PPCIC scriptLattes

Pedro Henrique Gonzalez Silva

Professor Adjunto na Universidade Federal do Rio de Janeiro, com atuação no Programa de Pós-graduação em Engenharia de Sistemas e Computação (PESC/Coppe). Bolsista de Produtividade em Pesquisa Nível 2 do CNPq e bolsista do programa Jovem Cientista do Estado do Rio de Janeiro - FAPERJ. Líder do grupo de pesquisa Analytics and Operational Research (AOR/CNPq). Formado em Matemática pela Universidade do Estado do Rio de Janeiro (2009). Mestre em Ciências Computacionais pela Universidade do Estado do Rio de Janeiro (2012). Doutor em Computação pela Universidade Federal Fluminense (2015) e em Informatique pela Universidade de Avignon e Pays de Vaucluse em um esquema de cotutela (2015). Conduziu pesquisa de pós-doutorado na Universidade Federal do Rio de Janeiro com foco em Otimização Combinatória (2016). Em 2023 foi escolhido pelo MCTI para representar o Brasil no 8th BRICS Young Scientists Forum. Tem interesse e experiência nas áreas: Otimização Combinatória, Metaheurísticas, Programação Linear e Inteira, Métodos Híbridos, Pesquisa Operacional e Design de Algoritmos. De 2017 a 2023 foi professor EBTT no Centro Federal de Educação Tecnológica do Rio de Janeiro (CEFET/RJ), com atuação no Departamento de Informática (DEPIN), no Programa de Pós-graduação em Ciência da Computação (PPCIC) e no Programa de Pós-graduação em Engenharia de Produção e Sistemas (PPPRO). (Texto informado pelo autor)

  • http://lattes.cnpq.br/5349830056087028 (01/03/2024)
  • Rótulo/Grupo:
  • Bolsa CNPq: Nível 2
  • Período de análise: 2021-2023
  • Endereço: Universidade Federal do Rio de Janeiro, PESC - Programa de Engenharia de Sistemas e Computação. AC Ilha do Fundão Cidade Universitária 21941972 - Rio de Janeiro, RJ - Brasil Telefone: (21) 39388672
  • Grande área: Ciências Exatas e da Terra
  • Área: Matemática
  • Citações: Google Acadêmico

Produção bibliográfica

Produção técnica

Produção artística

Orientações em andamento

Supervisões e orientações concluídas

Projetos de pesquisa

Prêmios e títulos

Participação em eventos

Organização de eventos

Lista de colaborações


Produção bibliográfica

Produção técnica

Produção artística

Orientações em andamento

Supervisões e orientações concluídas

Projetos de pesquisa

  • Total de projetos de pesquisa (3)
    1. 2022-Atual. Estrategias Computacionais para Tomada de Decisao em Cidades Inteligentes e Industrias 4.0
      Descrição: Processo: 307663/2021-3, Programa: PQ 2021, Valor financiado: R$39.600,00. Este projeto tem como objetivo geral (1) realizar investigações teóricas e práticas sobre modelagem matemática e meta-heurísticas aplicadas a problemas envolvendo cidades inteligentes e indústrias 4.0; (2) Desenvolver métodos híbridos para a resolução de instancias reais destes problemas; (3) Capacitar alunos a se interessarem pela temática e oferecer as ferramentas para se posicionarem no mercado trabalhando nesta área; (4) Incentivar uma maior colaboração entre pesquisadores de diversas áreas relacionadas ao projeto dentro do CEFET/RJ, bem como parcerias com grupos de pesquisa em outras instituições, fortalecendo parcerias existentes e desenvolvendo novas parcerias e (5) Fomentar ações de internacionalização, como convênios e intercâmbios, através dos contatos obtidos através de parcerias construídas durante o desenvolvimento desta pesquisa.. Situação: Em andamento; Natureza: Pesquisa. Alunos envolvidos: Graduação: (3) / Mestrado acadêmico: (2) . Integrantes: Pedro Henrique González Silva - Coordenador. Financiador(es): Conselho Nacional de Desenvolvimento Científico e Tecnológico - Auxílio financeiro.
      Membro: Pedro Henrique Gonzalez Silva.
    2. 2022-Atual. Otimizacao de Hiperparametros para Aprendizado Maquina atraves de Metodos Hibridos
      Descrição: Processo: 403817/2021-8, Programa: Universal. A Otimização de hiperparâmetros busca encontrar a melhor configuração que produzirá os modelos de aprendizado de máquina mais precisos. Recentemente, foi demonstrado que os algoritmos genéticos híbridos podem superar significativamente a lacuna das abordagens usuais. Isso tem grandes implicações para o treinamento de modelos, mas as possibilidades de uso de métodos híbridos ainda não foram totalmente exploradas. Na primeira parte deste projeto, um conjunto de algoritmos de otimização que combina algoritmos genéticos de chave aleatória (BRKGA) com algoritmos de otimização de hiperparâmetros de última geração será desenvolvido. Em seguida, os seus desempenhos serão analisados, buscando novas informações sobre quais classes de algoritmo se integram melhor. Na segunda parte deste projeto, será realizado um estudo de como reduzir os requisitos de tempo de uso de tais funções Surrogates. Duas perguntas de pesquisa serão investigadas: (1)Como uma redução no conjunto de dados afeta o desempenho? (2)Como a aplicação de funções substitutas a apenas parte da população afeta o desempenho?. Situação: Em andamento; Natureza: Pesquisa. Integrantes: Pedro Henrique González Silva - Coordenador / Luidi Simonetti - Integrante / Eduardo Bezerra - Integrante / Diogo Silveira Mendonça - Integrante / Israel Mendonça - Integrante / Masayoshi Aritsugi - Integrante. Financiador(es): Conselho Nacional de Desenvolvimento Científico e Tecnológico - Auxílio financeiro.
      Membro: Pedro Henrique Gonzalez Silva.
    3. 2022-Atual. Tomada de Decisao em Cidades Inteligentes e Industrias 4.0 via Otimizacao Combinatoria
      Descrição: Processo: E-26/201.341/2022, Programa: Jovem Cientista do Nosso Estado (JCNE), Valor financiado: R$86.400,00. Problemas de otimização são encontrados em diversos setores da produção industrial, buscando em geral minimizar os custos e maximizar os lucros. No contexto das Cidades Inteligentes e Indústrias 4.0, se torna prioridade a eficiência de serviços prestados ao cidadão e uma logística efetiva de transporte de pessoas/bens de consumo, motivando uma série de propostas acadêmicas para resolução desses problemas. O estudo e resolução exata, em tempo computacional baixo, desses problemas é vital para manter a qualidade de cadeias produtivas, porém isto ainda é um grande desafio. De forma específica, temos diversos problemas de otimização combinatória que têm sido bastante estudados devido ao grande número de aplicações práticas. Dentre as aplicações importantes nesse contexto, pode-se citar a localização de postos de controle e a coleta de dados de redes ad hoc esparsas. Essas aplicações podem ser modeladas, respectivamente, através do Problema Localização de Postos de Controle (PLPC) e do Problema de Roteamento de Mula de Dados em Redes Mistas com Autonomia Limitada (PRMDRMcAL). O PLPC é um problema que visa definir a localização de postos de controles em rodovias, levando em consideração que diversos agentes desejaram evadir tais postos. Já o PRMDRMcAL é um problema que consiste em definir a rota de menor custo para coletar os dados dos sensores em redes ad hoc esparsas, mas que leva em consideração que parte da rede é capaz de se comunicar entre ela e que a coleta é realizada por um veículo com autonomia limitada. Os problemas citados e suas variantes têm natureza altamente combinatória, sendo estes classificados como NP-Difíceis. Tendo em vista isto, são empregadas meta-heurísticas no intuito de encontrar boas soluções rapidamente. Porém, mesmo as meta-heurísticas podem sofrer com limites computacionais ao resolver problemas de grande porte (tipicamente em casos reais de problemas de Cidades Inteligentes e Indústrias 4.0), e a qualidade da solução tende a piorar quando recursos computacionais são escassos. Desta forma, propõem-se o estudo e desenvolvimento de métodos exatos, meta-heurísticas e métodos híbridos que usem técnicas de Mineração de Dados e recursos de computação de alto desempenho, como Graphics Processing Units (GPUs) e demais coprocessadores paralelos, para que assim sejam capazes de lidar com casos reais.. Situação: Em andamento; Natureza: Pesquisa. Alunos envolvidos: Graduação: (3) / Mestrado acadêmico: (2) . Integrantes: Pedro Henrique González Silva - Coordenador. Financiador(es): Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do RJ - Auxílio financeiro.
      Membro: Pedro Henrique Gonzalez Silva.

Prêmios e títulos

  • Total de prêmios e títulos (6)
    1. 8th BRICS Young Scientist Forum Representative, Ministério da Ciência, Tecnologia e Inovação.. 2023.
      Membro: Pedro Henrique González Silva.
    2. Best Paper: Analisando Robustez da Rede de Passes através da Dispersão de Hub e Authority, Football Analytics, Modeling Experience.. 2023.
      Membro: Pedro Henrique González Silva.
    3. Jovem Cientista do Nosso Estado, FAPERJ.. 2022.
      Membro: Pedro Henrique González Silva.
    4. Aprovação da Bolsa de Produtividade em Pesquisa (Nível 2), CNPq.. 2022.
      Membro: Pedro Henrique González Silva.
    5. 4o Lugar - Composição de Fundos de Investimento: uma abordagem combinatória, Semana de Ensino, Pesquisa e Extensão 2020 - CEFET/RJ.. 2021.
      Membro: Pedro Henrique González Silva.
    6. Melhor dissertação de mestrado: Benchmarking Nonstationary Time Series Prediction (Rebecca Salles), SBBD - IV Concurso de Teses e Dissertações em Banco de Dados (CTDBD).. 2021.
      Membro: Pedro Henrique González Silva.

Participação em eventos

  • Total de participação em eventos (4)
    1. Football Analytics, Modeling Experience. Painel: Academia e Indústria em Sports Analytics - Semelhanças, Diferenças e Direções Futuras. 2023. (Congresso).
    2. Simpósio Brasileiro de Pesquisa Operacional. Prêmio de TIC. 2023. (Congresso).
    3. The Latin American Workshop on Information Fusion. 2023. (Congresso).
    4. IEEE Congress on Evolutionary Computation. A Hybrid BRKGA Approach for the Two Stage Capacitated Facility Location Problem. 2021. (Congresso).

Organização de eventos

  • Total de organização de eventos (0)

    Lista de colaborações

    • Colaborações endôgenas (7)
      • Pedro Henrique González Silva ⇔ Eduardo Bezerra da Silva (6.0)
        1. JAPA, LUIS ; SERQUEIRA, MARCELLO ; MENDONÇA, ISRAEL ; ARITSUGI, MASAYOSHI ; BEZERRA, EDUARDO ; GONZÁLEZ., PEDRO HENRIQUE. A Population-based Hybrid Approach for Hyperparameter Optimization of Neural Networks. IEEE Access. v. 11, p. 1-1, issn: 2169-3536, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: A1 (IEEE ACCESS)
        2. MORAIS, I. ; GUIMARAES, V. A. ; BEZERRA, E. ; González, Pedro Henrique. Prescriptive Analytics in Smart Cities: A Combinatorial Approach in Rescue Operations. Em: Sergio Nesmachnow; Luis Hernández Callejo. (Org.). Smart Cities. 1eded. : Springer. 2022.v. 1555, p. 131-145.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
        3. ALVES, C. ; ARITSUGI, M. ; BEZERRA, E. ; MENDONCA, I. ; GONZALEZ, PEDRO HENRIQUE ; GONZALEZ, P. H.. A-HBRKGA: Algoritmo genético híbrido adaptativo para otimização de hiperparâmetros. Em: Simpósio Brasileiro de Pesquisa Operacional, v. 55, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4
        4. PACHECO, C. ; LOBOSCO, D. ; ANDRADE, A. ; GUIMARAES, M. ; SOARES, JORGE ; SOUZA, C. G. ; BEZERRA, EDUARDO ; SILVA, P. H. G. ; OGASAWARA, EDUARDO. Exploring Data Preprocessing and Machine Learning Methods for Forecasting Worldwide Fertilizers Consumption. Em: 2022 International Joint Conference on Neural Networks (IJCNN), 2022.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (2022 International Joint Conference on Neural Networks (IJCNN))
        5. MORAIS, I. ; Munhoz, P. ; Ribeiro, G. M. ; ASSIS, L. S. ; BEZERRA, E. ; González, Pedro Henrique. A GRASP-RVND Metaheuristic for the Data Mule Routing Problem with Limited Autonomy. Em: MIT SCALE Latin America Conference, 2021.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (MIT SCALE Latin America Conference)
        6. MORAIS, I. ; GUIMARAES, V. A. ; BEZERRA, EDUARDO ; GONZÁLEZ, P. H.. Prescriptive Analytics in Rescue Operations: A Combinatorial Optimization approach. Em: Ibero-American Congress of Smart Cities, 2021.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (Ibero-American Congress of Smart Cities)

      • Pedro Henrique González Silva ⇔ Laura Silva de Assis (3.0)
        1. SA, F. P. G. ; PINA, D. ; ASSIS, L. S. ; GONZAGA, S. ; González, Pedro Henrique ; TOSO, R. F. ; BRANDAO, D.. NSGA-2 para Seleção de Atributos na Detecção de Falhas em Turbinas Eólicas. Em: Simpósio Brasileiro de Pesquisa Operacional (SBPO), v. 1, p. 1-12, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4 (Simpósio Brasileiro de Pesquisa Operacional)
        2. LIMA, L. V. ; ASSIS, L. S. ; BRANDAO, D. ; MENDONCA, I. ; González, Pedro Henrique. Estudando Composição de Carteiras de Investimento via Programação Matemática. Em: Simpósio Brasileiro de Pesquisa Operacional (SBPO), v. 1, p. 1-12, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4 (Simpósio Brasileiro de Pesquisa Operacional)
        3. MORAIS, I. ; Munhoz, P. ; Ribeiro, G. M. ; ASSIS, L. S. ; BEZERRA, E. ; González, Pedro Henrique. A GRASP-RVND Metaheuristic for the Data Mule Routing Problem with Limited Autonomy. Em: MIT SCALE Latin America Conference, 2021.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (MIT SCALE Latin America Conference)

      • Pedro Henrique González Silva ⇔ Diego Nunes Brandão (2.0)
        1. SA, F. P. G. ; PINA, D. ; ASSIS, L. S. ; GONZAGA, S. ; González, Pedro Henrique ; TOSO, R. F. ; BRANDAO, D.. NSGA-2 para Seleção de Atributos na Detecção de Falhas em Turbinas Eólicas. Em: Simpósio Brasileiro de Pesquisa Operacional (SBPO), v. 1, p. 1-12, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4 (Simpósio Brasileiro de Pesquisa Operacional)
        2. LIMA, L. V. ; ASSIS, L. S. ; BRANDAO, D. ; MENDONCA, I. ; González, Pedro Henrique. Estudando Composição de Carteiras de Investimento via Programação Matemática. Em: Simpósio Brasileiro de Pesquisa Operacional (SBPO), v. 1, p. 1-12, 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4 (Simpósio Brasileiro de Pesquisa Operacional)

      • Pedro Henrique González Silva ⇔ Glauco Fiorott Amorim (2.0)
        1. HENRIQUE GONZÁLEZ SILVA, PEDRO ; AMORIM, GLAUCO ; S SOUZA, UEVERTON ; MORAIS, IGOR ; Dos Santos, Joel ; A GUIMARÃES, VANESSA ; M RIBEIRO, GLAYDSTON. Designing screen layout in multimedia applications through integer programming and metaheuristic. RAIRO-OPERATIONS RESEARCH. v. 55, p. 3379-3397, issn: 0399-0559, 2021.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (RAIRO-OPERATIONS RESEARCH)
        2. CORTINHAS, D. P. ; SILVA, D. A. ; MENDONCA, I. ; AMORIM, G. F. ; González, P.H.. Otimização combinatória aplicada a composição de equipes esportivas. Em: Simpósio Brasileiro de Pesquisa Operacional, v. 54, 2022.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: B4

      • Pedro Henrique González Silva ⇔ Felipe da Rocha Henriques (1.0)
        1. MONTEIRO JUNIOR, A. A. ; FAULHABER, L. ; HENRIQUES, F. R. ; González, Pedro Henrique. Optimizing the Topology of Wireless Sensor Networks with Multiple Sources and Destinations. Em: The Latin American Workshop on Information Fusion (La Fsion 2023), 2023.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (The Latin American Workshop on Information Fusion (La Fsion 2023))

      • Pedro Henrique González Silva ⇔ Joel André Ferreira dos Santos (1.0)
        1. HENRIQUE GONZÁLEZ SILVA, PEDRO ; AMORIM, GLAUCO ; S SOUZA, UEVERTON ; MORAIS, IGOR ; Dos Santos, Joel ; A GUIMARÃES, VANESSA ; M RIBEIRO, GLAYDSTON. Designing screen layout in multimedia applications through integer programming and metaheuristic. RAIRO-OPERATIONS RESEARCH. v. 55, p. 3379-3397, issn: 0399-0559, 2021.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (RAIRO-OPERATIONS RESEARCH)

      • Pedro Henrique González Silva ⇔ Jorge de Abreu Soares (1.0)
        1. PACHECO, C. ; LOBOSCO, D. ; ANDRADE, A. ; GUIMARAES, M. ; SOARES, JORGE ; SOUZA, C. G. ; BEZERRA, EDUARDO ; SILVA, P. H. G. ; OGASAWARA, EDUARDO. Exploring Data Preprocessing and Machine Learning Methods for Forecasting Worldwide Fertilizers Consumption. Em: 2022 International Joint Conference on Neural Networks (IJCNN), 2022.
          [ citações Google Scholar | citações Microsoft Acadêmico | busca Google ]
          Qualis: Não identificado (2022 International Joint Conference on Neural Networks (IJCNN))




    (*) Relatório criado com produções desde 2021 até 2023
    Data de processamento: 30/09/2024 17:55:19