii) differencing, also based

on the removal of a trend, but without the need for model estimation. The most commonly

used mapping-based transformation methods are described in the next sections.

Basic mathematical transformations

Some of the most simple and the most applied nonstationary time series mapping-

based transformations are the logarithmic transform (LT), Box-Cox transform (BCT)

(SHUMWAY; STOFFER, 2017; CRYER; CHAN, 2010), percentage change transform

(PCT), and moving average smoother (MAS) (MARROCU, 2006; OGASAWARA et al.,

2010). The methods LT, BCT, and PCT are used for minimizing or even normalizing the

variability over a time series. LT tends to suppress fluctuations that occur over portions of

a time series which present higher values (SHUMWAY; STOFFER, 2017), and its simple

formula can be seen in Equation 7, where x̂t is the transformed version of the original

time series value xt. Often in macroeconomics, a time series is natural log-transformed

(setting b = e) to minimize effects of nonstationarity and heteroscedasticity (non-constant

variability (GUJARATI, 2002)), and also to induce symmetry and normality. The esti-

mated coefficients of a logged time series can also be interpreted as elasticities. These
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advantages make of natural logs one of the most applied LT (MARROCU, 2006).

x̂t = logb xt (7)

The BCT, as in Equation 8, presents a more objective method for determining

a suitable power transformation of a time series (YEO; JOHNSON, 2000). However, it

demands the calculation of the numeric argument λ that is related to the data distribution

function, which is not always known. Additionally, it can only be applied to positive valued

data (CRYER; CHAN, 2010).

x̂t =


(
xt
λ − 1

)
/λ, λ 6= 0,

log xt, λ = 0.

(8)

The PCT assumes that there is considerable stability in the relative percentage

of change between two following observations of a time series (CRYER; CHAN, 2010).

In that case, the Equation 9 is true if the percentage change is restricted to an interval

[−100ρ, 100ρ], with 0 ≤ |ρ| < 1 being a small acceptable threshold.

x̂t ≈ log

(
xt
xt−1

)
(9)

Finally, MAS has been widely used especially in finance and econometrics. It

is useful for highlighting seasonality and long-term trends in a time series (SHUMWAY;

STOFFER, 2017; OGASAWARA et al., 2010). MAS can detect the evolving behavior of a

time series by minimizing random noise (OGASAWARA et al., 2010), and can also be used

for seasonal adjustment of a time series (MARROCU, 2006). One of the simplest forms of

the MAS is represented by Equation 10, where k is the order of the moving average.

x̂t =
1

k

t+k−1∑
i=t

xi, 1 ≤ t ≤ n− k + 1 (10)
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Detrending versus differencing

It is also important to mention the transformations of detrending (DT) (or trend

removal) and simple differencing (DIF), which are widely used in combination with time

series modeling techniques. The DT transformation involves the determination and removal

of an inherent trend observed in a time series behavior (SHUMWAY; STOFFER, 2017).

Generally, the observed trend is estimated and defined by a deterministic functional form,

which may be represented as a fixed component in a time series model (WU et al., 2007).

A general DT transformation can be seen in Equation 11, where ηt is the determined

trend component and, in this case, x̂t represent the variability series, that is, the residue

of the time series data after trend removal. However, this method usually assumes that

the deterministic trend is always appropriate over time, which is frequently not the case in

many applications, especially involving nonstationary processes (CRYER; CHAN, 2010).

To overcome this drawback, recently there have been efforts towards data-driven, adaptive

methods for determining trends in nonlinear and nonstationary time series (WU et al.,

2007).

x̂t = xt − ηt (11)

The DIF method brings some advantages compared to DT since it does not

demand a parameter estimation process and is capable of generating a stationary time

series when it presents stationary behavior around a deterministic or stochastic trend

(SHUMWAY; STOFFER, 2017). A first DIF transformation, simply written as in Equation

12, can eliminate a linear trend, a second DIF eliminates a quadratic trend, and so on. For

DIFs of higher-order, the backshift operator (B) is used, as seen in Equation 13, where

∇d is the d-th differencing and the operator (1−B)d is adapted for higher orders of d

(SHUMWAY; STOFFER, 2017).

x̂t = ∇xt = xt − xt−1 (12)

∇d = (1−B)d, Bkxt = xt−k (13)

It is also noted the variations of DIF, the fractional differencing (FDIF) and the

seasonal differencing (SDIF). The FDIF method is a similar process to DIF. It allows for

the possibility of d to assume the powers −0.5 < d < 0.5 (SHUMWAY; STOFFER, 2017)
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and is commonly used for long memory time series analysis (JARA, 2011; MAYNARD;

SMALLWOOD; WOHAR, 2013; SADAEI et al., 2016). In the SDIF method, d assumes the

value corresponding to the seasonal period s, and it can be denoted as ∇sxt = xt − xt−s

(CRYER; CHAN, 2010). However, a disadvantage of DIF is that the method does not

produce an estimation of the inherent stationary process of a time series. In case this

estimation is essential, DT may be more suited.

The DIF method can be used together with the linear ARMA models producing one

of the most important time series linear prediction models, the autoregressive integrated

moving average (ARIMA) models (BOX; JENKINS; REINSEL, 2008), which are able to

model stochastic trends (CRYER; CHAN, 2010). An ARIMA(p, d, q) model is composed of

an autoregressive (AR) and a moving average (MA) modeling processes (represented by

p and q, respectively) with the application of a preliminary DIF process (I) (represented

by the order d) so as to handle nonstationarity in time series (GUJARATI, 2002). ARIMA

models assume that an observation of a time series, xt, can be described as a function of

its p past values and its q past white noise values (SHUMWAY; STOFFER, 2017). The

latter are represented as ωt, a Gaussian white noise series with mean zero and variance

σ2
ω. Let θ (B) and φ (B) be, respectively, the AR and the MA operators. The ARIMA model

is denoted in Equation 14 (BOX; JENKINS; REINSEL, 2008; SHUMWAY; STOFFER,

2017). Variations of the ARIMA models may arise by introducing AR and MA polynomials

that identify a dependence on some underlying seasonal lag, generating the seasonal

ARIMA (SARIMA) models (SHUMWAY; STOFFER, 2017). It is also possible to allow d

to take non-integer values, thus performing a preliminary FDIF process (FI), generating

the autoregressive fractionally integrated moving average (ARFIMA) models (GIRISH;

TIWARI, 2016).

θ (B) (1−B)dxt = φ (B)ωt. (14)

1.4.5 Splitting-based transformation methods

Most commonly, splitting-based transformations are nonparametric and have its

origin in signal processing techniques such as spectral (frequency domain) analysis

(LOS, 2006; NACHANE; CLAVEL, 2008). They usually decompose a time series X into
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components (signals) of the same length |X| having different scales (frequencies), which

may be caused by different physical phenomena, to capture the intrinsic dynamics of

a time series (MORANA, 2007; YANG; ZURBENKO, 2010; SHU et al., 2014; XI et al.,

2014; LAHMIRI, 2016). For example, a time series can be decomposed into short-term

(high-frequency), seasonal, and long-term (low frequency) components. An advantage

provided by this decomposition process is that the explanation of only a few kinds of

signal components is generally simpler and more physically meaningful than a collection

of estimated model parameters (SHUMWAY; STOFFER, 2017). Moreover, the derived

components are more easily modeled, which can simplify the time series prediction

problem (DUDEK, 2016). Usually, decomposition may be achieved in a frequency only

or a time-frequency domain. The latter enables the preservation of information regarding

localized changes. Special cases of time series decomposition are based on moving

average iterations or pattern mapping (i.e., deriving patterns of a time series behavior to

simplify its prediction and filter trends and long-term variations (DUDEK, 2016)). Some

of the most frequently used splitting-based transformation methods are described in the

following sections.

Frequency domain decomposition

Time series analysis in the frequency domain are often based on Fourier transforms

(FT) (JOO; KIM, 2015). The FT creates a frequency-based representation (a spectrum)

of a time series in terms of Fourier basis functions. The FT of a time series X, in this

case represented as a function of time x(t), can be formulated as in Equation 15, where

F (ξ) represents the Fourier spectrum, ξ is a frequency component and j is the imaginary

number j =
√
−1 (LOS, 2006).

F (ξ) =

∫ +∞

−∞
x(t)e−jξtdt, e−jξt = cos ξt− j sin ξt (15)

As well as for the Fourier series, the drawback of FT is that it is a global repre-

sentation of a time series, and therefore information associated with time is lost (LOS,

2006; JOO; KIM, 2015). This fact makes the FT mainly suitable when a time series
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does not present a relevant change in behavior over time, that is when it is stationary.

Furthermore, FT does not perform well when handling large data, being limited to an

interval between 0 and 2π observations (JOO; KIM, 2015). In order to minimize these limi-

tations, a windowed variation of FT, namely the windowed Fourier transform (WFT), was

devised. The WFT is suitable to analyze nonstationary time series with slowly changing

behavior. Also, derivations of WFT are possible such as the Kolmogorov-Zurbenko Fourier

transform (KZFT), which applies the WFT with a unique short-time window, being capable

of providing the best possible resolution in the frequency domain (YANG; ZURBENKO,

2010). Nonetheless, WFT and its derivations may still generate time ambiguity, due to the

infinite support of the Fourier wave bases (LOS, 2006). Recently, a method capable of

efficiently analyzing localized changes in time series has been widely applied, which is

based on finite wavelet bases (LOS, 2006).

Time-frequency domain decomposition

Wavelets are finite basis functions localized in both time and frequency. The

wavelet transform (WT) decomposes a time series (signal) by correlating it with a family

of wavelets, providing an extremely flexible time-frequency representation (LOS, 2006;

LAHMIRI, 2016). The WT decomposes a time series X, which is again regarded as a

function of time x(t), into the wavelet series x̂(t) observed in Equation 16 (JOO; KIM, 2015).

Here the components ζ(t) and its coefficient b represent the scale part of the wavelet

series (being responsible for modeling trends and seasonality), whereas the components

ψ(t) and its coefficient c represent the detail part of the wavelet series (corresponding to

noise or random deviations), at scale (decomposition level) l and position k. Also, L is the

defined maximum decomposition level.

x̂(t) =

n∑
k=1

bl,kζl,k(t) +

L∑
l=1

n∑
k=1

cl,kψl,k(t) (16)

Since finite wavelets are usually irregular and asymmetric (JOO; KIM, 2015),

the WT is particularly suited for analysis of nonlinear, noisy and nonstationary time se-

ries, with rapidly changing behavior (LOS, 2006; AN et al., 2011; ROSHAN; GOPURA;
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JAYASEKARA, 2011; LAHMIRI, 2016). If the wavelet transform is applied to a nonsta-

tionary time series, the resulting decomposed series usually present a better behavior

than the original series, being more easily and accurately predicted, even by simple

linear models like ARIMA. Predictions of the original time series with increased accuracy

can then be obtained by applying the inverse WT to the predictions of the decomposed

series (CONEJO et al., 2005; JOO; KIM, 2015). WT is also a tool for multiresolution

analysis (MRA), that is, modeling frequency behavior of a time series at multiple time

resolutions, which is an improvement over WFT (LOS, 2006). The MRA often makes of

WT a more appealing option than standard econometric models (LAHMIRI, 2016). The

WT, in MRA, can generally be implemented as a continuous wavelet transform (CWT) or

a discrete wavelet transform (DWT) (CONEJO et al., 2005; AN et al., 2011). Prediction

tasks, however, require a variation of DWT, called the maximum overlap discrete wavelet

transform (MODWT) (NACHANE; CLAVEL, 2008). It is also noted the derived method of

discrete wavelet packet transform (WPT), which reapplies the WT to a resulting decom-

posed series that does not present a required level of stationarity or decorrelation (ATTO;

BERTHOUMIEU, 2012).

Besides the WT, there are other MRA techniques that are very recent and promi-

nent, namely the empirical mode decomposition (EMD) and the derived variational mode

decomposition (VMD) (LAHMIRI, 2016). Similarly to the WT, the EMD is an algorithm

for nonlinear and nonstationary time series decomposition, generating a time-frequency

representation of the series (LAHMIRI, 2016; WANG et al., 2016). EMD is also capable

of decomposing a time series into more stable components (intrinsic mode functions

(IMFs)), which can be more easily modeled, improving prediction accuracy (SUN et al.,

2016). However, the advantage of EMD is that it does not depend on predetermined

(wavelet) functions, since its basis functions are derived directly from the time series,

therefore being adaptive and completely data-driven (LAHMIRI, 2016; WANG et al., 2016).

Conversely, EMD is recursive and does not perform well when it comes to separating

time series components with similar frequencies. In order to overcome this limitation,

the VMD algorithm was devised, which transforms the time series decomposition into a

non-recursive and variational model (LAHMIRI, 2016; SUN et al., 2016). The VMD is

superior to EMD in the sense that it decomposes a time series more precisely and is more

robust to noise (SUN et al., 2016).

Another recent noteworthy approach is presented by the Hilbert-Huang transform
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(HHT), which combines the use of EMD with the application of the Hilbert transform

for each of the resulting IMFs (SONG et al., 2017). The Hilbert transform is used for

computing instantaneous frequencies enabling a frequency-time-energy (or amplitude)

representation of a time series. The HHT is capable of accurately representing local time

and frequency characteristics of nonlinear and nonstationary time series (SONG et al.,

2017).

Moving average-based decomposition

Finally, mention is due to another example of a method for time series frequency

decomposition, denominated Kolmogorov-Zurbenko filter (KZF) (YANG; ZURBENKO,

2010). The KZF is an algorithm based on iterations of a moving average filter with noise

suppression. KZF results in long-term and short-term components, where the latter is

generally fit well by an ARMA model. It is also resilient to non-equally collected and/or

missing time series observations (YANG; ZURBENKO, 2010).

It is also possible for a time series to suffer from breaks in behavior over time, a

characteristic that contributes to the presence of nonstationarity. Such breaks may be

analyzed by a process of intervention analysis, which is a special application of time series

decomposition. This process is performed by the nonparametric Kolmogorov-Zurbenko

adaptive algorithm (KZA) by zooming in the KZF results in the areas near a break. The

KZA is capable of detecting the time and size of the breaks in a time series even when

it presents a high level of noise. It also supports break detection when the long-term

component of a time series presents a nonparametric nature, which would cause traditional

statistical methods to fail (YANG; ZURBENKO, 2010).

Pattern-based decomposition

A special case for time series decomposition is presented by the Time series

pattern mapping (PM). PM is a preprocessing technique applied to simplify the prediction
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of time series presenting multiple seasonalities (DUDEK, 2016). PM decomposes a time

series into patterns of its behavior (not necessarily of the same length), which can eliminate

the properties of nonstationarity in mean and in variance. It can also remove trend and

seasonal cycles of long-term periods. The decomposed patterns of a time series may be

used as input to computational intelligence techniques (DUDEK, 2016).

1.4.6 Research scenario of nonstationary time series transformations

The available literature on transformation methods for nonstationary time series

was analyzed through a systematic mapping study using a query string involving the

keywords “univariate”, “time series”, “nonstationarity”, “transformation”, “model”, and

“prediction”. The query was executed on the Scopus database in September 2018 and

returned 269 references.

Approximately 72 publications were selected to base the discussed review due to

their relevance to the researched subject and impact (citation count). It has also been

performed an additional snowballing search in Google Scholar mainly on the subject of

wavelet transform for time series prediction due to its increasing importance to the current

research scenario on nonstationarity. This resulted in the addition of 6 papers to base our

presented review. The selected 78 publications are presented in the timeline of Table 1.

The publications are presented in Table 1 in a chronological way, to provide a

better visualization of the evolution of the adopted methods for addressing nonstationarity

in univariate time series. The methods adopted or approached by each publication are

represented within parenthesis after each authors names. Each publication is classified

by the main tasks performed by their chosen methods.

According to the categorization in Figure 2, are represented with different colors the

publications which adopted mapping-based transformation methods, splitting-based trans-

formation methods or that focus on other modeling techniques for treating nonstationarity.

The publications are also grouped by their domain of application of the adopted methods,

namely the statistical/natural sciences, socioeconomic/financial and industrial/business

domains.
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Table 1 – Timeline table of publications presenting some of the most researched methods
for coping with nonstationarity in univariate time series. The publications are grouped
by their domain of application and categorized by the main task of the applied methods
(referenced within parenthesis).

Year Statistical/Natural Sciences Socioeconomic/Financial Industrial/Business

1981
n Hipel (1981) (BCT, ARIMA, SARIMA)
n Stensholt and Tjøstheim (1981) (ARIMA)

1987 n Sarma, Sinha, and Basu (1987) (DIF)

1992 n Bhattacharya and Basu (1992) (DIF)

1996 n Baillie (1996) (GARCH, FDIF, ARFIMA)

2001 n Maier and Dandy (2001) (DT, DIF)

2002 n Dittmann and Granger (2002) (FDIF)

2003 n D’Elia and Piccolo (2003) (BCT, ARFIMA) n Abraham and Balakrishna (2003) (GARCH, FDIF, ARIMA)

2004
n Gil-Alana (2004) (FDIF, ARFIMA)
n Milionis (2004) (ARIMA)

2005
n Omtzigt and Paruolo (2005) (DIF) n Conejo et al. (2005) (ARIMA, WT)
n Gil-Alana (2005) (FDIF)

2006

n K. a Ko and M. b Vannucci (2006) (ARFIMA, WT) n Fryzlewicz and Nason (2006) (GARCH, WT)
n K. Ko and M. Vannucci (2006) (ARFIMA, WT) n Los (2006) (GARCH, FT, WT)
n Fryzlewicz, Sapatinas, and Rao (2006) (WT) n Hendry (2006) (DIF)

n Marrocu (2006) (LT, BCT, MAS, DT, FDIF, SDIF)
n Gospodinov, Gavala, and Jiang (2006) (GARCH, FDIF, ARFIMA)

2007

n Haldrup and Nielsen (2007) (FDIF) n Caporale and Gil-Alana (2007) (FDIF)
n Brockwell (2007) (ARFIMA)
n Morana (2007) (FT)
n Palma (2006) (MAS, DT, SM, GARCH, ARFIMA, WT)

2008
n Nachane and Clavel (2008) (GARCH, FNLARMA, WT)
n Mills and Markellos (2008) (DT, SM, GARCH, FDIF, ARIMA, SARIMA)

2009
n Cavaliere and Taylor (2009) (GARCH) n Brandao and Nova (2009) (ARIMA, SARIMA)
n Otok and Suhartono (2009) (ARIMA, SARIMA)

2010
n Yang and Zurbenko (2010) (LT, BCT, DT, SM, DIF, FT, KZFT, KZA, KZF) n Minu, Lineesh, and Jessy John (2010) (GARCH, WT)
n Gourieroux and Jasiak (2010) (FDIF) n Ogasawara et al. (2010) (MAS)
n Pai and Ravishanker (2010) (ARFIMA, FDIF)

2011 n Jara (2011) (FDIF) n Roshan, Gopura, and Jayasekara (2011) (WT) n An et al. (2011) (WT)

2012
n Percival and Mondal (2012) (WT) n James and Murthy (2012) (DIF)
n Chilès and Delfiner (2012) (SM)
n Atto and Berthoumieu (2012) (WPT)

2013
n Maynard, Smallwood, and Wohar (2013) (FDIF) n Gao et al. (2013) (WT)

n Gil-Alana and Jiang (2013) (FDIF)

2014
n Ljung, Ledolter, and Abraham (2014) (ARIMA) n Claveria and Torra (2014) (ARIMA) n Stefanakos and Schinas (2014) (LT, BCT, DT)

n Shu et al. (2014) (ARIMA, FT)

2015 n Joo and Kim (2015) (ARIMA, SARIMA, WT)

2016

n Wang et al. (2016) (HW, ARIMA, EMD) n Sun et al. (2016) (VMD)
n Sadaei et al. (2016) (ARFIMA) n Girish and Tiwari (2016) (THW, ETS, TF, ARIMA, ARFIMA)
n Lahmiri (2016) (WT, EMD, VMD) n Chiroma et al. (2016) (WT)

n Dudek (2016) (PM)
n Akpinar and Yumusak (2016) (HW, ARIMA)

2017

n Nury, Hasan, and Alam (2017) (ARIMA, WT) n Corona, González-Farı́as, and Orraca (2017) (DIF) n Liu, Gu, and Peng (2017) (ARIMA, BCT, HW)
n Song et al. (2017) (HHT) n Corona, Poncela, and Ruiz (2017) (DIF)
n Douc, Fokianos, and Moulines (2017) (GARCH) n Zhang, Lin, and Shang (2017) (EMD, ARIMA)

n Xiong, Shang, and Bian (2017) (EMD)
n Rodriguez (2017) (GARCH, FDIF)
n Ismail and Awajan (2017) (EMD, ETS, ARIMA, SM, TF, HW)
n Barba and Rodrı́guez (2017) (WT)

2018
n Xie, Bijral, and Ferres (2018) (ARIMA,DIF) n Zhang et al. (2018) (WT, SARIMA) n Bokde, Feijóo, and Kulat (2018) (EMD, DIF)

n Ngene, Mungai, and Lynch (2018) (FDIF) n Li et al. (2018) (WT, ARIMA)
n Caporale and Skare (2018) (ARFIMA, GARCH, FDIF) n Jamalmanesh et al. (2018) (ARIMA)

n Mapping-based transformations only n Splitting-based transformations only n Both mapping and splitting-based transformations n Other techniques only

Domains of application

The timeline in Table 1 present 30 publications with a statistical/natural sciences

domain of application, which mainly comprehend the problems of time series prediction

and/or statistical modeling. The works of Hipel (1981) and Chilès and Delfiner (2012),

particularly, focus on problems regarding Geophysics and Geostatistics, respectively. Song

et al. (2017) perform analysis of geographic spatiotemporal series. Maier and Dandy

(2001), Otok and Suhartono (2009), Pai and Ravishanker (2010) and Nury, Hasan, and
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Alam (2017) all work with environment variables. In particular, Otok and Suhartono (2009)

aimed at modeling rainfall in Indonesia, and Nury, Hasan, and Alam (2017) focused on

predicting future temperature measurements in northeastern Bangladesh.

One can also observe 32 publications with a socioeconomic (GIL-ALANA, 2004;

MARROCU, 2006; CAPORALE; GIL-ALANA, 2007; OGASAWARA et al., 2010; CORONA;

GONZÁLEZ-FARÍAS; ORRACA, 2017; CAPORALE; SKARE, 2018) and financial (FRY-

ZLEWICZ; SAPATINAS; RAO, 2006; GOSPODINOV; GAVALA; JIANG, 2006; LOS, 2006;

HENDRY, 2006; MILLS; MARKELLOS, 2008; NACHANE; CLAVEL, 2008; ROSHAN;

GOPURA; JAYASEKARA, 2011; SADAEI et al., 2016; ZHANG; LIN; SHANG, 2017; RO-

DRIGUEZ, 2017; ISMAIL; AWAJAN, 2017; NGENE; MUNGAI; LYNCH, 2018) domain of

application. Joo and Kim (2015) conduct experiments using datasets with different origins

including not only the financial market but also sales and airport demand, among others.

The researches of Milionis (2004), Lahmiri (2016) and Corona, Poncela, and Ruiz (2017)

handle bill, interest and inflation rates, respectively, while Gil-Alana and Jiang (2013)

evaluates the purchasing power parity hypothesis in China-United States relations. The

authors Minu, Lineesh, and Jessy John (2010) and Claveria and Torra (2014) approach

other socioeconomic issues such as tourism demand and security. Furthermore, the

papers of Brandao and Nova (2009), James and Murthy (2012), Gao et al. (2013), Wang

et al. (2016), Xiong, Shang, and Bian (2017), Barba and Rodrı́guez (2017) and Zhang

et al. (2018) present applications regarding traffic analysis.

Finally, other 16 publications are mentioned, with an industrial/business domain

of application, which mainly refer to problems related to the energy market (SARMA;

SINHA; BASU, 1987; BHATTACHARYA; BASU, 1992; CONEJO et al., 2005; AN et al.,

2011; STEFANAKOS; SCHINAS, 2014; GIRISH; TIWARI, 2016; CHIROMA et al., 2016;

AKPINAR; YUMUSAK, 2016; DUDEK, 2016; SUN et al., 2016; LIU; GU; PENG, 2017;

JAMALMANESH et al., 2018). Among these publications, it is noted that Conejo et al.

(2005), Girish and Tiwari (2016), Dudek (2016), and Jamalmanesh et al. (2018) focus on

the electricity market, whereas Stefanakos and Schinas (2014) and Akpinar and Yumusak

(2016) focus on the markets of marine fuel, and natural gas, respectively. An et al. (2011)

and Bokde, Feijóo, and Kulat (2018) study wind farm power and speed, respectively.

Special cases are presented by Abraham and Balakrishna (2003), Shu et al. (2014) and Li

et al. (2018) which handle cargo transport, access loads and other time series problems

relating industry and business.
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Discussion on research evolution

From the timeline diagram in Table 1, one can observe that many of the applications

presented by the selected publications fall into the statistical/natural sciences domain.

This fact helps to suggest that the methods for handling nonstationarity in time series

may still be widely found in statistical/theoretical researches. In that case, it is important

to remark the demand for applying adequate methods for coping with nonstationarity in

other real-world datasets, generally used in problems related to socioeconomics, financial

market, and above all, industry. Fortunately, this seems to be the tendency since 2013,

where most publications focus on real and non-theoretic applications.

Moreover, the analysis of Table 1 furthers the discussion of an increasing tendency

regarding the use of splitting-based time series transformation methods. Although the

timeline of the selected papers starts in 1981, the papers that apply methods that perform

time series decomposition were published only since the year 2005. Furthermore, several

of the papers that handle time series decomposition methods still apply them together with

the more established mapping-based transformation methods. The amount of selected

papers that focus solely on splitting-based transformations seems to increase since 2006.

The highest concentration of such papers was published by the year 2016.

One may extend the observed late tendency to the use of nonparametric methods,

which practically compose the category of splitting-based transformation methods. Since

the growing tendency of works based on time series decomposition and nonparametric

methods is relatively recent, it should suggest the need for further research on both

subjects (NACHANE; CLAVEL, 2008; YANG; ZURBENKO, 2010; CHIROMA et al., 2016).

Table 2 presents a synthesis of the selected papers based on the timeline diagram in

Table 1.

Also, a highlight is given to the use of WT among the time series decomposition

and nonparametric methods that have been most approached in recent years for business

applications in time series prediction (LAHMIRI, 2016), having drawn unprecedented

interest in its combination with machine learning methods to improve time series prediction

accuracy (CHIROMA et al., 2016). In fact, 62.5% (20/32) of the selected papers in

Table 1 that apply time series decomposition methods approach the use of the WT in an

experimental application. Also, it is noted that 25% (8/32) of such papers are based on
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Table 2 – Synthesis of the selected publications presenting some of the most researched
methods for coping with nonstationarity in univariate time series.

Domain of application Publication
Applied transformations

Mapping-based
only

Splitting-based
only

Both

Statistical/Natural Sciences
1981-2005 100% 0% 0%
2006-2018 31% 25% 31%

Socioeconomic/Financial
1981-2005 100% 0% 0%
2006-2018 53% 30% 17%

Industrial/Business
1981-2005 75% 0% 25%
2006-2018 42% 33% 25%

All
1981-2005 93% 0% 7%
2006-2018 47% 28% 20%

the use of another prominent decomposition method, namely the EMD, which has been

increasingly adopted since 2016.

1.5- Time series prediction models

Besides the reviewed transformation methods, other efforts have been derived for

addressing nonstationarity in time series data. Among them are statistical and state-of-the-

art machine learning modeling approaches that are surveyed by Cheng et al. (2015) that

presents a comprehensive review and a comparative analysis of models for time series

of complex systems (presenting nonstationarity and nonlinearity). This section presents

relevant models and techniques that are generally adopted for time series prediction.

Some of the presented approaches feature means of describing nonstationary properties

of time series.
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1.5.1 Statistical models

When researching methods for nonstationary time series transformation, one may

also come across other relevant and useful techniques for addressing nonstationarity in

time series. These techniques rely on the use of nonlinear and nonstationary modeling of

time series. In particular, there is a category of models which are designed for modeling

a time series by describing it as statistical terms. Some of these terms directly model

nonstationary behavior, such as an inherent trend or seasonality. These models may also

be combined with the application of transformations such as detrending and/or differencing

to achieve stationarity. Examples of models falling into this category are set by the

structural models (SM), linear mixed model (LMM), Holt-Winter’s exponential smoothing

(HW), Taylor’s double seasonal Holt-Winter’s model (THW), exponential smoothing state

space model (ETS), theta forecasting (TF), and the generalized autoregressive conditional

heteroscedasticity model (GARCH).

Firstly, the SM is a representative model in this category. SM consist of terms,

such as trend and seasonal. These terms may provide a straightforward interpretation of

a time series behavior. A general SM is presented in Equation 17, where ηt is the trend

term, χt is the cycle term, and ωt is the error term. Trend terms may be stochastic and

can be estimated using an ARIMA process.

xt = ηt + χt + ωt (17)

SM models may also be considered special cases of state space models and can

be represented as so (CLEMENTS; HENDRY, 2005). Their parameters can, therefore, be

estimated by a Kalman filter (CLEMENTS; HENDRY, 2005; YANG; ZURBENKO, 2010). A

basic example of a state space model is given in Equation 18, which consists of two parts:

a so-called state equation (Equation 18a) and an observation equation (Equation 18b).

The latter is added since ẋt (in this case considered a state vector) is assumed not directly

observable. Instead one can only observe xt, which is a linear transformation of ẋt with

the addition of noise. Here At is a measurement matrix, ε is a coefficient matrix, and ωt
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and υt represent noise (SHUMWAY; STOFFER, 2017).

ẋt = εẋt−1 + ωt, (18a)

xt = Atẋt + υt (18b)

It is possible for time series data to present dependencies and serially correlated

errors due to clustering, that is when observations can be divided into related subgroups

(clusters). The LMM models belong to the category of mixed-effects models and are

designed to address such dependencies among observations, which would typically make

standard linear models inappropriate (FOX, 2015). It considers both fixed (deterministic)

and random (stochastic) effects of time in a time series. In this case, fixed effects are often

modeled using a deterministic trend model, and random effects are modeled by stochastic

AR or ARMA structures (YANG; ZURBENKO, 2010).

There are several forecasting frameworks based on the classical model of expo-

nential smoothing. A general exponential smoothing model is expressed as in Equation

19, where each time series value xt, here obtained by the function of time x(t), is based

on the fitting function vector for the time series f(t), the coefficient vector κ(t) (T is the

transpose operator) and a white noise ω(t). The function f(t) depends on its past values

and the transition matrix M (MOGHRAM; RAHMAN, 1989).

x(t) = κ(t)T f(t) + ω(t), f(t) = Mf(t− 1) (19)

Methods based on the exponential smoothing are applied in numerous applications

due to their robustness and accuracy (GIRISH; TIWARI, 2016). Among them, it is noted

the HW method, which can be used for nonlinear modeling of heteroscedastic time series

(DUDEK, 2016). It estimates level, slope and seasonal terms at each time point (WANG

et al., 2016; DUDEK, 2016). Despite taking a long processing time to determine a few

parameters, it is able to represent trend, seasonality, and randomness in an effective

way (AKPINAR; YUMUSAK, 2016). The THW adapts the HW to accommodate a second

seasonality (GIRISH; TIWARI, 2016). The ETS model is based on an extended range

of exponential smoothing, and it refers to its three basic terms: error, trend, and season-

ality (GIRISH; TIWARI, 2016). The TF applies differencing and exponential smoothing

altogether (GIRISH; TIWARI, 2016).
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Another model commonly applied in finance for estimating heteroscedastic time

series is the GARCH (NACHANE; CLAVEL, 2008). A time series may be explained as a

GARCH(p,q) model by Equation 20a, where µt is a mean function. Particularly, the noise

series ωt is i.i.d. N(0, 1), so that the conditional distribution of the residual time series

X̃, where x̃t = xt − µt, is N(0, σ2
t ) (CARMONA, 2013; MILLS; MARKELLOS, 2008). The

conditional variance σ2
t is defined by Equation 20b with α and β as coefficients (CRYER;

CHAN, 2010). Although GARCH models present a useful tool for treating nonconstant

variability in time series, they are known for not being able to capture long memory

properties and highly irregular behavior (STEFANAKOS; SCHINAS, 2014).

xt = µt + σtωt (20a)

σ2
t = α0 +

p∑
j=1

αjσ
2
t−j +

q∑
j=1

βj x̃
2
t−j (20b)

Finally, a noteworthy approach for addressing nonstationarity is through time-

varying modeling. This approach is adopted by the FNLARMA. The FNLARMA basically

estimates an ARMA model with deterministic time-dependent coefficients approximated

by a Fourier series (NACHANE; CLAVEL, 2008).

1.5.2 Machine learning models

MLM have been used for nonlinear time series prediction in areas such as man-

ufacturing systems, finance, health informatics, and energy grids, among other fields

(CHENG et al., 2015). Since the models generated by MLM are universal approximators,

that is, they can approximate any continuous function to an arbitrary precision, they can

be beneficial to the problem of modeling nonstationary time series properties. Some of

the most relevant MLM are the feed-forward neural network (NNET), multilayer perceptron

network (MLP), extreme learning machines network (ELM), radial basis function network

(RBF), support vector machine (SVM), and random forest regression (RFrst).

A neural network is a bioinspired computational approach for recognizing structural

data patterns through neurons that are connected through synapses. The synapses have

associated weights representing the relevance of the connection (HAYKIN, S. O., 2008;

MOREIRA et al., 2018). Usually neural networks present a feed-forward architecture
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(NNET) as presented in Figure 3 (HAYKIN, S., 1998). It uses the present time series value

xt, and its m predecessors xt−m, . . . , xt−1 (in Figure 3, m = 2), to approximate the next

value xt+1. During a training process, approximation errors are backpropagated in order to

adjust synaptic weights. A practical time series prediction process would involve the setup

of neural network parameters, such as the number of input entries, hidden layers, neurons

in hidden layers, etc (OGASAWARA et al., 2009). NNET with error backpropagation has

been employed for nonlinear time series prediction, outperforming traditional statistical

methods such as ARIMA in functional approximation. Perhaps a disadvantage of NNET is

that it still assumes that the dynamics underlying a time series are time-invariant (CHENG

et al., 2015). A fully connected NNET is referenced as MLP, and it is probably the most

common network architecture currently in use. Particularly, it has been widely adopted in

astronomy applications (MACHADO et al., 2016).
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Abstract— Neural networks is one of the techniques used for 
time series analysis. The performance of neural networks is 
affected by some parameters such as neural network structure 
and the quality of data preprocessing. These parameters need 
to be explored in order to obtain an optimal neural network. 
However, the manual establishment of different neural 
networks configurations for selecting the best ones may be 
error-prone and time-consuming. This paper proposes the 
creation of neural networks cartridges to systematically 
empower neural network performance by means of data 
mining activities, which obtain an optimal neural network 
structure. The experiments conducted in this paper use stock 
market and exchange rate series, and show that the usage of 
neural network cartridges can lead to configurations that 
double the performance of some ad-hoc neural network 
configuration. 

I. INTRODUCTION

Different computing techniques are used for time series 
forecast. There are both linear models, such as auto-
regression (AR)[1] and auto-regression moving average 
(ARMA)[2], and non-linear models, such as neural
networks[3], that are used for this activity. One of the 
advantages of neural networks is its ability to identify 
patterns that are not evident in the time series. Nevertheless, 
its performance is affected by how the setup of the neural 
networks structure is conducted, and by how data is 
prepared for it. The inability of setting it up can led to 
conclusions such as presented in [4], where neural networks 
had worse performance than both AR and ARMA models 
working with log return series. Also, this data mining 
activity of data preparation and setup of neural network 
structure can be very time-consuming. 

This work proposes a systematic approach, using neural
network cartridges, to empower data mining process by 
automatically executing both the data preparation and the 
exploration of different neural network structures to obtain 
an optimal neural network for forecasting. A cartridge is a 
component [5] unit that can be dynamically changed [6]. 
These cartridges empower data mining process by
automatically executing both data preparation and data 
exploration of different neural network structures to obtain 
an optimal configuration.  

This paper is organized into 4 sections besides this
introduction. Section 2 presents the neural network 
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cartridges, which is the proposed approach to support the 
exploration of different neural network configurations using 
a data mining process. Section 3 presents experimental
results using two representative financial series in Brazil: 
log return of Brazilian Petrobras Stock, and U.S. Dollar to
Brazilian Real Exchange Rate. Section 4 presents related 
work, and section 5 concludes our paper drawing some
future work.  

II. NEURAL NETWORKS CARTRIDGES

The usual neural networks, such as feed forward [3] 
neural networks, are employed to recognize structural
patterns. The data mining process for time series, on the 
other hand, requires the recognition of patterns that evolve 
throughout the time, leading to an evaluation that considers 
not only the current value, but also its predecessors. So, 
giving a entry value rt that represents the present value, and 
its n predecessors rt-n,…, rt-1, they are treated in a late 
memory of order n.  

Figure 1 presents a typical neural network for time series 
[3]. It is a feed forward neural network with back-
propagation using time lag operators as input entries. 
Synaptic values of the networks are adjusted to minimize the 
mean f(t), 
and th is 
rt+1.  

xt-1

xt

xt-m

≅ xt+1

Figure 1 -

neural 
networks for time series forecast can be described in three 
basic steps: 

• Neural network setup (number of input entries, hidden 
layers, neurons in hidden layers);

• Time series statistical analysis; 
• Preparation of sample data for training and cross-

validation; 
Each of these steps can be performed in different ways, 

depending on the features required by the specific problem
being analyzed. This situation, in the Software Engineering 
jargon, is called variants of a product line [7]. Due to that, 
this paper introduces a very simple but useful product line 
for data mining on time series. The product line, presented 
in Figure 2, is composed of four variants, which were 
derived from the steps mentioned before. 

Neural Networks Cartridges for Data Mining on Time Series 
Eduardo Ogasawara, Leonardo Murta, Geraldo Zimbrão, Marta Mattoso 
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Figure 3 – Typical feed-forward neural network for time series

The slow learning speed of networks such as NNET and MLP has been a bottleneck

in their applications. This fact is due to slow gradient-based learning algorithms, and

iterative tuning of network parameters (HUANG; ZHU; SIEW, 2006). Unlike traditional

implementations, the ELM network adopts a learning algorithm that randomly chooses

hidden neuron nodes and analytically determines output weights. Thus, there is no need

for any iterative tuning, or setting of parameters like learning rate, momentum, epochs,

etc., making learning time very fast (HUANG; ZHU; SIEW, 2006).

An RBF network is similar to a MLP. However, it performs a linear combination of

basis functions that are radially symmetric around a center/prototype (POGGIO; GIROSI,

1989). Several types of RBF networks, such as those that apply orthogonal least squares

learning, and recursion were able to capture different forms of trends and volatility in time

series (CHENG et al., 2015).

The SVM can be used for recognizing patterns in both linear and nonlinear data
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(MOREIRA et al., 2018). Usually in a regression supported by SVM, a linear learning ma-

chine approximates a non-linear function in a kernel-induced feature space. The capacity

of the system is controlled by a parameter that does not depend on the dimensionality

of the space (CRISTIANINI; SHAWE-TAYLOR, 2000; HAYKIN, S. O., 2008). SVM can

have higher prediction accuracy than NNET and employ fewer parameters for chaotic time

series prediction (CHENG et al., 2015).

RFrst is based on the combination of decision tree classifiers, or the ensemble

of base models, that acts as a “forest”. After the formation of the forest, the model may

combine the predictions of each tree additively or by average. The results are returned as

the estimated time series prediction values (BREIMAN, 2001). The generalization error for

a forest converges if there is a sufficiently large number of trees, which makes over-fitting

not a problem (MOREIRA et al., 2018).

1.6- Time series normalization techniques

The process of normalization involves scaling time series data so that they fit

into a new range. Although this transformation is usually not enough for addressing

nonstationarity, data normalization is important for MLM algorithms since it increases their

learning speed and prevents higher values to surpass the importance of smaller ones

(RISSANEN, 2001; MOREIRA et al., 2018).

The Min-max normalization (MM) method is one of the most commonly adopted

in literature (OGASAWARA et al., 2009). It applies a linear transformation to the data of

time series X, where its minimum and maximum values (minX and maxX ) are used to

transform each time series value xt into x̄t in the new interval [ ¯minX , ¯maxX ], as shown

in Equation 21 (MOREIRA et al., 2018). The main problem in using the MM method

is that the minimum and maximum values of the out-of-sample dataset are unknown

(OGASAWARA et al., 2009).

x̄t =
xt −minX

maxX −minX
· ( ¯maxX − ¯minX) + ¯minX (21)

Another approach commonly used for data normalization is the sliding windows

technique (SW). Instead of considering the complete time series X for normalization, it
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divides its data into sliding windows of length ω. It extracts statistical properties from

X based on a fraction of ω consecutive time series values. Each window is normalized

considering only these extracted statistical properties. This approach is based on the idea

that decisions are usually based on recent data. SW always normalize time series data in

the desired range, which is sometimes not possible using MM. However, it assumes that

volatility is uniform, which is not usually true for nonstationary and heteroscedastic time

series (OGASAWARA et al., 2010).

The Adaptive normalization (AN) approach was specially developed for nonsta-

tionary heteroscedastic time series (OGASAWARA et al., 2010). It is a variation of the

SW, where the time series is transformed into a data sequence from which global sta-

tistical properties can be calculated. The global statistical properties are then used for

normalization. The sliding windows data of AN are able to represent different volatilities

(OGASAWARA et al., 2010).

1.7- Tools for benchmarking time series prediction

Another important issue researched in this work is the study and development of

benchmarking frameworks and tools for MLM performance assessment in literature. In

fact, we have observed that several authors focused on the task of benchmarking different

models in many different domains. Ramey (2013) and Lessmann et al. (2008) developed

frameworks for benchmarking classification models and algorithms. Moreover, Bischl et al.

(2016) and Eugster and Leisch (2008) developed the R-packages mlr and benchmark,

respectively, which provide tools for executing automated experiments of benchmarking

a set of methods for data mining tasks such as classification and regression. These

packages are mostly designed to support the use of data from relational models and focus

on benchmarking based on plot visualization.

Hyndman and Khandakar (2008) and Hyndman et al. (2002) present frameworks

for automatic forecasting using mainly linear methods such as ARIMA and ETS. Hyndman

and Khandakar (2008) produced the well-known R-package named forecast, which can be

used for automatic time series prediction. The R-package of Moreno, Rivas, and Godoy

(2018), also facilitates time series prediction with the use of DIF, and BCT. Furthermore,
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we note the works of Diebold and Mariano (2002), that proposes a variety of tests to

compare the predictive accuracy of two different prediction methods, Diebold and Lopez

(1996) that proposes an ensemble approach with the combination of different prediction

methods, and Kumar et al. (2016) which propose a class of analytics systems to manage

model selection using key ideas from data management research.

All in all, there are several works that present benchmarking frameworks and tools

for MLM performance assessment. Nonetheless, to the best of our knowledge, there are no

works that propose and implement a systematic framework for benchmarking MLM for time

series prediction with focus on addressing nonstationary properties. This gap aggravates

the complexity of the process of comparing and selecting adequate transformation-model

setups for a particular nonstationary time series prediction application.
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2- Benchmarking framework

This chapter presents the methodology for the implemented systematic framework

for benchmarking transformation methods and MLM for univariate nonstationary time

series prediction. The framework encapsulates the knowledge acquired with the review of

nonstationary time series methods presented in Chapter 1. Implementation was done using

R, which is both a language and environment with many statistical and graphical packages

(R DEVELOPMENT CORE TEAM, 2008). The implementation of the framework composes

part of the R-package TSPred (SALLES; OGASAWARA, 2018) for benchmarking time

series prediction.

2.1- Time series prediction methodology

As an introduction to this methodology, a general univariate nonstationary time

series prediction process is presented in Figure 4. It provides a systematic way of

predicting a time series based on a particular setup of preprocessing methods and

prediction model. The process depicted in Figure 4 also focus on prediction/model

evaluation1, that is, evaluation of the accuracy of prediction and/or the quality of fitness

of a model. Such evaluation may indicate a demand for refining and perfecting the

preprocessing-model setup and/or its parameters to obtain a more accurate model and

lower prediction errors. This process may be repeated if the evaluated time series

prediction setup does not reach a desired performance.

The first activity depicted in Figure 4 (labeled 1) refers to acquiring the training and

evaluation (i.e., either validation or testing) datasets, and performing data preprocessing

by applying nonstationary time series transformation methods. Activity 2 refers to training

the time series prediction model. The next activity (3) refers to applying the previously

fitted model to an evaluation set to obtain predictions. Activity 4 corresponds to the
1Evaluation of prediction accuracy and/or model fitness can be performed either in a validation or a testing

phase according to the target study.
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Activity Diagram0 2019/01/09

1 / 1

1: Data preprocessing and sampling

2: Model training

3: Model prediction 

5: Prediction / model evaluation

6: Preprocessing / model refinement

N

Adequate?
No

Yes

4: Data postprocessing

Figure 4 – Activity diagram for time series prediction methodology

postprocessing of predictions, reversing transformations applied to the time series data in

activity 1. Finally, activity 5 is the evaluation of prediction errors yielded by the model, as

well as model fitness metrics. If the results are not adequate, the transformation methods

and the model can be refined, as indicated in activity 6. This entire process may be

repeated if the prediction performance is not considered adequate. This process iteratively

improves the quality of predictions.

In order to infer the adequacy of prediction results, it becomes important to adopt a

benchmarking process. During a benchmarking process, given an input nonstationary time

series, values predicted by a particular setup of preprocessing methods and prediction

model (and their parameters) are compared to the ones found by other possible setups.

Benchmarking provides a way of upraising relative quality of predictions and inferring

adequate preprocessing-model setups for a particular nonstationary time series application.

Furthermore, in order to adequately apply this assessment process and secure the validity

of its results, it is important to adopt a reference (benchmark) preprocessing-model setup

that includes a benchmark model that is well-established, reliable and widely adopted. One

should also expect the benchmark setup to present a prediction performance good enough

for creating a demand for refinements. Regarding this task, it is useful to adopt an easy to

interpret benchmark model, since the analysis of the way in which the benchmark model

is fitted may aid the configuration of other refined models. On the other hand, when no
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appropriate benchmark setup is implemented, the other evaluated setups lack a reference

to infer its practical value, and also the demand for adjustments may go undetected, and

necessary improvements in accuracy and methodology may be neglected.

2.2- Framework structure diagram

This section describes the inner structure of the time series prediction benchmark-

ing framework developed by this work. The main classes that represent the concept and

structure of the framework are depicted in the class diagram in Figure 5. The main class

of the framework is named tspred, standing for ”time series prediction”. An instance of this

class represents a particular time series prediction application. This class encapsulates

the process of Figure4 and all the elements (attributes) and activities (class methods)

necessary to fulfill it.

TSPred - Class Diagram 2019/01/11

1 / 1
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Figure 5 – Class diagram for the time series prediction benchmarking framework

The tspred class has three main parts, namely the processing, modeling, and eval-

uating. The processing class corresponds to general preprocessing and transformation

methods (represented by the prep class) and their respective reverse transformations

(represented by the postp class). Thus, the processing class encapsulates methods for

performing the activities 1 and 4 of the diagram in Figure4. The modeling class corre-

sponds to methods for training and predicting a particular time series model (represented
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by the train and pred classes, respectively). Thus, the modeling class encapsulates

methods for performing the activities 2 and 3 of the diagram in Figure4. Finally, the

evaluating class corresponds to methods for evaluating quality of predictions and model

fitness, encapsulating methods for performing the activity 5 of the diagram in Figure4. All

prep, postp, train, pred and evaluating classes contain two main attributes, namely the

function that implements their respective method (func) and a list of its parameters to be

passed as input (par ).

Generally the tspred class contains (i) one processing object for subsetting a time

series into training and evaluation datasets (subsetting attribute); (ii) none or several pro-

cessing objects for preprocessing/transforming and postprocessing/reverse transforming

time series data (processing attribute); (iii) one modeling object for modeling and predicting

a time series (modeling attribute); and (iv) none or several evaluating objects for evaluating

the modeling and/or prediction of the given time series (evaluating attribute). Besides the

aforementioned attributes, the tspred class also contains the input and output elements

necessary for performing the activities in Figure 4. The attribute data contains all the time

series data concerning a particular application. It contains the original time series which is

given as input to (i); the resulting training and evaluation datasets which are given as input

to (ii); and the resulting preprocessed/transformed datasets which are given as input to

(iii). The attribute model contains the fitted model object generated by (iii). The attributes

n.ahead and onestep are also passed to (iii) setting the prediction horizon and the type

of prediction to be performed (multistep-ahead or one-step-ahead), respectively. The

attribute pred contains predicted data, that is, the predicted data produced by (iii), which

is given as input to (ii); and the resulting postprocessed/reverse transformed predictions,

which are given as input to (iv). Finally, the attribute eval contains the evaluation metrics

computed by (iv).

It is important to remark that the tspred class method is a constructor, therefore

responsible for defining (instantiating) a particular time series prediction application. Nearly

all class methods of tspred return a current tspred object with updated output elements

and parameters. Particularly, the subset and preprocess class methods together perform

the activity 1 of Figure4. While the train, predict, postprocess and evaluate class methods

perform activities 2 to 5, respectively. Moreover, the class method workflow encompasses

all activities from 1 to 5. Highlight is given to the class method benchmark that ranks

the time series prediction applications described by a list of tspred objects based on the
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collected evaluation metrics.

2.3- Framework implementation

Following the framework structure depicted in Figure 5, specific methods that

help describe a time series prediction application (represented by the tspred class) can

be implemented by extending the processing, modeling, and evaluating classes. This

implementation design allows the user to define and apply any customized time series

prediction methods according to demand. Nonetheless, the framework developed during

this research includes the implementation of the main nonstationary time series prediction

methods previously reviewed in this work. The implemented methods are observed in

Figures 6, 7 and 8.

The main reviewed preprocessing and transformation methods for nonstation-

ary time series were implemented by extending the processing class. The developed

subclasses resulting from the extension (generalization) of the processing class can be

observed in the diagram of Figure 6. All subclasses in Figure 6 form one generalization

set that is complete and disjoint. The subclasses on the left of the diagram represent the

nonstationary time series transformation methods LT, BCT, PCT, MAS, DT, DIF, EMD

and WT, respectively. The subclasses on the right of the diagram represent other relevant

preprocessing methods for nonstationary time series prediction with MLM. The subsetting

subclass represents the activity of subsetting the time series data into training and evalua-

tion datasets; the SW subclass represents the SW method for subsetting the time series

data into sliding windows. The NAS subclass represents a method for handling NA values

in time series data. The default behavior is to omit the NA values. Finally the MinMax

and AN subclasses represent the MM and AN methods for normalizing time series data,

respectively.

The methods for training and prediction based on the main reviewed models

for nonstationary time series were implemented by extending the modeling class. The

developed subclasses resulting from the extension (generalization) of the modeling class

can be observed in the diagram of Figure 7. A second level of generalization was added

in order to specify classes for statistical (linear ) or machine learning (MLM) models.
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Figure 6 – Generalization of the processing class

The MLM class, in particular, contains attributes with processing objects for performing

any necessary machine learning methodology tasks during the training and prediction

activities. The sw attribute corresponds to a SW class object for coercing data into sliding

windows, while the proc attribute corresponds to a list of processing objects for performing

normalization and/or transformation of the data to serve as input for machine learning

model training and prediction. Analogously, the subclasses in Figure 7 form one complete

and disjoint generalization set. The subclasses of the linear class represent the models

ARIMA, HW, TF, ETS and polynomial regression (PR), whereas, the subclasses of the

MLM class represent the models generated by NNET, RFrst, RBF, SVM, MLP and ELM,

respectively.
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Figure 7 – Generalization of the modeling class

The methods for generating metrics for evaluating nonstationary time series pre-

diction and modeling were implemented by extending the evaluating class. The developed

subclasses resulting from the extension (generalization) of the evaluating class can be

observed in the diagram of Figure 8. A second level of generalization was added in order

to specify classes for prediction accuracy (error) measures (error ) or model fitting criteria

(fitness). Again, the subclasses in Figure 8 form one complete and disjoint generaliza-
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tion set. The subclasses of the error class represent the prediction accuracy measures

Mean Square Error (MSE), Normalized MSE (NMSE), root mean square errors (RMSE),

Mean Absolute Percentage Error (MAPE), symmetric MAPE (sMAPE), and maximal error

(MAXError ), and the subclasses of the fitness class represent the model fitting criteria

Akaike Information Criterion (AIC), corrected Akaike Information Criterion (AICc), Bayesian

Information Criterion (BIC), and log-likelihood (logLik), respectively. A description of the

implemented metrics can be found in the work of Davydenko and Fildes (2013).
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Figure 8 – Generalization of the evaluating class

2.4- The TSPred R-package

The implementation of the framework structure depicted in Figure 5 and all its

subclasses was performed using the R programming language and environment and

its provided package resources (R DEVELOPMENT CORE TEAM, 2008). The classes

of the framework follow the S3 class system. The S3 system is very flexible and the

most widely used in R programming language (WICKHAM, 2014). The framework is

contained within the version 5.0 of the R-package TSPred (SALLES; OGASAWARA,

2018) for benchmarking nonstationary time series prediction. TSPred is freely available

at The Comprehensive R Archive Network (CRAN) which hosts contributed packages

for R from users worldwide. The package provides several automatized features that

can be useful for any time series prediction application such as (i) transformation/model

parameter selection; (ii) multistep-ahead or one-step-ahead prediction for both linear and

machine learning models; and (iii) machine learning methodology tasks performed during

training and prediction activities, among others. This work follows by giving some details
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of the implementation of the nonstationary time series methods of this framework.

The transformation methods LT, BCT, PCT, and MAS were implemented as math-

ematical transforms following their characteristic equations. The BCT parameter (λ) is

automatically obtained using the function BoxCox.lambda of the forecast R-package

(HYNDMAN; KHANDAKAR, 2008). For the MAS method, a function was implemented

for optimizing its order of moving average according to the best predictions from a cross-

validation dataset. The transformation method DT was implemented and provides a fittest

PR model for detrending the original time series before prediction. The DIF implementation

can perform the tasks of either simple or seasonal differencing processes. It performs

unit root tests (simple or seasonal) to determine the number of differences required for

stationarity. This is done by the functions ndiffs or nsdiffs of the forecast R-package

(HYNDMAN; KHANDAKAR, 2008). For the EMD implementation, functions were used

from the R-package Rlibeemd (LUUKKO; HELSKE; RÄSÄNEN, 2016), while the WT

implementation relied on the wavelets R-package (ALDRICH, 2013). Analogously to

the MAS method, functions were implemented for optimizing the parameters of EMD

(meaningful IMFs and boundary condition) and WT (filter and level of decomposition)

according to the best predictions in a cross-validation dataset. Particularly for the WT, the

MODWT transform was implemented.

Note is also given to the fact that all linear models of this framework, namely, the

ARIMA, HW, TF, ETS, and PR were implemented by functions that automatically optimize

their parameters. The ARIMA parameter optimization is done by conducting the Hyndman

and Khandakar algorithm (HYNDMAN; ATHANASOPOULOS, 2013) using the auto.arima

function of the forecast R-package (HYNDMAN; KHANDAKAR, 2008). Analogously, the

HW, TF and ETS models are optimized using functions from forecast R-package. The

PR parameter optimization is done by performing prediction tests with cross-validation.

Regarding the machine learning models, the implementation of automatic training and

prediction is done by functions of the R-packages nnet (VENABLES; RIPLEY, 2002),

randomForest (LIAW; WIENER, 2002), RSNNS (BERGMEIR; BENÍTEZ, 2012), e1071

(MEYER et al., 2018) and elmNNRcpp (MOUSELIMIS; GOSSO, 2018).

Evaluation metrics were mostly implemented according to their standard equa-

tions or by auxiliary functions from the ModelMetrics (HUNT, 2018), MuMIn (BARTOŃ,

2018) R-packages. For more details on the implementation of each nonstationary time

series method of this framework, please refer to the documentation of TSPred (SALLES;
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OGASAWARA, 2018).

2.5- Usage examples

This section gives examples for demonstrating the usage of the implemented

framework for describing and performing a particular time series prediction application. The

first example corresponds to a time series prediction using the ARIMA model, which can

be considered a benchmark linear model for such applications (SALLES et al., 2017). In

Listing 1 the TSPred R-package and the CATS dataset are loaded into the R programming

environment. The object tspred_arima receives an instance of the tspred class. This

instance counts with (i) a subsetting process for dividing a time series into training and

evaluation datasets, where the latter has 20 observations; (ii) an ARIMA modeling process

with automatic parameter selection; and (iii) a list of evaluation metrics to be computed for

prediction accuracy (MSE) and model fitness (AIC). The prediction process represented

by the object tspred_arima is applied for the third sequence of known values of the

CATS series (CATS[3]) and executed by the function workflow that returns a tspred class

object similar to tspred_arima updated with output elements and selected parameters

tspred_arima_res.

The components of a time series process (implemented as subclass instances)

in TSPred can be defined independently for enabling the reuse of subclass objects. An

example of the definition of components/steps of a time series prediction process in TSPred

is presented in Listing 2. First the processing objects are obtained for subsetting the time

series and preprocessing it with the BCT and WT transformations. While parameters are

set for WT, the parameters of BCT are automatically selected. Objects are also obtained

for applying SW (with window length equal to 6 observations) and MM for normalizing the

resulting windows of data during model training and prediction. Next a modeling object is

obtained for representing a NNET modeling and prediction with 5 input units in a single

hidden layer. proc_sw and proc_mm are given as parameters to the modl_nnet modeling

object. At last an evaluating object respective to a MSE computation is obtained.
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Listing 1 – R example for an ARIMA model prediction application using TSPred

# load ing TSPred package
> l o a d l i b r a r y ( ” TSPred ” )

# load ing CATS dataset
> data ( ”CATS” )

# d e f i n i n g the t ime se r i es a p p l i c a t i o n
> t spred arima <− t spred (

subse t t i ng = subse t t i ng ( t e s t len = 20) ,
modeling = ARIMA ( ) ,
eva lua t i ng = l i s t (MSE = MSE( ) , AIC = AIC ( ) )

)

#per forming the p r e d i c t i o n a p p l i c a t i o n and ob ta in ing r e s u l t s
> t spred arima res <− workf low ( tspred arima , data = CATS[ 3 ] )

Listing 2 – R example of the definition of components/steps of a time series prediction
process in TSPred

#Obta in ing ob jec ts o f the processing c lass
> proc subset <− subse t t i ng ( t e s t len = 20)
> proc bct <− BCT( )
> proc wt <− WT( l e v e l = 1 , f i l t e r = ” bl14 ” )
> proc sw <− SW(window len = 6)
> proc mm <− MinMax ( )

#Obta in ing ob jec ts o f the modeling c lass
> modl nnet <− NNET( s ize = 5 ,

sw = proc sw ,
proc = l i s t (MM = proc mm) )

#Obta in ing ob jec ts o f the eva lua t i ng c lass
> eval mse <− MSE( )
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Listing 3 – R example for an MLM prediction application using TSPred

# Def in ing a t ime se r i es p r e d i c t i o n process
> t spred mlm <− t spred (

subse t t i ng = proc subset ,
processing = l i s t (BCT = proc bct ,

WT = proc wt ) ,
modeling = modl nnet ,
eva lua t i ng = l i s t (MSE = eval mse)

)

#Running the t ime se r i es p r e d i c t i o n process and ob ta in ing r e s u l t s
> t spred mlm res <− t spred mlm %>%

subset ( data = CATS[ 3 ] ) %>%
preprocess ( prep t e s t = TRUE) %>%
t r a i n ( ) %>%
predict ( i npu t t e s t data = TRUE) %>%
postprocess ( ) %>%
evaluate ( )

#Benchmarking tspred ob jec ts
> bmrk r e s u l t s <− benchmark ( tspred mlm res ,

l i s t ( tspred arima res ) )

The previously defined objects can then be referenced for defining a time series

prediction process with an MLM represented by a tspred object (tspred_mlm) as can

be seen in Listing 3. The execution of this process can be performed by the workflow

function. Alternatively, each activity of the process can be executed separately or pipelined

as showed in the example of Listing 3. The tspred objects containing results of ARIMA

and NNET predictions (tspred_arima_res and tspred_mlm_res) can be benchmarked

and ranked based on prediction evaluation criteria using the function benchmark.

A final example is given for the implementation of a user-defined MLM model. This

can be done by extending the subclasses of the described structure of TSPred (Section

2.3), as displayed in Listing 4. Basically, the user needs only to define the functions for

training and prediction of the model they wish to implement and their respective parameters.

A modeling object representing the newly implemented model my.model can be obtained

by using a function with the same name, giving parameter values as arguments.



60

Listing 4 – R example for the implementation of a user-defined MLM using TSPred

#Subclass my. model
> my. model <− function ( t r a i n par=NULL, pred par=NULL){

MLM(
t r a i n func = my. model . func ,
t r a i n par=c ( t r a i n par ) ,

pred func = my. model . pred . func ,
pred par=c ( pred par ) ,

method= ”Name of my model ” ,
subclass= ”my. model ”

)
}

#Obta in ing an ins tance of the subclass my. model
> model <− my. model ( t r a i n par = l i s t ( par1 = a , par2 = b ) ,

pred par = l i s t ( par3 = c ) )
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3- Benchmarking of transformation methods

The research on the various nonstationary time series transformation methods

reviewed in this work pointed to the relevancy of an experimental comparison of their

practical effects in the time series prediction problem. Such comparison may shed light

on the advantages and limitations of these methods in practical applications. It can help

researchers analyze their best options for treating nonstationarity. This work fills this

demand by devising and conducting a benchmarking process and comparative analysis of

eleven of the reviewed transformation methods that are most commonly used in practical

applications. The developed framework described in Chapter 2 allowed the application of

these methods in the prediction of time series of five different datasets originated from

time series prediction competitions and real macroeconomic observations collected by

a government institution. The datasets used in this experimental evaluation were made

available 1 . The next sections describe the performed experiment in detail and discuss

its results.

3.1- Datasets

Among the five time series datasets used in this experiment, three are benchmarks

from time series prediction competitions (CATS (LENDASSE et al., 2007), NN3 (NN3,

2007), and NN5 (NN5, 2008)). The other two datasets are provided by the Institute

of Applied Economic Research of Brazil (Ipea) (IPEA, 2017) and are derived from real

economic and financial data of the world. When selecting these datasets, the aim was

to obtain a reasonable number of representative time series presenting different types

of nonstationarity and statistical properties to provide a discussion on the effects of the

evaluated transformation methods applied to the prediction of a diverse range of time

series.

Moreover, this choice of datasets was made so as to encompass all domains of
1https://github.com/RebeccaSalles/TSPred/wiki/nonstationary-review
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application of the publications reviewed in Chapter 1.4.6. Particularly, the CATS dataset

represents the statistical/natural sciences domain, the NN3 and NN5 datasets repre-

sent the industrial/business domain, and the datasets provided by Ipea represent the

socioeconomic/financial domain.

The CATS Competition dataset presents an artificial time series with 5,000 obser-

vations, among which 100 are unknown. The unknown observations are grouped into

five non-consecutive gaps of 20 successive values. The prediction of each gap may be

considered a different problem, and each subset of the series followed by a gap may be

considered a different time series to be modeled. In this context, the CATS dataset was

considered as being composed of five time series of 980 observations. Both the NN3 and

the NN5 Competition datasets present 111 time series. The series from the NN3 dataset

have from 50 to 126 monthly observations drawn from a homogeneous population of real

empirical business time series. All series from the NN5 dataset have 735 observations

originated from daily withdrawals at 111 different cash machines within England, and may

present missing data.

The two time series datasets provided by Ipea were selected as the most requested

series collected in monthly and daily rates, and are henceforth referenced as Ipea M and

Ipea D datasets, respectively. The Ipea is a public institution of Brazil that provides support

to the federal government concerning public policies: fiscal, social, and economic. The

data collected by Ipea and used in this experiment comprehend information on exchange

rates (R$/US$), exports/imports prices, interest rates, minimum wage, unemployment rate,

and more, measured from 1930 to September of 2017. Ipea M contains 23 time series of

156 to 1019 observations. Ipea D contains 12 time series of 901 to 8154 observations.

In order to obtain a better understanding of the statistical properties of the selected

time series datasets, 7 of the most common statistical tests have been performed for auto-

correlation, randomness and independence, heteroscedasticity, linearity, and stationarity.

Table 3 contains a summary of the results of the statistical tests. For each dataset, it is

presented the percentage of time series that had the null hypothesis test (H0) confirmed.

The results in Table 3 show the considerable disparity in the statistical properties

of the time series in the selected datasets. It is possible to observe that most time

series did not confirm the null hypothesis of uncorrelated residuals and randomness. The

heteroscedastic and linearity tests indicate that a substantial number of the time series

present the properties of homoscedasticity and linear behavior around the mean. This
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Table 3 – Statistical tests results and analysis

Statistical Tests H0 CATS NN3 NN5 Ipea M Ipea D

Breusch-Godfrey Uncorrelated residuals 0% 37% 0% 0% 0%
Box-Pierce Randomness 0% 30% 0% 0% 0%
Goldfeld-Quandt Homoscedasticity 40% 91% 48% 70% 50%
White Neural Network Linearity in mean 100% 81% 59% 83% 75%
ADF1 Nonstationarity 100% 62% 5% 100% 58%
KPSS2 Trend Stationarity 0% 70% 71% 4% 8%
KPSS2 Level Stationarity 0% 57% 50% 4% 0%

1Augmented Dickey-Fuller
2Kwiatkowski-Phillips-Schmidt-Shin

result means that one can expect relative stability in the variance of the time series. Finally,

the stationarity tests results show that a considerable amount of the time series over all

datasets is nonstationary presenting unit root (also known as difference stationary), trend

stationary (stationary around a deterministic trend) or level stationary (stationary around a

level that changes over time). These latter results are particularly favorable for motivating

the application of transformation methods such as the previously described in this work.

3.2- Experimental settings

Several predictions were performed in this experiment using the presented datasets.

The prediction horizons used in these predictions were set according to each dataset.

The CATS, NN3 and NN5 competitions recommend a prediction horizon for their datasets

which were adopted in this experiments. Predictions were made for 20 observations ahead

of the CATS times series (corresponding to the gaps of unknown values), 18 months

ahead of the NN3 time series, and 56 days ahead of the NN5 time series. For the Ipea

datasets, 12 months (a year) and 30 days (a month) were set as the prediction horizons

for the Ipea M and the Ipea D datasets, respectively.

All predictions conducted in this experiment were performed using the ARMA

models, defined as in Equation 14 (fixing d = 0). The use of ARMA models for prediction

was combined with different preprocessing techniques performed by the nonstationary

time series transformation methods listed in the next Section 3.3. The ARMA model
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is a well-established linear model, and it is often applied as a benchmark method for

time series prediction (SALLES et al., 2017). The choice of ARMA models is justified

for two reasons: (i) for providing a fair comparison of our generated predictions and (ii)

for allowing the focus of this experiment discussion to be on the comparison of different

nonstationary time series transformation methods (and their effects on prediction) rather

than on modeling performances.

All the experiments produced several model fitting criteria (AIC, AICc, BIC, and

log-likelihood) and prediction accuracy measures (MSE, NMSE, MAPE, sMAPE, and

maximal error (DAVYDENKO; FILDES, 2013)). Nevertheless, henceforth focus is placed

on the MSE measurements to simplify the discussion of the prediction results, since it is

generally the most commonly used measure for assessing prediction accuracy.

3.3- Implementation of nonstationary time series transformation methods

It was considered important to explore transformation methods of different cate-

gories of the presented review in this comparative analysis to provide a complete overview

of the effects of the reviewed methods on prediction. Thus, among the reviewed nonsta-

tionary time series transformation methods, the eleven most commonly used in practical

applications were selected for further analysis. For comparison purposes, it was also

included in the experimental evaluation the naive approach of not applying any data

transformation before prediction. Table 4 presents the selected transformation methods

(and their reference acronyms) separated by the implemented data transformation process

they apply and by their respective major categories. All selected transformation methods

were implemented in the R-package TSPred (SALLES; OGASAWARA, 2018) (described

in Chapter 2), including functions for automatically finding optimized parameters and for

analyzing prediction results using different nonstationary time series methods. Particular

implementation details of this comparative experimental analysis are given next.

All transformation methods referenced as DIF, SDIF, and DIFs perform the task

of differencing a time series before modeling and predicting. The DIF, SDIF, and DIFs

respectively correspond to the simple, seasonal, and combined simple/seasonal differ-

encing processes. These methods are available within the ARIMA modeling process of
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Table 4 – Nonstationary time series transformation methods selected for the experiment
and the implemented data transformation process they apply

Category Transformation Method Reference

Mapping-Based

Math. transform Logarithmic transform LT
Math. transform Logarithmic transform (base 10) LT10
Math. transform Box-Cox transform BCT
Math. transform Percentage Changes Transform PCT
Math. transform Moving Average Smoother MAS
Detrending Detrending DT
Differencing Simple Differencing DIF
Differencing Seasonal Differencing SDIF
Differencing Simple and Seasonal Differencing DIFs

Splitting-based
Decomposition Wavelet transform WT
Decomposition Empirical mode decomposition EMD

None None None Naive

the auto.arima function of the forecast R-package (HYNDMAN; KHANDAKAR, 2008). It

performs KPSS tests to determine their differencing parameters.

Both EMD and WT perform the process of time series decomposition before the

prediction. For the EMD, functions were used from the R-package EMD (KIM; OH, 2009).

The decomposed time series were predicted separately by ARMA models in the case of

WT. In the case of EMD, the IMFs were predicted by a vector autoregressive (VAR) model

and the residue component (residue signal after extracting IMFs) was predicted by the

fittest PR model. This latter definition is due to the implementation requests of the EMD

package.

Particularly, for the method referenced as Naive, it implies that the naive approach

was adopted and no data transformation was performed. In this case, the time series is

directly predicted by an ARMA model. All code, experimental data, and results are made

available 1 .

3.4- Results and discussion

This section discusses the results obtained with our comparative experiments for

the selected nonstationary time series transformation methods. For that, it was used

the MSE error measures produced by the predictions. The next subsections present
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our analysis by focusing on the results generated over a single time series (subsection

3.4.1) and over all time series of each selected dataset (subsections 3.4.2 and 3.4.3). A

discussion is also conducted around the results across all datasets (subsection 3.4.4) and

the observed impact caused by transformation methods on prediction accuracy (subsection

3.4.5).

3.4.1 Analysis over a single time series

Taylor diagrams (TAYLOR, 2001) have been produced for summarizing in a single

plot the different aspects of the effects of each transformation method in the prediction

of a particular time series. Two time series of the CATS dataset were analyzed, as it is

one of the most nonstationary datasets among the selected. The diagrams are depicted in

Figure 9.

Figures 9a and 9b present prediction results for the time series corresponding

to the second and third sequences of known values (1001-1980 and 2001-2980) of the

CATS times series. Taylor diagrams illustrate the quality of predictions against reference

values, which in this case are the real observations of the time series (that were to

be predicted). Data regarding the real observations of the time series, as well as the

predictions corresponding to the use of each nonstationary time series transformation

method, are represented in the diagram by points inside a quarter circle, where the former

is labeled as “observed”. The sections of the quarter circle correspond to the level of

correlation between the predicted and observed values. The dashed brown contours

centered in the observed point represent the level of RMSE of the predictions. The

distances to the origin correspond to the standard deviation of the predictions, and the

dashed black contour centered in the origin mark the standard deviation of the observed

values. Small distances from the observed point mean better predictions. Particularly

for our plots in Figure 9, the legends also present the methods ranked by smallest MSE

errors.

The predictions in the Figure 9a present higher correlation and closer standard

deviations to the observed values, besides smallest RMSE errors. Furthermore, the

distances to the observed point seem to produce a similar ranking to the one in the
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Figure 9 – Taylor diagrams of predictions for two CATS time series preprocessed by
different nonstationary time series transformation methods. (a) presents results for the
second sequence of known values 1001-1980 of CATS and (b) presents results for the
third sequence of known values 2001-2980 of CATS

legend, based on the MSE errors. Conversely, the prediction results in Figure 9b make

the identification of the best transformation method (for simplicity, best method) less clear.

Although the results from EMD are closer to the observed, the results of DT present

a more similar standard deviation, and the results of WT a higher level of correlation.

Moreover, the distances to the observed point suggest a different ranking than the one in
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the legend, even when only the RMSE error is considered. That indicates the need for

special attention when selecting the error measure to be used during analysis since the

assessment of the best method was not consistent for both measures.

3.4.2 Analysis over a single dataset

It was also considered important to summarize prediction results over all the time

series in a particular dataset. For that, pairwise Wilcoxon statistical tests were performed

for comparing the MSE errors yielded from predictions corresponding to all nonstationary

time series transformation methods evaluated against each other. A visualization of the

number of statistically significant prediction improvements provided by the use of each

nonstationary times series transformation method over others in the experiments for the

CATS dataset is presented in Figure 10a. Based on this plot, one may consider DIF, DIFs,

EMD, and MAS among the best methods. The use of the Naive approach and the SDIF

transformation method did not provide statistically significant prediction improvements over

other methods. This was an expected result since all time series in the CATS dataset are

nonstationary. The use of SDIF derived prediction performance (for short, performance)

equal to the Naive method since no seasonal parameters were estimated by the Hyndman

and Khandakar algorithm (HYNDMAN; ATHANASOPOULOS, 2013), suggesting a low

level of seasonality in the series. Also, the DIF and DIFs methods both represent the

method DIF for the same reason.

Figure 10 also presents another indicator that may be used for assessing the

quality of the predictions. Namely, the number of times the use of each nonstationary

times series transformation method yielded one of the five smallest absolute values of

MSE prediction errors across all time series. That is, the number of times the use of each

transformation method was responsible for one of the top 5 results of the time series in

CATS. This information is presented in Figure 10b.

The time series of the CATS dataset presented considerable nonstationarity in the

form of difference stationarity, which motivates the application of stochastic trend removal

or differencing, which uses the operator in Equation 13, to achieve stationarity. This fact

favored the transformation method DIF, which produced the best predictions, followed by
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Figure 10 – Plots of the results for the prediction of all CATS time series preprocessed
by each selected nonstationary time series transformation methods. (a) presents the
number of statistically significant prediction improvements provided by the use of each
nonstationary times series transformation method over others. (b) presents the number
of times the use of each transformation method was responsible for one of the top 5
prediction results of the time series.

the DIFs, EMD and WT, as can be observed in Figure 10b. The results of MAS were again

among the best, even though there was no significant seasonality as confirmed by the

Hyndman and Khandakar algorithm. This may indicate the presence of clear long-term

trends in the series generated by Equation 10.
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Furthermore, the CATS time series presented no trend or level stationarity, which

indicates that the removal of a deterministic trend may not be enough for providing

stationarity. This fact helps explain the results obtained by the use of DT. Another

important property of the CATS time series is that they presented the largest rate of

heteroscedasticity (60%) among all datasets. The heteroscedasticity in the series possibly

favored EMD and WT that are prepared to handle non-constant variability. It is also true

for the PCT, LT, LT10, and BCT methods. The application of these latter transformation

methods, however, was impaired due to the presence of negative data in all CATS time

series, which caused the PCT, LT, and LT10 to produce NA values. Due to that, necessary

parameters could not be computed for BCT in any time series, therefore not being present

in the plots. This behavior is consistent with the Equations 7-9. Finally, highlight is given

to the performances yielded by the use of both EMD and WT as the splitting-based time

series decomposition methods evaluated in this experiment.

3.4.3 Analysis of results on each selected dataset

Next, the results of the experiments for each selected dataset are presented in

Figure 11. The presented scatter plots summarize the same indicators presented in

Figure 10 for all CATS, NN3, NN5, Ipea M, and Ipea D datasets. That is, they summarize

(i) the number of times the use of each nonstationary time series transformation method

provided a statistically significant prediction improvement over others and (ii) the number

of times the use of each method was responsible for one of the top 5 prediction results of

the time series (based on the MSE prediction errors). By analysis of the results depicted

in Figure 11, it was defined that the use of a transformation method produced better

predictions if (i) it was responsible for one of the top 5 results for the majority of time series

in a dataset, or (ii) it provided at least half of the maximal number of statistically significant

improvements in a dataset. Conversely, the transformation methods that led to worse

predictions were highlighted in Figure 11 with a dashed rectangle. As the results regarding

the CATS dataset were previously examined, henceforth focus is given to our discussion

on the remaining datasets.
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(a) (b)

(c) (d)

(e)

Figure 11 – Scatter plots for summarizing the results indicators shown in Figure 10 for all
time series in the datasets (a) CATS, (b) NN3, (c) NN5, (d) Ipea M and (e) Ipea D. The
dashed rectangles mark the transformation methods that led to worse predictions.

Results on NN3

The results for the NN3 dataset are presented in Figure 11b. Most time series

of the NN3 dataset (62%) were difference stationary, also favoring the transformation
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methods DIF and DIFs. It was similar to the results for the CATS dataset. Particularly,

DIF and DIFs provided statistically significant prediction improvements over eight of the

twelve evaluated transformation methods. However, surprisingly, the results produced by

the use of the Naive approach were among the best despite nonstationarity. This result

may be due to a combination of properties presented by the series such as the high level

of linearity (81%), the lowest rate of heteroscedasticity (9%) among the datasets and a

considerable amount of autocorrelation, which are all beneficial to ARMA models. These

same properties may also have contributed to the somewhat unsatisfactory results of EMD

since it tends not to perform well when data presents similar frequencies. Also, since EMD

is a flexible nonparametric method, overfitting is a possibility. Furthermore, despite the

NN3 time series presenting 70% trend and 57% level stationarity, DT, which removes a

deterministic trend by Equation 11, was not among the best methods, suggesting that a

polynomial regression as ηt may not provide an explanation of the series behavior. Also,

performances from LT10, PCT, LT, and BCT were considered among the best. They were

favored by strictly positive data and possible stability in the relative percentage of change

in observations. Other interesting results were obtained by the use of MAS, SDIF, and WT

transformation methods. Although being able to produce reasonable results, they were still

not among the best methods, probably due to the presence of unclear seasonality in the

data, in the case of MAS and SDIF, and possible overfitting by the flexible representation

of Equation 16, in the case of WT, since the data was mostly linear.

Results on NN5

For an overview of the results of the NN5 dataset, Figure 11c may be observed.

The dataset NN5 time series presented the lowest rate of difference stationarity among all

datasets. This fact particularly favored the Naive approach, as could be expected, and it

was among the best methods. Also, since the NN5 time series presented 71% trend and

50% level stationarity, the deterministic trend removed by DT was suitable for providing

stationarity. Other properties presented by the NN5 series are heteroscedasticity in 52%

of the series and nonlinearity in 41% of the series (highest rate among the datasets).

Transformation methods which are prepared to handle such properties may have been
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favored, such as WT. Other examples of such methods, like PCT, LT10, LT, BCT, and

EMD could have also been favored, but that was not the case, due to 0 values in 93 of the

111 series of the dataset (impairing the PCT, LT10, LT, and BCT methods) and possibly

due to the presence of similar frequencies in the EMD decomposed data, causing worse

performances. Conversely, the transformation methods DIF, SDIF, and DIFs produced

better predictions. The results of MAS are highlighted being the best method, which

indicates the presence of clear long-term behaviors and seasonality in the series, which is

to be expected in daily withdrawals at cash machines.

Results on Ipea M

The Figure 11d is used for discussing the results of the Ipea M dataset. All series in

Ipea M were actually difference stationary. This property expectedly favored transformation

methods like DIF, DIFs, EMD, and WT that remove stochastic trends, apply differencing or

use decomposition to derive a stationary time series before prediction. It also impaired the

Naive approach since it does not address this property. As it was for the CATS results,

SDIF presented performance equal to Naive as no seasonal differencing parameters were

estimated by the auto.arima function (HYNDMAN; ATHANASOPOULOS, 2013). In spite of

having trend and level stationarity on only less than 5% of the time series, DT presented a

reasonable performance, probably due to the help of mostly constant variability (only 30%

of heteroscedasticity) and high level of linearity (83% linearity in the mean) presented by

the time series in the dataset. Results of LT, LT10, and BCT were poor compared to other

methods but PCT presented reasonable performance. Although all these latter methods

were badly affected by the negative and/or zero values in 26% of the time series in the

dataset, PCT benefit from the possible constancy in the percentage of change in the data

of economic nature. The MAS method also presented fair performance, favored by the

seasonality characteristic of the time series.
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Results on Ipea D

Finally, for the results of the Ipea D dataset, Figure 11e is presented. Difference

stationarity was present in 58% of the series in Ipea D, impairing the Naive approach

which does not address it, and favoring the transformation methods DIF, DIFs, WT, and

EMD, which were among the best methods, followed by PCT and DT. The performance

of DT was unexpected since there is only 8% of the series in the dataset that present

trend or level stationarity, thus not suggesting the need for removal of a deterministic

trend for achieving stationarity. The presence of 75% of linear and reasonable 50% of

homoscedastic time series may have been advantageous for the performance provided

by the use of DT. Non-constant variability in 50% of the series, together with a possible

constancy in the percentage of change of the economic data, may have also been in

favor of the performance obtained by the use of PCT, that was also among best methods

presenting statistically significant prediction improvements over seven other methods.

Despite being able to handle variability in the data, much like PCT, the transformation

methods LT, LT10, and BCT did not perform well. Since all four transformation methods

were not resilient to 20% of the series containing 0 values, a superiority of PCT over this

dataset is indicated. Furthermore, it is noted that (for the same reason as presented in

previously discussed datasets) SDIF represent the same method as Naive. Other results

that are worth mentioning are the ones produced by the use of MAS, which was not among

the best methods, probably due to the presence of unclear long-term trends or seasonality

in the data.

3.4.4 Summary of results across all datasets

In order to have an overview of the predictions provided by the use of each of the

evaluated nonstationary time series transformation methods over all the selected datasets,

the plot in Figure 12 was generated which presents the relative number of times that

the use of each transformation method led to better predictions across all datasets. In

other words, this plot presents the relative number of times each method was not present
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within any area demarked by a dashed rectangle in Figure 11, which represent the worst

evaluated transformation methods regarding the experiments on each dataset.
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Figure 12 – Plot of the number of times (and percentage) the use of each method provided
better predictions over all five evaluated datasets

From the analysis of Figure 12, attention is drawn to the results of the methods

DIF and DIFs, which were consistently among the best methods. This fact indicates the

adequacy of differencing techniques for aiding the prediction of the time series of the

selected datasets. The splitting-based time series decomposition methods EMD and WT

were also among the best methods throughout the experiments, together with MAS, PCT,

and DT. It was also noted that the use of WT provided a more consistent performance than

EMD in our experimental analysis. The worst evaluated transformation methods across all

datasets (marked before the red vertical line) were expectedly the Naive approach, and

the SDIF, LT, LT10, and BCT transformation methods.

3.4.5 Discussion

Our experimental results indicate that the effects of each evaluated nonstationary

time series transformation methods regarding predictions and coercion of a time series

towards stationarity were dependent on the statistical properties and characteristic nature

of the data. This observation and the analysis of the information in Figure 12 suggest the

importance of a study on the effects and benefits of different nonstationary time series

transformation methods to be performed on the dataset at hand before any prediction
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tasks.

Moreover, the significance of performing a preliminary data transformation activity

may be better visualized in Figure 13. The plots in Figure 13 depict relevant information

about observed prediction accuracy improvements (measured by the decrease in MSE

error) provided by the best method over the Naive approach for each time series used in

this experimental analysis.
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Figure 13 – Plots of prediction accuracy improvement provided by transformation methods.
(a) presents box plots of prediction accuracy improvements provided by the best method
for each time series of each dataset. (b) presents the number (and percentage) of time
series (over all datasets) for which at least a minimum percentage of prediction accuracy
improvement was provided by their best method.

As can be observed in Figure 13a, the datasets for which transformation methods

were most effective were CATS, Ipea D and Ipea M. This result may be mostly due to the
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fact that these are among the datasets which presented the greatest rates of difference

stationarity in their time series. This is one of the most challenging forms of nonstationarity

and therefore, when not treated, has a significant negative impact on the accuracy of

simpler prediction methods such as the ARMA model.

Furthermore, the lower relative accuracy improvements observed for the NN3 and

NN5 datasets are probably due to properties of linearity, homoscedasticity, autocorrelation,

and also a low rate of difference stationarity (in the case of the NN5 dataset), which are

favorable features to the performance of ARMA models. By analyzing the last box plot of

Figure 13a, corresponding to all time series of all datasets, it is possible to observe a skew

in the results where the best methods lead to prediction accuracy improvements of at most

around 30% in half of the time series. This skew is actually to be expected since most

data are from the NN3 and NN5 datasets that provided 222 out of the 262 evaluated time

series. Nonetheless, the upper quartile and the upper extreme values of the last box plot

represent considerably high prediction accuracy improvements obtained by transformation

methods over half of the evaluated time series.

Complementary information may be obtained from Figure 13b that illustrates

the number of evaluated time series across all datasets for which at least a minimum

percentage of prediction accuracy improvement was achieved by the use of their best

method. The plot in Figure 13b confirms and detail the information presented in the

last box plot of Figure 13a, showing that for almost 50% of the series the best methods

produced prediction accuracy improvements of at least 30%. Moreover, one can observe

other significantly higher rates of accuracy improvements reaching at least 70% for 20% of

the series, at least 95% for over 10% of the series and a maximum value of at least 99%

prediction accuracy improvement for 7% of the time series used in our experiments. The

results indicate the potential impact of adequate transformation methods on the problem

of accurately predicting times series presenting nonstationary properties.

However, the task of selecting an adequate transformation method for the problem

of predicting a particular nonstationary time series is not straightforward. This is confirmed

by our previous analysis of the effects of the evaluated nonstationary time series transfor-

mation methods on prediction. In particular, our experimental results support a preliminary

conclusion that there is no “silver bullet” method for all datasets. Also, the notion of an

adequate transformation method is subjective according to each time series prediction

application.
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Our experiments pointed to the influence of transformation methods during pre-

diction. Nonetheless, the question remains “is it possible to consistently find appropriate

transformation methods for the prediction of a nonstationary time series before testing?”.

To address this question, it was applied a validation phase during model training. The

validation was introduced to rank candidate methods based on MSE. The suitability of

the method selected during validation could than be confirmed during the testing phase

of the prediction application (HAN; KAMBER; PEI, 2011) using a similar ranking process.

Figure 14 presents plots for comparing rankings of transformation methods based on MSE

measures generated from predictions performed during both validation and testing phases.

Analogously to our previous discussion, henceforth it is considered the best method the

one whose application resulted in the smallest absolute values of MSE prediction errors.

One may consider the rate at which the best method observed during the validation

phase is found among the top 5 methods found during the final testing phase. This

information is presented in Figure 14a where it is possible to see that, for the majority of

the time series adopted in our experiments, the best method found during the validation

was in fact confirmed as one of the most adequate (if not the most adequate) transformation

methods for aiding the accurate prediction of each time series. Attention is also drawn to

the lowest rate of 53% derived from the time series of the NN3 dataset. This rate is mostly

due to the relatively small length of the NN3 times series (the smallest among the adopted

datasets), a property that is generally challenging for time series modeling. This result

helps to suggest that inferences on best methods made on a validation phase are more

likely to approximate the truth when sufficient data is available.

The plot in Figure 14b presents another indicator for evaluating the ability of

consistently finding adequate transformation methods for aiding the prediction of a time

series through a validation phase. It depicts the mean rate of similarity (intersect) between

the top 5 best methods ranked during the validation and testing phases. Interpretation

of the plot suggests that even in case the best method found in validation phase is not

present in the top 5 methods of the testing phase, the top 5 rankings of both phases share

on average at least 65% (3) of their transformation methods considering all adopted time

series. This observation denotes a relative consistency among the results of both the

validation and testing phases. Confidence intervals are also represented. Expectedly, the

three wider confidence intervals regarding CATS, Ipea D and Ipea M correspond precisely

to the datasets which possess the lowest number of time series (respectively 5, 12 and
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Figure 14 – Plots for comparing the best methods according to predictions performed
during the validation and testing phases. (a) presents the (percentage) number of times the
best method found during validation was also present in the top 5 ranked methods found
during testing, for each time series of each dataset. (b) presents the mean (percentage)
similarity (intersect) between the top 5 ranked methods of both validation and testing
phases, for each time series of each dataset.

23 in comparison to 111 for each NN3 and NN5). The analysis of the results illustrated

in Figure 14 indicates that it is generally likely to find and select the most adequate

nonstationary time series transformation methods for aiding the production of accurate

predictions based on the use of a validation phase.
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4- Enabling the benchmarking of transformation methods and

models

The last chapter presented an application of the benchmarking framework de-

scribed in Chapter 2 with the goal of comparatively reviewing nonstationary time series

transformation methods and their effects on prediction. For this end, a well-established

benchmark linear model was adopted for predicting the selected time series datasets.

This chapter gives use case examples designed to indicate the potential of the bench-

marking framework for general nonstationary time series prediction applications with MLM.

Applicability encompasses the selection of hyperparameters and the choice of adequate

transformation methods and prediction models for a particular nonstationary time series.

Henceforth this work focus on benchmarking transformation methods and MLM combi-

nations in order to discuss their adequacy to the time series of the CATS dataset. The

CATS dataset is selected for the considerably high nonstationarity rate of its time series

as described in Section 3.1. The code for reproducing the use case examples presented

in this chapter and their respective results are made available 1 .

4.1- Use case 1: choice of hyperparameters

The first use case example of the usability of the framework developed in this

research encompasses the problem of hyperparameter selection for MLM. With this

purpose, the benchmarking comparison process described in Section 2.1 was instantiated

for each time series of the CATS dataset. Several hyperparameter candidates were

benchmarked based on their ability to produce models that yield the most accurate

predictions.

The MLP network model was adopted for training and prediction of the next 20

time series observations. MLPs present one of the most common network architectures
1https://github.com/RebeccaSalles/TSPred/wiki/tspred-use-cases
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and they were trained by standard error backpropagation (BERGMEIR; BENÍTEZ, 2012).

Since the focus of this use case example lies on the selection of model parameters, no

preprocessing methods were applied to the selected time series except the subsetting

into training and evaluation datasets and the normalization with MM during training and

prediction. Analogous to the experiments in Chapter 3, prediction accuracy evaluation was

based on MSE metrics.

Regarding the model parameter options set to be benchmarked in this use case

example, it is worth mentioning that the number of hidden layers of the network is defined

as either one or two and the number of units in these layers varies within the range [2, 20]

for the first input layer and [0, 20] for the second. The learning rate of the backpropagation

learning function specifies the gradient descent step width and it is usually set to a value

between 0.1 and 1. Thus the learning rate was set to vary between these values with a 0.1

step increment. Finally, the maximum number of iterations of the MLP learning algorithm

was set as either 1000, 5000 or 10000. The described parameter options generate a number

of 12, 540 different combinations for each of the 5 CATS times series.

Algorithm 1 presents a summary of the experimental methodology applied in this

use case example for each time series of the CATS dataset. The use case initially receives

three parameters: (i) a time series X; (ii) a number m of observations to be predicted; and

(iii) a set of parameter combinations to serve as hyperparameter candidates, A.

Algorithm 1 – Experimental methodology of use case 1

Input: X = experimental time series data;
m = number of observations to be predicted;
A = set of parameter combinations
Output: α̂ = selected hyperparameter candidate

1 begin
2 Xeval ← DataSampling(X,m);
3 Xtrain ← X −Xeval;
4 foreach parameter combination α in A do
5 µα ← TrainMLP(Xtrain, α);
6 ρα ← Predict(µα, Xtrain,m);
7 εα ← Evaluate(ρα, Xeval);
8 εA ← Append(εA, εα);

9 R← Benchmark(εA, A);
10 α̂← Top1(R)

In lines 2 and 3, X is divided into two disjoint subsets, Xeval and Xtrain, corre-

sponding to the previously described evaluation and training sets, respectively. The former
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subset needs to have no more than m observations to enable the subsequent calculation

of the prediction errors, therefore it is assigned the length of Xeval equal to m, and for

Xtrain it is assigned all the remaining observations contained in X, that is, the length of X

minus the m observations.

From lines 5 to 7, the algorithm performs training, predicting and error evaluation.

These tasks are iteratively performed based on each hyperparameter candidate α con-

tained in A. The first executed task, in line 5, is the training of the MLP model based on α

and the data within Xtrain, which gives us the trained MLP model µα. µα is then used to

predict the m next observations of the time series present in Xtrain. The set of predictions

are then represented by ρα. This task can be observed in line 6 of Algorithm 1. Line 7

computes the prediction error of the trained model using Xeval. Let εα be the prediction

error produced by µα. Line 8, appends εα to εA, the set of prediction errors produced

based on each α in A.

In line 9 the hyperparameter candidates in A are benchmarked based on the

ranking of their respective prediction errors contained in εA generating a performance

ranking referenced as R. Finally, the algorithm selects α̂ as hyperparameter for the MLP

model of the time series in X by taking the best-ranked candidate in R. Henceforth, this

work refers as Product 1 the collection of the hyperparameters, α̂, selected for each time

series of CATS. The Product 1 produced by this use case example is presented in Table 5.

V1 to V5 represent the five consecutive sequences of known values of the CATS series

that were predicted separately.

Table 5 – Hyperparameters selected for MLP modeling of each time series of the CATS
dataset. This collection of hyperparameters compose the Product 1 produced by this use
case example.

Time
series

Number of
hidden layers

Units in
layer 1

Units in
layer 2

Learning
rate

Maximum
iterations

V1 2 17 11 0.1 10000
V2 1 20 NA 0.3 10000
V3 1 20 NA 0.8 1000
V4 2 6 10 1 10000
V5 2 17 0 0.6 5000

The resulting prediction errors accumulated in εA for each CATS time series are

presented in the boxplot of Figure 15. A clear discrepancy can be seen regarding the

prediction results for the time series V4 corresponding to the fourth sequence of known



83

values (3001-3980) of the CATS time series. The prediction errors computed for V4 are

considerably higher than for all other time series. It is possible to have an intuition of

the cause of this result by observing the V4 time series in Figure 16. V4 presents highly

nonstationary behavior and a steep positive trend in its final portion, which is also abruptly

interrupted in the next observations of the CATS series. In fact, the demand for addressing

the property of nonstationarity for improving prediction accuracy is confirmed for all time

series of CATS. This demand is to be expected given the inherent nonstationary nature

of the CATS dataset. Moreover, it is also indicated by the red solid marks in Figure 16,

which represent the benchmark ARIMA prediction errors for the time series. Since the

benchmark model produced similar or even smaller prediction errors, a refinement in the

prediction setup is generally recommended.
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Figure 15 – Boxplot of MSE prediction errors generated in the use case 1. The red solid
marks represent prediction errors produced by a benchmark ARIMA model.

4.2- Use case 2: choice of transformation methods

The second use case example of the usability of the developed framework en-

compasses the problem of selecting appropriate transformation methods for a particular

nonstationary time series. For that goal, analogous to the use case 1, a benchmarking

comparison process was instantiated for the time series of the CATS dataset. However,

this use case benchmarks several time series transformation method candidates based
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Figure 16 – The forth sequence of known values (3001-3980) of the CATS time series
referenced as V4

on their ability to produce transformed time series that can be most accurately predicted.

Similarly to use case 1, the adopted model for training and prediction was the MLP

network model, and the MSE metrics served as a base for prediction accuracy evaluation.

It is important to mention that for practical applications a hyperparameter selection process

(as the one performed in use case 1) should be performed for each of the time series

transformed by the candidate transformation methods being benchmarked. Nonetheless,

for the purposes of this example, the hyperparameters selected in use case example 1,

Product 1 (Table 5), were adopted for model training.

The transformation method options set to be benchmarked in this use case example

were selected based on the top 5 methods depicted in Figure 12, namely the DIF, WT, PCT,

MAS, and EMD. The Naive method, that is, when no transformation methods are applied,

is also benchmarked against the listed top 5. These methods were also combined with two

options of normalization methods applied during the MLP network training and prediction,

namely the MM and the AN. The described transformation/normalization options generate

a number of 12 different combinations for each of the 5 CATS times series.

Algorithm 2 presents a summary of the experimental methodology applied in

this use case example for each time series of the CATS dataset. The use case initially

receives five parameters: (i) a time series X; (ii) a number m of observations to be

predicted; (iii) model hyperparameters β̂; (iv) a set of transformation method candidates

to be benchmarked, B1; and (v) a set of normalization method candidates, B2, to be

benchmarked in combination with B1.
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Algorithm 2 – Experimental methodology of use case 2

Input: X = experimental time series data;
m = number of observations to be predicted;
α̂ = model hyperparameters;
B1 = set of transformation method candidates;
B2 = set of normalization method candidates
Output: β̂ = selected transformation-normalization combination

1 begin
2 Xeval ← DataSampling(X,m);
3 Xtrain ← X −Xeval;
4 foreach transformation method β1 in B1 do
5 foreach normalization method β2 in B2 do
6 Ẋtrain ← Preprocess(β1, Xtrain);
7 µ̇β ← TrainMLP(Ẋtrain, α̂, β2);
8 ρ̇β ← Predict(µ̇β, Ẋtrain,m);
9 ρβ ← Postprocess(β1, ρ̇β);

10 εβ ← Evaluate(ρβ, Xeval);
11 εB ← Append(εB, εβ);

12 R← Benchmark(εB, B1, B2);
13 β̂ ← Top1(R)

Analogously, lines 2 and 3, divide X into the evaluation and training sets, Xeval and

Xtrain, respectively. From lines 6 to 10, the algorithm performs preprocessing, training,

predicting, postprocessing and error evaluation. These tasks are iteratively performed

based on each transformation β1 and each normalization β2 method candidate contained in

B1 and B2, respectively. In line 6, the Xtrain is transformed using the method β1, resulting

in Ẋtrain. The next task is the training of the MLP model based on the transformed data

within Ẋtrain, α̂, and the data normalization method β2, which gives us the trained MLP

model µ̇β. µ̇β is then used to predict the m next observations of the transformed time

series present in Ẋtrain. The set of predictions of the transformed time series are then

represented by ρ̇β . The predictions for the original time series ρβ are obtained by reverse

transforming ρ̇β in line 9. Line 10 computes the prediction error εβ . Line 11, appends εβ to

εB, the set of prediction errors produced based on each β1 and β2 combinations.

In line 12 the transformation-normalization combination candidates are bench-

marked based on the ranking of their respective prediction errors contained in εB generat-

ing R. Finally, the algorithm selects β̂ as the most appropriate transformation-normalization

combination for the MLP prediction of the time series in X by taking the best-ranked can-

didate in R. Henceforth, this work refers as Product 2 the collection of the transformation-
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normalization combinations, β̂, selected for each time series of CATS. The Product 2

produced by this use case example is presented in Table 6.

Table 6 – Transformation-normalization combinations selected for MLP prediction of each
time series of the CATS dataset. This collection of preprocessing method combinations
compose the Product 2 produced by this use case example.

Time series Transformation method Normalization method

V1 DIF AN
V2 Naive MM
V3 PCT AN
V4 WT AN
V5 EMD MM

The mean and standard deviation of the prediction errors accumulated in εB

for each CATS time series are presented in the plot of Figure 17. The results were

aggregated by each benchmarked transformation method (β1), listed in the x-axis, and

each benchmarked normalization method (β2), referenced by the colored points/lines. By

analyzing the plot, it is clear to see that the AN normalization method helped provide

more accurate predictions than MM. This result is justified given that the AN normalization

method was designed to address properties such as the nonstationarity in the time series.

It is also possible to observe that the standard deviations were considerably smaller for

the transformation methods based in time series decomposition, namely, the EMD and

the WT. Consequently, they were able to inspire a higher confidence in their respective

prediction results despite the model hyperparameters being tuned to the Naive method (in

use case 1), which favored its relative prediction performance in this use case example.

It is important to remark that although this use case example focused on bench-

marking predictions of time series preprocessed by only one transformation method at

a time, this is not the only possible configuration. The developed framework also allows

the preprocessing of time series by consecutively applying a combination of a number

(n) of transformation methods defined by the user. Furthermore, the benchmarking pro-

cess presented in this use case example can be adapted by adding iterations over each

transformation method (β1, . . . , βn) of the combination.
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Figure 17 – Mean and standard deviation of MSE prediction errors generated for each
CATS time series in the use case 2. Results are aggregated by the applied transformation
(x-axis) and normalization methods (color).

4.3- Use case 3: choice of models

The third and last use case example of the usability of the developed framework

encompasses the problem of selecting an adequate machine learning model for a par-

ticular nonstationary time series prediction application. With this intent, a benchmarking

comparison process that is analogous to both previous use cases (1 and 2) was instan-

tiated for the same time series dataset. In this case, the focus of the use case shifted

to benchmarking time series MLM candidates based on their ability to produce the most

accurate predictions.

It is reiterated that for practical applications a hyperparameter selection process

(use case 1) and a transformation method selection process (use case 2) should be

performed for each candidate MLM being benchmarked. However, for the purposes

of this example, model parameters were arbitrarily selected and the combinations of

transformation/normalization methods selected in use case example 2, Product 2 (Table

6), were adopted for data preprocessing. The MSE was again the chosen metric for

prediction accuracy evaluation.

The MLM options set to be benchmarked in this use case example were the NNET,

RFrst, RBF, SVM, MLP and ELM. The linear ARIMA model is also benchmarked against

the listed MLM serving as a well-established reference. It is noted that for the MLM based
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on neural networks, namely the NNET, RBF, MLP and ELM, the number of hidden layers

is set to one and its neuron units are set based on partial autocorrelation tests. The

number of neurons set for each CATS time series is presented in Table 7. The size of the

sliding windows was set by incrementing the values in Table 7 by one unit. Also, no data

normalization methods were applied for ARIMA predictions. Given that ARIMA does not

receive sliding windows data as input, the normalization methods implemented for such

data could not be applied. The listed models provide a number of 7 different options for

each of the 5 CATS times series.

Table 7 – The number of neuron units in the hidden layer of the benchmarked MLM based
on neural networks. Values were set based on partial autocorrelation tests performed for
each CATS time series.

Time series Neuron units

V1 17
V2 17
V3 28
V4 17
V5 17

Algorithm 3 presents a summary of the experimental methodology applied in this

use case example for each time series of the CATS dataset. The use case initially receives

six parameters: (i) a time series X; (ii) a number m of observations to be predicted; (iii)

a transformation method β̂1; (iv) a normalization method β̂2 to be applied in combination

with β̂1; (v) a set Γ of model candidates to be benchmarked; and (vi) a set of parameters,

Aγ , respective to the models in Γ.

Analogous to the use cases 1 and 2, after dividing X into Xeval and Xtrain (lines

2 and 3), the algorithm performs the tasks of preprocessing, training, predicting, post-

processing and error evaluation, which are iteratively performed based on each model

candidate γ contained in Γ. In line 5, Xtrain is transformed by the method β̂1. In the next

task, the γ model is trained based on the transformed data Ẋtrain, the parameters αγ , and

the normalization method β̂2, resulting in the trained model µ̇γ . µ̇γ is used to predict the

m next observations of the transformed time series, represented by ρ̇γ . The predictions

for the original time series ργ are obtained by reverse transforming. Line 9 computes the

prediction error εγ . Line 10, appends εγ to εΓ, the set of prediction errors produced based

on each model γ.

In line 11 the model candidates are benchmarked based on the ranking of their
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Algorithm 3 – Experimental methodology of use case 3

Input: X = experimental time series data;
m = number of observations to be predicted;
β̂1 = transformation method;
β̂2 = normalization method;
Γ = set of model candidates;
Aγ = set of parameters for the models of Γ;
Output: γ̂ = selected model

1 begin
2 Xeval ← DataSampling(X,m);
3 Xtrain ← X −Xeval;
4 foreach model γ in Γ and respective αγ in Aγ do
5 Ẋtrain ← Preprocess(β̂1, Xtrain);
6 µ̇γ ← Train(γ, Ẋtrain, αγ , β̂2);
7 ρ̇γ ← Predict(µ̇γ , Ẋtrain,m);
8 ργ ← Postprocess(β̂1, ρ̇γ);
9 εγ ← Evaluate(ργ , Xeval);

10 εΓ ← Append(εΓ, εγ);

11 R← Benchmark(εΓ,Γ);
12 γ̂ ← Top1(R)

respective prediction errors contained in εΓ generating R. Finally, the algorithm selects γ̂

as the most adequate model for the prediction of X by taking the best-ranked candidate in

R. Henceforth, this work refers as Product 3 the collection of models, γ̂, selected for each

time series of CATS. The Product 3 produced by this use case example is presented in

Table 8.

Table 8 – Models selected for prediction of each time series of the CATS dataset. This
collection of models compose the Product 3 produced by this use case example.

Time series Model

V1 ELM
V2 ARIMA
V3 ELM
V4 ARIMA
V5 SVM

A Taylor diagram of the predictions obtained for the first sequence of known values

(1-980) of the CATS series, V1, is presented in Figure 18. As described in Section

3.4.1, the closer to the point ”observed”, the better the prediction performance of the

benchmarked model. In this case, the diagram indicates that the most accurate predictions

were produced by the models RFrst, ELM, SVM, MLP, and RBF, respectively. The use
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of the benchmark model ARIMA resulted in considerably higher prediction errors, as it

should be expected. Nonetheless, NNET produced the worst prediction results, despite

presenting a higher correlation (0.85) to the evaluation dataset (Xeval) than the results of

SVM, MLP and RBF, for example. The ranked MSE computed for the prediction results in

the diagram of Figure 18 is presented in Table 9. The ranking of models remains practically

the same (except for the RFrst) and the ELM is selected as the best-placed candidate

model. Again the benchmark ARIMA model was able to indicate a demand for refining

data preprocessing methods and/or parameters of models such as the NNET.
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Figure 18 – Taylor diagram of the predictions obtained for V1 in the use case 3

Table 9 – MSE prediction errors obtained for V1 in the use case 3

Model MSE

ELM 120.0758
SVM 197.2222
MLP 242.8818
RBF 308.9310
RFrst 408.7529
ARIMA 583.7616
NNET 2941.8614
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4.4- Discussion

The use case examples presented in this chapter indicate the potential of the

developed framework for benchmarking nonstationary time series prediction. It enables a

comparative analysis of candidate models, preprocessing methods, and parameters for

selecting the most adequate setup for a particular nonstationary time series prediction

application.

The described use case examples of the previous sections are in fact comple-

mentary. They should be combined in order to obtain the most accurate predictions in

real-world practical time series applications. It is also recommended that the definition

of candidate models, preprocessing methods, and their parameters for the performed

benchmarking process should be refined based on application expert background.

Assume the same benchmarking candidate options are used in a composite of the

previously described use case examples (1, 2 and 3). The number of possible candidate

setup combinations reaches a number of 12, 540× 12× 7 = 1, 053, 360 for each of the 5

CATS times series. In total, there are 5, 266, 800 different time series prediction setups to

be performed and benchmarked, which is a very high and computationally challenging

number.

Performing an entire prediction process (Section 2.1) with an MLM model, such

as the MLP, takes in average 30 seconds. This value is valid for a computer with an

8th generation Intel i5 with 8Gb of RAM memory running Windows 10. Therefore, the

monolithic computation of predictions for all 5, 266, 800 setup combinations may take up to

158, 004, 000 seconds, or 5 years, to be complete. In this case, there is a clear demand

for adopting parallel and/or distributed computing and optimization in order to make such

benchmarking process feasible. It is also important to study a methodology for creating

heuristics and pruning the options of candidate models, preprocessing methods, and

parameters based on the particular time series data and prediction application at hand.
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Final considerations

This work focus on the study of univariate nonstationary time series prediction

and the benchmarking of preprocessing and modeling options for time series applications

that have nonstationarity as an inherent property. It is presented a review of nonstation-

ary time series transformation methods for time series prediction. A categorization of

such transformation methods was described together with a timeline obtained through a

systematic mapping study. Moreover, it was developed a systematic framework for bench-

marking transformation methods and models for nonstationary time series prediction. This

framework was implemented and encapsulated within the TSPred R-package (SALLES;

OGASAWARA, 2018), which is publicly available.

The developed benchmarking framework was adopted for devising a comparative

experimental analysis and discussion of the effects of some of the reviewed transformation

methods on the problem of time series prediction. With this intent, eleven methods of the

most commonly used in practical applications were selected and benchmarked. The aim

of this experimental analysis is contributing to the process of evaluation, selection, and

application of nonstationary time series transformation methods.

An overview of the effects of the evaluated methods regarding predictions and

stationarity was produced based on our experimental results. Although it was possible to

note a somewhat consistency in the results of the evaluated transformation methods, there

was no uniquely best method across all datasets, and the nature and statistical properties

of the time series were especially relevant to the results.

Nonetheless, it was possible to observe better predictions when transformation

methods based on differencing and moving average smoothing were applied before the

prediction of the time series of the selected datasets. Transformation methods that perform

time series decomposition, which have been an object of increasing attention, were also

among the best methods. Among the worst methods was, as expected, the naive one,

where no data transformation is performed before prediction. Particularly, this approach

provided predictions with significantly lower accuracy when compared to the case in which

nonstationarity was treated.

Additionally, results indicate that the use of a validation phase for exploring different
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transformation methods generally leads to the selection of one of the most appropriate

for obtaining accurate time series predictions. Our experimental results suggest as future

trends (i) the increase in the importance of the process of data transformation for the

problem of accurate prediction of nonstationary time series and (ii) the need for studying

and evaluating suitable methods to perform this activity according to the dataset at hand.

In this context, the potential of the developed framework for enabling the bench-

marking of data transformation methods and prediction models for a particular nonsta-

tionary time series application was indicated. With this goal, this work presents use case

examples of the framework usability encompassing the selection of hyperparameters, and

the choice of adequate transformation methods and machine learning prediction models.

For example purposes, the use cases benchmark the top 5 evaluated transformation

methods and six different MLM for prediction of 5 selected nonstationary time series. The

benchmark linear ARIMA model is also adopted to indicate demands for the refining of

preprocessing methods and model parameters. Results are analyzed and the general

methodologies for benchmarking and selecting adequate prediction setups for a particular

nonstationary time series are described.

Scientific production

The study conducted around the topic of nonstationary time series prediction

resulted in the publication of four main scientific research products (SALLES et al., 2016,

2017; SALLES; OGASAWARA, 2018; SALLES et al., 2019). The paper of Salles et al.

(2016) was published in the Ecological Informatics journal. It performs an experimental

analysis of time series predictions based on nonstationary sensor data of the sea surface

temperature (SST) of the tropical Atlantic ocean. The data is collected by the Prediction

and Research Moored Array in the Tropical Atlantic (PIRATA) project (GOOS-BRASIL,

2015). The paper focused on evaluating the influence of temporal aggregation in predicting

step-ahead SST considering different prediction horizons and different sizes for training

datasets. Results point out scenarios indicating whether or not temporal aggregated

SST time series may be beneficial for prediction. The improvement of SST prediction is

important for aiding the identification of extreme environmental events such as droughts.
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The paper of Salles et al. (2017) was published in the proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN) held at Anchorage, Alaska, USA. It

presents a framework for systematic benchmarking MLM against well-known LM, namely

Polynomial Regression and models in the ARIMA family, used as benchmark models

for univariate time series prediction. This implementation was evaluated using a wide

number of datasets from past prediction competitions. The results showed that fittest LM

provided by the framework are adequate benchmark models for performance assessment

of univariate time series predictions.

The scientific research content presented in this text was also published and is

currently available. The framework described in Chapter 2 automatizes the time series

prediction process including the tasks of data preprocessing, modeling, prediction, data

postprocessing and the evaluation of prediction quality. Several methods related to each

of these tasks are implemented with the incorporation of automatic choice of parameters.

Moreover, the structure of the framework was designed for supporting the custom user

implementation of methods in a straightforward manner.

The framework offers tools for benchmarking different preprocessing methods

and models for the prediction of nonstationary time series of a particular application.

Being widely available within the TSPred R-package (SALLES; OGASAWARA, 2018) in

CRAN, the potential for application of this framework encompasses the areas of statistical

sciences, natural sciences, socioeconomics, finance, industry and business. By the end of

2018, the previous version 4.0 of TSPred had an average of 680 downloads per month

worldwide. Given its comprehensiveness and practical use, it is expected that the advent

of its new version 5.0, incorporating the described framework, brings a significantly higher

utilization rate.

Finally, the review and experimental analysis of nonstationary time series transfor-

mation methods presented in this text (Chapters 1 and 3) were published in the journal

Knowledge-Based Systems (SALLES et al., 2019). The paper focused on contributing to

the choice of a transformation that is appropriate to the adopted data model and to the

problem at hand. It provides a background on the subject of nonstationary time series

transformation methods and a discussion on the scenarios they could be most beneficial

to the problem of time series prediction.
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Future work

Given the expanding importance of the subject of time series prediction and the

pervasive presence of nonstationarity in most real-world time series applications, there is

a wide scope for future research endeavors. Among them, it is noted the expansion of

the range of implemented preprocessing methods, MLM, and evaluation metrics of the

framework developed in the TSPred R-package. An example of useful addition to the

range of implemented preprocessing methods would be some state-of-the-art imputation

techniques for treating missing values among nonstationary time series data (SALLES

et al., 2015). There is also an increasingly important demand for deriving R-packages

complementary to TSPred to provide support for multivariate and spatio-temporal series

data, which are also commonly found in practical real-world time series applications.

As discussed in Section 4.4, the number of possible combinations of candidate

models, preprocessing methods, and hyperparameters that need to be benchmarked in

order to select the most adequate prediction setup for a particular nonstationary time

series application can become very high and computationally challenging. For enabling

the automatic optimization of the task of selecting a most adequate time series prediction

setup, there is a demand for creating an algebraic approach for the execution of the

workflow defined by the prediction process implemented in TSPred (OGASAWARA et al.,

2011). Also, for pruning the number of candidate setup combinations, it would be beneficial

to create heuristics based on machine learning analysis and according to the inherent

properties of a time series. In this context, it is also possible to make the time series

prediction process more systematic with the use of Automated Machine Learning (AutoML)

techniques. They help provide automatic recommendations for prediction methods and

parameters while reducing the need for human interaction.

Moreover, in order to improve the computational feasibility of the task of selecting

a most adequate time series prediction setup for a particular nonstationary time series,

it is crucial to integrate parallel and distributed computing technologies such as Spark

(ZAHARIA et al., 2016; VENKATARAMAN et al., 2016) into the framework implemented in

TSPred. Another helpful approach is to describe the workflow implemented in TSPred

and its respective objects using the Predictive Model Markup Language (PMML) (ALEX

GUAZZELLI; WILLIAMS, 2009). The use of PMML contributes for the integration of
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TSPred with other modeling and prediction tools currently available in the literature.

A short-term plan of future publications includes a paper on the TSPred package

to be submitted to the Journal of Statistical Software. An application of the package for

predicting worldwide fertilizers consumption is also planned. Finally, efforts are being ap-

plied into generating and publishing a novel LM called Autoregressive Adaptive Integrated

Moving Average (ARAIMA), which combines the ARIMA model with features from the AN

method.



97

References

ABRAHAM, B.; BALAKRISHNA, N. Ch. 29. Time series in industry and business. Hand-

book of Statistics, v. 22, p. 1055–1106, 2003.

AKPINAR, M.; YUMUSAK, N. Year ahead demand forecast of city natural gas using

seasonal time series methods. Energies, v. 9, n. 9, 2016.

ALDRICH, Eric. wavelets: A package of functions for computing wavelet filters,

wavelet transforms and multiresolution analyses. [S.l.], Dec. 2013.

ALEX GUAZZELLI, Wen-Ching L.; WILLIAMS, Graham. PMML: An Open Standard for

Sharing Models. The R Journal, v. 1, n. 1, p. 60–65, May 2009. Available from: ¡http://

journal.r-project.org/archive/2009-1/RJournal_2009-1_Guazzelli+et+al.pdf¿.

AN, X. et al. Wind farm power prediction based on wavelet decomposition and chaotic

time series. Expert Systems with Applications, v. 38, n. 9, p. 11280–11285, 2011.

ATTO, A. M. a; BERTHOUMIEU, Y. b. Wavelet packets of nonstationary random processes:

Contributing factors for stationarity and decorrelation. IEEE Transactions on Information

Theory, v. 58, n. 1, p. 317–330, 2012.

BAILLIE, R. T. Long memory processes and fractional integration in econometrics. Journal

of Econometrics, v. 73, n. 1, p. 5–59, 1996.
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BOKDE, N.; FEIJÓO, A.; KULAT, K. Analysis of differencing and decomposition prepro-

cessing methods for wind speed prediction. Applied Soft Computing Journal, v. 71,

p. 926–938, 2018. DOI: 10.1016/j.asoc.2018.07.041.

BOX, George E. P.; JENKINS, Gwilym M.; REINSEL, Gregory C. Time Series Analysis:

Forecasting and Control. 4. ed. Hoboken, N.J: Wiley, June 2008. ISBN 978-0-470-

27284-8.

BRANDAO, R. M. a c; NOVA, A. M. O. P. b d. Analysis of nonstationary stochastic

simulations using classical time-series models. ACM Transactions on Modeling and

Computer Simulation, v. 19, n. 2, 2009.

BREIMAN, Leo. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct. 2001.

ISSN 1573-0565. DOI: 10.1023/A:1010933404324. Available from: ¡https://doi.org/

10.1023/A:1010933404324¿.

BROCKWELL, A. E. Likelihood-based analysis of a class of generalized long-memory

time series models. Journal of Time Series Analysis, v. 28, n. 3, p. 386–407, 2007.

BUZA, Krisztian. Time Series Classification and Its Applications. In: PROCEEDINGS of

the 8th International Conference on Web Intelligence, Mining and Semantics. Novi Sad,

Serbia: ACM, 2018. (WIMS ’18), 4:1–4:4. ISBN 978-1-4503-5489-9. DOI: 10.1145/

3227609.3227690.

CAPORALE, G. M. a; GIL-ALANA, L. A. b. Nonlinearities and fractional integration in

the US unemployment rate. Oxford Bulletin of Economics and Statistics, v. 69, n. 4,

p. 521–544, 2007.

CAPORALE, G.M.; SKARE, M. Long memory in UK real gdp, 1851-2013: An arfima figarch

analysis. Transformations in Business and Economics, v. 17, n. 1, p. 255–268, 2018.
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