MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO

SECRETARIA DA EDUCAÇÃO SUPERIOR

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA

CURSO DE ENGENHARIA DE PRODUÇÃO

DEPARTAMENTO				PLANO DE CURSO DA DISCIPLINA				
DEPRO				SIMULAÇÃO				
CÓDIGO			PERÍO DO	ANO		SEMESTRE	PRÉ- REQUISITOS	
GPRO-7701			OPT	2016		-		
CRÉDITOS		AULAS/SEMANA				TOTAL DE AULAS NO SEMESTRE	Pesquisa Operacional-I GPRO 7709	
	TE	ÓRICA	PRÁTICA	ESTÁGIO			Métodos Estatísticos	
3		3	0	0		54	EXT 7712	

EMENTA

A simulação de eventos discretos no estudo de sistemas estocásticos; Técnicas de simulação discreta; Coleta e tratamento de dados; Geração de Números Pseudoaleatórios; Elaboração de um estudo de simulação; Simulação Determinística de Monte Carlo; Introdução à Teoria de Filas.

BIBLIOGRAFIA BÁSICA

ARENALES, Marcos et al. **Pesquisa operacional.** São Paulo: Elsevier, 2007. xvii, 524 p., il. ISBN 978-85-352-1454-3 (broch.).

CHWIF, Leonardo. **Modelagem e simulação de eventos discretos:** teoria & aplicações. 2.ed. São Paulo: Ed. Autores Associados, 2006. 254 p. ISBN 8590597814 (broch.).

PIDD, Michael. **Computer simulation in management science.** 5th ed. Hoboken, NJ: Wiley, c2004. xiii, 311p., il. ISBN 9780470092309 (broch.).

BIBLIOGRAFIA COMPLEMENTAR

BANKS, Jerry (Ed.). **Handbook of simulation:** principles, methodology, advances, applications, and practice. New York: Wiley, ; [Norcross, Ga.] : Co-published by Engineering & Management Press, c1998. xii, 849p., il. ISBN 0471134031(Enc.).

CHUNG, Christopher A. **Simulation modeling handbook:** a practical approach. Boca Raton, FL: CRC Press, c2004. Várias paginações, ill. (Industrial and manufacturing engineering series). ISBN

978084931241(enc.).

MONTGOMERY, Douglas C.; RUNGER, Georbe C. **Estatística aplicada e probabilidade para engenheiros.** 5.ed. Rio de Janeiro: Livros Técnicos e Científicos, 2012. xiv, 523 p., il., grafs., tabs. Bibliografia: p.[508]-509. ISBN 9788521619024 (Broch.).

NELSON, Barry L. **Stochastic modeling:** analysis & simulation. Mineola, N.Y.: Dover Publications, 2010. xiv, 321 p., ill. (Dover books on mathematics). Bibliografia: p.315. ISBN 9780486477701 (Broch.).

TAHA, H.A. **Pesquisa operacional.** 8.ed. São Paulo: Pearson : Prentice Hall, 2008. xiii, 359p., il. ISBN 9788576051503 (broch.).

OBJETIVOS GERAIS

Promover o aprendizado da Simulação como ferramenta para modelagem e solução de problemas de tomada de decisão em sistemas estocásticos.

METODOLOGIA

A disciplina será desenvolvida através de aulas expositivas, da leitura e discussão de textos selecionados, e de trabalhos práticos individuais e em grupo.

CRITÉRIO DE AVALIAÇÃO

Provas e Trabalhos Práticos.

CHEFE DO DEPARTAMENTO							
NOME	ASSINATURA						
Ormeu Coelho da Silva Júnior							

PROFESSOR RESPONSÁVEL PELA DISCIPLINA						
NOME	ASSINATURA					
Ormeu Coelho da Silva Júnior						

APROVADO PELO CONSELHO DEPARTAMENTAL EM:/	
---	--

PROGRAMA

- 1. A Simulação de Eventos Discretos no Estudo de Sistemas Estocásticos
 - 1.1. Sistemas reais x Modelos
 - 1.2. Aplicações da Simulação
 - 1.3. Simulação x Métodos Analíticos
 - 1.4. Manipulação do tempo em uma simulação
 - 1.5. Simulação determinística x Simulação estocástica

1.6. Simulação Discreta x Simulação Contínua

2. Técnicas de Simulação Discreta

- 2.1. Construção de modelos conceituais
- 2.2. Diagrama de Ciclo de Atividades (DCA)
- 2.3. O Método das Três Fases
- 2.4. Simulação por Eventos
- 2.5. Simulação por Atividades
- 2.6. Simulação por Processos

3. Coleta e tratamento de dados

- 3.1. Coleta de dados
- 3.2. Tratamento dos dados:

Identificação de outliers

Análise de correlação

3.3. Escolha das distribuições de probabilidade

Algumas distribuições estatísticas usuais

Testes de Aderência: Qui-quadrado e Kolmogorov-Smirnov p-Valor

4. Geração de Números Pseudoaleatórios

- 4.1. Amostragem aleatória
- 4.2. Métodos de geração de números pseudo-aleatórios
- 4.3. Testes de aleatoriedade
- 4.4. Métodos de amostragem em distribuições contínuas

Inversão, Rejeição e Composição

Amostragem na distribuição normal

4.5. Métodos de amostragem em distribuições discretas

Amostragem em histogramas

Transformação da Inversa Implícita

Rejeição discreta

5. Elaboração de um Estudo de Simulação

- 5.1. Do modelo conceitual ao computacional
- 5.2. Verificação e validação do modelo
- 5.3. Regime transitório x regime permanente
- 5.4. Simulação terminal x simulação não terminal
- 5.5. Dimensionamento das corridas
- 5.6. Análise dos resultados da simulação

4. Simulação Determinística de Monte Carlo

Introdução à Teoria de Filas
Elementos de um sistema de filas
Medidas de desempenho em um sistema de filas
Modelo de filas fundamental