MINISTÉRIO DA EDUCAÇÃO

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA DIRETORIA DE ENSINO (DIREN)

DEPARTAMENTO DE ENSINO SUPERIOR (DEPES)
DEPARTAMENTO DE INFORMÁTICA (DEPIN)
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO (BCC)

DEPARTAMENTO

DEPIN - Departamento Acadêmico de Informática

PLANO DE CURSO DA DISCIPLINA

ARQUITETURA DE COMPUTADORES

CÓDIGO GCC 1102

PERÍODO 1º ANO 2012

SEMESTRE 2

TOTAL DE AULAS

NO SEMESTRE

72

PRÉ-REQUISITOS

Nenhum

CRÉDITOS 4

AULAS/SEMANA		
TEÓRICA	PRÁTICA	ESTÁGIO
4	0	0

EMENTA

Introdução à organização de computadores. Sistemas de representação e manipulação de dados. Hierarquias de memória. Memórias principal, cache e de leitura-somente. Unidade Central de Processamento: componentes, ciclo da instrução. Conjunto de instruções. Métodos e dispositivos de entrada e saída.

BIBLIOGRAFIA

Bibliografia básica

- 1. MONTEIRO, M. A. Introdução à Organização de Computadores. 5ª edição. Rio de Janeiro: LTC, 2007.
- 2. STALLINGS, W. Arquitetura e Organização de Computadores. 8ª edição. São Paulo: Pearson, 2010.
- 3. TANENBAUM, A. S. *Organização Estruturada de Computadores*. 5ª edição, São Paulo: Prentice-Hall, 2006.

Bibliografia complementar

- 1. HENNESSY, J. L., PATTERSON, D. A. Organização e Projeto de Computadores: A Interface Hardware/Software. 5ª ed. Rio de Janeiro: Campus/Elsevier, 2017.
- 2. MURDOCCA, M. J., HEURING, V. P. *Introdução à Arquitetura de Computadores*. Rio de Janeiro: Campus/Elsevier, 2000.
- 3. NULL, L., LOBUR, J. *Princípios Básicos de Arquitetura e Organização de Computadores*. Porto Alegre: Bookman, 2010.
- 4. WEBER, R. F. Fundamentos de Arquitetura de Computadores. 4ª ed. Porto Alegre: Bookman, 2012.
- 5. PARHAMI, B. Arquitetura de Computadores: de Microcomputadores a Supercomputadores. São Paulo: McGraw-Hill, 2008.

OBJETIVO GERAL

Apresentar decisões de projeto de organização de computadores que seguem a arquitetura Von Neumann, de

modo a dar visão plena do seu funcionamento, e potencializando os produtos gerados pelos desenvolvedores de software, por conta do conhecimento da estrutura do ambiente que executa os sistemas de informação.

OBJETIVOS ESPECÍFICOS

- 1. Fornecer uma visão geral sobre o que é e como funciona um computador.
- 2. Apresentar ao aluno os conceitos da arquitetura de um computador clássico, mostrando seus fundamentos e os princípios de funcionamento.
- 3. Enfatizar o conceito de hierarquia da memória com suas diferentes funções e medidas de desempenho.
- 4. Elucidar a função principal de um processador: a execução de programas.
- 5. Conhecer os principais mecanismos para a realização de operações de entrada e saída bem como os principais dispositivos envolvidos.

METODOLOGIA

- Aulas expositivas, eventualmente contando com recursos audiovisuais.
- Resolução de exercícios de fixação e propostos.

CRITÉRIO DE AVALIAÇÃO

A avaliação semestral envolve duas provas escritas (P1 e P2). As datas das provas são agendadas entre o professor e a turma. A média parcial (MP) será calculada pelo cômputo da média aritmética simples entre a nota P1 e P2:

$$MP = (P1 + P2) / 2$$

O aluno que faltar a uma das duas provas terá direito a uma avaliação alternativa, denominada segunda chamada, versando sobre todos os tópicos abordados no curso, e cuja data também é agendada entre docente e discentes. A nota obtida nessa 2ª chamada substituirá a da avaliação P1 ou P2 onde o aluno não esteve presente. Caso ele falte às duas avaliações, terá atribuído o grau ZERO em uma delas.

Segundo o regimento do CEFET-RJ, caso o aluno obtenha média parcial inferior a 3,0 (três e zero) estará reprovado diretamente. Graus MP maiores ou iguais a 7,0 (sete e zero) aprovam diretamente o aluno. Em situações onde o aluno tenha grau MP entre 3,0 inclusive e 7,0 exclusive, terá direito a uma prova final (PF), que, juntamente com a média parcial gerará uma nova média, denominada média final (MF). Essa média é calculada da seguinte forma:

$$MF = (MP + PF) / 2$$

Para ser aprovado, o aluno deve alcançar uma MF maior ou igual a 5,0 (cinco e zero). Caso contrário, estará reprovado, devendo repetir a componente curricular.

CHEFE DO DEPARTAMENTO		
ASSINATURA		

ASSINATURA

PROGRAMA

- 1. Introdução aos conceitos básicos de arquiteturas de computadores (1 aula)
 - 1.1. Conceito de dado, informação, conhecimento, processamento de dados/informações e algoritmos
 - 1.2. Unidades elementares de representação de dados em sistemas computacionais: bit, byte e seus múltiplos.
 - 1.3. Conceitos de hardware, software e firmware.
 - 1.4. A arquitetura Von Neumann
- 2. Sistemas de Representação e Manipulação de Dados (4 aulas)
 - 2.1. Dados numéricos
 - 2.1.1. Conceito de base de numeração, conversão entre bases.
 - 2.1.2. Aritmética em diferentes bases de numeração.
 - 2.1.3. Representação de dados numéricos
 - 2.1.3.1. Sinal e Magnitude
 - 2.1.3.2. Complemento à Base
 - 2.1.3.3. Representação em Ponto Flutuante
 - 2.2. Representação de caracteres
 - 2.2.1. Tabela ASCII
 - 2.2.2. Unicode
- 3. Memórias (5 aulas)
 - 3.1. Tipos e hierarquias de memória.
 - 3.1.1. Memórias de leitura-somente (ROM Read-Only Memory).
 - 3.2. Memória principal: organização.
 - 3.3. Alocação de dados
 - 3.3.1. Alocação de variáveis e ponteiros em memória principal.
 - 3.3.2. Endianness
 - 3.4. Memórias cache: princípios, elementos de projeto.
 - 3.4.1. Tamanho, políticas de escrita, algoritmos de substituição de quadros, mapeamento de blocos da MP em linhas da cache
- 4. Unidade Central de Processamento (UCP) (3 aulas)
 - 4.1. Barramentos de interligação entre memória principal e processador.
 - 4.2. Componentes básicos de um processador.
 - 4.3. Organização Funcional do Processador
 - 4.3.1. Função de Processamento
 - 4.3.2. Função de Controle.
- 5. Conjunto de Instruções (3 aulas)

- 5.1. Formato de uma Instrução de máquina
- 5.2. Quantidade de Operandos
- 5.3. Modos de Endereçamento
- 5.4. Linguagem Assembly
- 5.5. O ciclo da instrução na UCP.
- 6. Entrada e Saída (2 aulas)
 - 6.1. Interfaces de entrada e saída.
 - 6.2. Tipos de entrada e saída.
 - 6.3. Métodos de entrada e saída.
 - 6.4. Dispositivos de entrada e saída.