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computer vision

https://www.youtube.com/watch?v=eQLcDmfmGBO



humans vs computers

http://benedicterossi.com/



Marvin Minsky

* pioneer: Perceptrons, Logo turtle, Head-
mounted display ...
WHEN A USER TAKES A PHOTO
THE APP SHOULD CHECK WHETHER

* 1969: Turing Award TFEYRE IN A NATIONAL PPR...
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INCS, IT CAN BE HARD To EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.




Larry Roberts

* 1963 - PhD Thesis: Machine Perception of
Three-Dimensional Solids

MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS
by
LAWRENCE GILMAN ROBERTS

5.B., Massachusetts Institute of Technology
{1961)

M.S5., Massachusetts Institute of Technology

(1961)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1963




David Marr

e 1982 - David Marr - Vision: A Computational
Investigation into the Human Representation
and Processing of Visual Information
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computer vision

Classification Instance
+ Localization

Classification Object Detection

CAT, DOG, DUCK CAT, DOG, DUCK
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photo pop-up

http://dhoiem.cs.illinois.edu/projects/popup/



projective geometry
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3D reconstruction

http://www.3dflow.net/
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OPEN 8 ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Why is Real-World Visual Object Recognition

Hard?

1,2@

Nicolas Pinto , David D. Cox1’2'3®, James J. DiCarlo™%"

1 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 The Rowland Instit
States of America

Progress in understanding the brain mechanisms underlying vision requires the cons
that not only emulate the brain’s anatomy and physiology, but ultimately match it
recent years, “natural” images have become popular in the study of vision and ha
impressive progress in building such models. Here, we challenge the use of uncontr
that progress. In particular, we show that a simple V1-like model—a neuroscieni
perform poorly at real-world visual object recognition tasks—outperforms state-of-t
(biologically inspired and otherwise) on a standard, ostensibly natural image recog
designed a “simpler” recognition test to better span the real-world variation in objec
show that this test correctly exposes the inadequacy of the V1-like model. Taken to
that tests based on uncontrolled natural images can be seriously misleading, potenti
direction. Instead, we reexamine what it means for images to be natural and argue
problem of object recognition—real-world image variation.

A Two-category discrimination problem
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deep learning

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abs

ILSVRC top-5 error on ImageNet

We trained a large, deep convolutional
high-resolution images in the ImageNe
ferent classes. On the test data, we achi
and 17.0% which is considerably bette
neural network, which has 60 million g 22 5
of five convolutional layers, some of w
and three fully-connected layers with a
ing faster, we used non-saturating neur
tation of the convolution operation. To 15
layers we employed a recently-develope
that proved to be very effective. We al
ILSVRC-2012 competition and achieve( 7 g
compared to 26.2% achieved by the sec
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DenseCap: Fully Convolutional Localization Networks for Dense Captioning

Justin Johnson*

Andrej Karpathy*

Li Fei-Fei

Department of Computer Science, Stanford University

{jcjohns, karpathy, feifeili}@ecs.stanford.edu

Abstract

We introduce the dense captioning task, which requires a
computer vision system to both localize and describe salient
regions in images in natural language. The dense caption-
ing task generalizes object detection when the descriptions
consist of a single word, and Image Captioning when one
predicted region covers the full image. To address the local-
ization and description task jointly we propose a Fully Con-
volutional Localization Network (FCLN) architecture that
processes an image with a single, efficient forward pass, re-
quires no external regions proposals, and can be trained
end-to-end with a single round of optimization. The archi-
tecture is composed of a Convolutional Network, a novel

Whole Image Image Regions label density

B

Classification Detection

Single

Label Cat

Captioning

F)range spotted cat|

Skateboard with
red wheels

Cat riding a
skateboard

Brown hardwood
flooring

Figure 1. We address the Dense Captioning task (bottom right)
with a model that jointly generates both dense and rich annotations
in a single forward pass.
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DenseCap: Fully Convolutional Localization Networks for Dense Captioning

Justin Johnson* Andrej Karpathy* Li Fei-Fei
Department of Computer Science, Stanford University
{jcjohns, karpathy, feifeili}@ecs.stanford.edu

Abstract Whole Image Image Regions label density

Classification Detection

We introduce the dense captioning task, which requires a Single
computer vision system to both localize and describe salient Label
regions in images in natural language. The dense caption-
ing task generalizes object detection when the descriptions
consist of a single word, and Image Captioning when one
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ACM Prize in Computing

What Makes Paris Look like Paris?

Car Doersch®  Saurabh Singh!  Abhinav Gupta®  Josef Sivic®  Alexei A. Efrost?
'Carnegie Mellon University 2INRIA / Ecole Normale Supéricure, Paris

Figure 1: These wo photos might seem nondescript, but each contains hints about which city it might belong to. Given a large image
dateabise of a given city, our algovithm is able to awtomatically discover the geographicallyv-informative elements (patch clisters to the right
af each photo) that belp in capturing its “look and feel”. On the left. the emblematic street sign. a balustrade window, and the baleony
support are all very indicative of Paris, while on the right, the neoclassical columned entryway sporting a balcony, a Victorian window, and,
af course, the cast iron mailing are very much features of London.

Abstract 1 Introduction

Consider the two photographs in Figure 1. both downloaded from
Google Street \."Le'w One comes from Paris, the other one from

i

ements at dlffel'etlt gen- %p.nul maleq .md geag,t.nphw.ﬂl\r informed windows with railings. the panticular style of balconies, the dis-
image retrieval. tinctive doorways, the traditional blue.n'gxeen.n’\\']me street signs. etc.

were particularly helpful. Finding those features can be difficult

leeu a large repository of genmgg,ed lm.jgenr we wek 0 auto-




Computer Graphics Procasdings, Annual Corfarance Series, 2007

Scene Completion Using Millions of Photographs

James Hays

Alexei A. Efros

Carnegie Mellon University

Original Image Input

Abstract

What can you de with a million images? In this paper we present a
new image completion algorithm powered by a huge database of
photographs gathered from the Web., The algorithm patches up
holes in images by finding similar image regions in the database
that are not only seamless but also semantically valid. Our chief
insight is that while the space of images is effectively infinite, the
space of semantically differentiable scenes is actually not that large.
For many image completion tasks we are able to find similar scenes
which contain image fragments that will convincingly complete the
image. Our algorithm is entively data-driven, reguiring no anne-
tations o labelling by the user. Unlike existing image completion
methods, our algorithm can generate a diverse set of results for each
input image and we allow users to select among them. We demon-
strate the superiority of our algorithm over existing image comple-
tion approaches.

Kevwords: Imase Completion. Imace Database. Imase Com-

Output

Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Scene Matches

There are two fundamentally different strategies for image com-
pletion.  The first aims to reconstruct, as sccurately as possible,
the data that should have been there, but somehow got occluded
or corrupted. Methods attempting an accurate reconstruction have
o use some other sowce of data in addition o the input image,
such as video (using various background stabilization techniques,
e.g. [Irani et al. 1995]) or nultiple photographs of the same physi-
cal scene [Agarwalaet al. 2004, Snavely et al. 2006).

The alternative is totry finding a plausible way to fill in the miss-
ing pixels, hallucinating data that couwdd have been there. This is a
much less easily quantifiable endeavor, relying instead on the stud-
ies of human visual perception. The most successful existing meth-
ods [Criminisi et al. 2003; Drori et al. 2003; Wexler et al. 2004,
Wilczkowiak et al. 2005, Komodakis 2006| operate by extending
adjacent textures and contours into the unknown region. This idea
is derived from example- based texture synthesis |Efros and Leung
1999 Eftos and Freeman 2001 Kwatra et al. 2003: Kwatra et al.
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Computer Graphics Procasdings, Annual Corfarance Series, 2007

Scene Completion Using Millions of Photographs

Jumes Hays Alexei A. Efros
Carnegie Mellon University

pletion.  The first aims to reconstruct, as sccurately as possible,
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Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros} @eecs.berkeley.edu

University of California, Berkeley

Abstract. Given a grayscale photograph as inpttijs paper attacks

the problem of hallucinating a plausible color version of the photograph.
This problem is clearly underconstrained,previous approaches have
either relied on significant user interaction or resulted in desaturated col-
orizations. We propose a fully automatic approach that produces vibrant
and realistic colorizations. We embrace the underlying uncertainty of the
problem by posing it as a classification task and use class-rebalancing at
training time to increase the diversityaflors in the resultThe sys-

tem is implemented as a feed-forward pass in a CNN at test time and is
trained on over a million color images. We evaluate our algorithm using a
“colorization Turing test,” asking human participants to choose between
a generated and ground truth color image. Our method successfully fools
humans on 32% of the trials, significantly higher than previous methods.
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Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
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Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros} @eecs.berkeley.edu
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deep dreams




deep dreams




real deep dreams?

https://www.ted.com/talks/oliver _sacks what_hallucination_reveals about our minds



human vs machine




human vs machine
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learning to see

https://www.ted.com/talks/pawan_sinha_on_how brains_learn _to see



learning to see

https://www.ted.com/talks/pawan_sinha_on_how brains_learn _to see
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Blue Brain Project

BLUE BRAIN PROJECT

WORLD'S FIRST VIRTUAL BRAIN

https://www.ted.com/talks/henry _markram_supercomputing_the_brain_s_secrets
https://www.youtube.com/watch?time_continue=2&v=2qTuZIMvFgY
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The Big and the Small: Challenges of
Imaging the Brain’s Circuits

Jeff W. Lichtman™* and Winfried Denk®*

The relation between the structure of the nervous system and its function is more poorly
understood than the relation between structure and function in any other organ system. We explore
why bridging the structure-function divide is uniquely difficult in the brain. These difficulties
also explain the thrust behind the enormous amount of innovation centered on microscopy in
neuroscience. We highlight some recent progress and the challenges that remain.

between the structure and fimction of

things. By stucture, we mean the phys-
ical form of something, a property that hu-
mans can apprehend by touch (if the object is
big enough) or by sight. Right now, the leading
edge of this effort is the field kmown by the gen-
eral name “structural biology™ but is focused

3 central theme of biology is the relation

tem, where much progress has been made at
the molecular and fimetional level. But notwith-
standing the extraordinary msights of neuro-
biology's foremost structural biologist, Cajal,
our understanding of the relation between the
structure and function of the brain remains prim-
itive, especially when compared to other organ
systems. There is no other organ system where so

research to determine the fill extent of cell-type
diversity in this small part of the nervous system,
because the range of cell types continues to grow
as the analysis becomes more refined. Moreover,
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https://www.ted.com/talks/jeremy_howard

_the_wonderful _and_terrifying_implication _ _
s_of_computers_that_can_learn http://www.fast.ai/

Google's Neural Machine Translation

...reduced translation errors by an average
of 60% when compared to the prior Google
Translate technology

Learning Deep Learning
fast.ai course

Teemu Kurppa - www.teemukurppa.net
Head of Cloud , OURA - ouraring.com
Twitter - @teernu



Moshe Vardi

The most commeon job in every state, 2014

0428

CTE +0.2
y Plan +3.6m
Truck Driver Farmer Truck Driver
- Truck Driver
Truck Driver, ), Truck Driver \
Truck Driver ret
Farmer Truck Driver Primary School Teach
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Nick Bostrom

Machine intelligence is the last
invention that humanity will ever
need to make.

— Wick Bostrom —

AZ QUOTES

https://www.ted.com/talks/nick_bostrom_what_happens_when_our _computers_get smarter than _we_are



See eye to eye!

Ricardo Marroquim

www.lcg.ufrj.br/marroquim
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