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how do we see?



  

how computers see?



  

computer vision



  

computer vision



  

computer vision



  

computer vision

https://www.youtube.com/watch?v=eQLcDmfmGB0



  

humans vs computers

http://benedicterossi.com/



  

Marvin Minsky

● pioneer: Perceptrons, Logo turtle, Head-
mounted display …

● 1969: Turing Award



  

Larry Roberts

● 1963 - PhD Thesis: Machine Perception of 
Three-Dimensional Solids



  

David Marr

● 1982 - David Marr - Vision: A Computational 
Investigation into the Human Representation 
and Processing of Visual Information



  

computer vision



  

projective geometry



  

photo pop-up

http://dhoiem.cs.illinois.edu/projects/popup/



  

projective geometry



  

3D reconstruction

http://www.3dflow.net/



  

understanding



  

understanding



  

understanding



  

Fei Fei Li

https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_picture
s



  

deep learning



  

deep learning



  

deep learning



  

deep learning



  

ACM Prize in Computing



  



  



  

Colorful Image Colorization

Richard Zhang, Phillip Isola, Alexei A. Efros
{rich.zhang,isola,efros}@eecs.berkeley.edu

University of California, Berkeley

Abstract. Given a grayscale photograph as input,this paper attacks
the problem of hallucinating a plausible color version of the photograph.
This problem is clearly underconstrained,so previous approaches have
either relied on significant user interaction or resulted in desaturated col-
orizations. We propose a fully automatic approach that produces vibrant
and realistic colorizations. We embrace the underlying uncertainty of the
problem by posing it as a classification task and use class-rebalancing at
training time to increase the diversity ofcolors in the result.The sys-
tem is implemented as a feed-forward pass in a CNN at test time and is
trained on over a million color images. We evaluate our algorithm using a
“colorization Turing test,” asking human participants to choose between
a generated and ground truth color image. Our method successfully fools
humans on 32% of the trials, significantly higher than previous methods.
Moreover, we show that colorization can be a powerful pretext task for
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deep learning

Alchemy or Chemistry?



  

deepvis



  

deepvis



  

deepvis
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deep dreams



  

deep dreams



  

real deep dreams?

https://www.ted.com/talks/oliver_sacks_what_hallucination_reveals_about_our_minds



  

human vs machine



  

human vs machine



  

human vs machine



  

human vs machine



  

learning to see

https://www.ted.com/talks/pawan_sinha_on_how_brains_learn_to_see



  

learning to see

https://www.ted.com/talks/pawan_sinha_on_how_brains_learn_to_see



  

learning to see

https://www.ted.com/talks/pawan_sinha_on_how_brains_learn_to_see



  

connectcome



  

Blue Brain Project

https://www.ted.com/talks/henry_markram_supercomputing_the_brain_s_secrets
https://www.youtube.com/watch?time_continue=2&v=2qTuZlMvFgY



  



  

applications

https://www.ted.com/talks/jeremy_howard
_the_wonderful_and_terrifying_implication
s_of_computers_that_can_learn http://www.fast.ai/



  

Moshe Vardi



  

Nick Bostrom

https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computers_get_smarter_than_we_are



  

See eye to eye!

Ricardo Marroquim

www.lcg.ufrj.br/marroquim

Cefet/RJ – V Workshop da Escola de Informática & Computação – 26 outubro 2017



  https://vimeo.com/132700334



  

http://www.orosend.com/keep-your-eyes-healthy-nmw15/
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https://www.studyblue.com/notes/note/n/the-visual-system/deck/6955406

http://www.kdnuggets.com/2016/08/seven-steps-understanding-computer-
vision.html

http://semiengineering.com/seeing-the-future-of-vision/

http://www.rcrwireless.com/20110723/wireless/google-buys-facial-
recognition-firm-despite-privacy-concerns#prettyPhoto

http://cvlab.epfl.ch/research/surv/human-pose-estimation

http://venturebeat.com/2015/11/11/microsoft-launches-project-oxford-
apis-for-face-tracking-emotion-speaker-recognition-spell-checking/
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google-self-driving-car-works
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Self-portraits of the brain: cognitive science, data visualization, and 
communicating brain structure and function

http://www.brainybehavior.com/blog/tag/neuroimagin/

http://gmrv.es/visimp/

http://www.azquotes.com/author/44436-
Nick_Bostrom

https://www.ted.com/talks/nick_bostrom_what_happens_when_our_computer
s_get_smarter_than_we_are
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wins-second-game-go/

https://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifyin
g_implications_of_computers_that_can_learn
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Translation.png

https://www.tensorflow.org/_static/images/tensorflow/logo.png
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