CSEDU 2018

FUNCHAL, MADEIRA - PORTUGAL

15 - 17 MARCH, 2018

Evaluating the Complementarity of Communication Tools for Learning Platforms

Leonardo Carvalho¹, Laura Assis¹, Leonardo Lima¹, Eduardo Bezerra¹, Gustavo Guedes¹, Artur Ziviani², Fabio Porto², Rafael Barbastefano¹, Eduardo Ogasawara¹

¹CEFET/RJ – Federal Center for Technological Education of Rio de Janeiro ² LNCC – National Laboratory for Scientific Computing

Laboratório Nacionalde **C**omputação **C**ientífica

Agenda

- Introduction
- Related work
- Background
- MGF: Mixed Graph Framework
- Experimental evaluation
- Final remarks

Learning Platforms (LP)

- Many Learning Platforms (LP) (ex.: Moodle)
 - Specialized features: Instant messaging, wikis, social applications
- Communications tools are constantly evolving
 - Emerge new features
 - Comments, private messages, blogging, media file sharing
 - Support for mobile devices
 - Reduce barriers among students and between student-teacher
- Commonly LP tools have their own social features
 - Due to security, pedagogical decisions
 - Features of web 2.0/3.0 similar to Facebook, LinkedIn

Choices for LP

- Choice for a particular LP can be time-consuming and expensive
- Measure the effectiveness of New Communication Tool (NCT)
 - Check if NCT brings benefits to LP
 - How NCT is providing a complementary communication flow with respect to the Current Communication Tool (CCT)

Problem statement / approach

- Problem
 - Measure the complementarity of a NCT when CCT is already established in a LP
- Proposal
 - Mixed Graph Framework (MGF) to evaluate the complementariness of CCT with respect to NCT
 - CCT and NCT are modeled as graphs, respectively G_c and G_n
 - Create a Mixed Graph G_m
 - Measure G_m with respect to G_c

Related work

- Analysis of social networks
 - Widely studied for many years
 - Analyze the structure and dynamics of networks
- In educational environments
 - Research is expanding
 - Usage of social networks in LP
 - Learning and teaching achievements

Related work

- Being social?
 - Data mining on network metrics extracted from information flow modeled as graphs
 - Identification of groups (clusters and cliques)
 - Metrics such as cohesion and average distance used in Network Science to gain insights
- Usage on distance learning education
 - Analysis of communication flow of students to draw conclusions and improve the e-learning courses
- Frameworks for understanding social media
 - User contributions behavior and interrelationship
- Mixed Graph Framework is novel

Background: Graph Representation

- Graph G(V, E)
- Vertices: $i \in V$
- Edges: $(i,j) \in E$
 - Adjacent matrix (A)
- w_{i,j} is the communication flow between i, j
 - Weighed adjacent matrix
- Directed graph $w_{i,j} \neq w_{j,i}$

Background: Graph Centrality Measures

Closeness: how close a member is to the others

•
$$C_c(v) = \frac{1}{\sum_{x \in V \setminus v} d(v, x)}$$

- d(v, x) is the distance between nodes
- Betweenness: summarize if a vertex is between other pair of vertices

•
$$C_b(v) = \sum_{s \neq t \neq v \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

- $\sigma(s,t)$ is the number of minimum paths connecting s, t
- Kleinberg centrality: identify important members
 - Hubs and Authorities
 - Eigenvectors of AA^T and A^TA

Background: Statistical Analysis

- Distribution
 - Parametric (normal distribution)
 - Non-parametric (scale-free with power-law)
- Comparison of samples
 - Distribution
 - Wilcoxon Rank Sum Test
 - Correlation
 - Spearman Rank Correlation Test

MGF: Mixed Graph Framework

Algorithm 1 Main MGF Algorithm

- 1: **function** $MGF(D d_c, D d_n, ef_c, ef_n)$
- 2: $G_c \leftarrow fExtract_c(d_c)$
- 3: $G_n \leftarrow fExtract_n(d_n)$
- 4: $G_m \leftarrow fMix(G_c, G_n)$
- 5: return $fAnalyze(G_c, G_m)$
- 6: end function
- 1: function $fAnalyze(G_c, G_m)$
- 2: $r_1 \leftarrow analyzeClosenessDist(G_c, G_m)$
- 3: $r_2 \leftarrow analyzeClosenessCorr(G_c, G_m)$
- 4: $r_3 \leftarrow analyzeBetweennessCorr(G_c, G_m)$
- 5: $r_4 \leftarrow analyzeEigenTopK(G_c, G_m)$
- 6: return $\{r_1, r_2, r_3, r_4\}$
- 7: end function

MGF: Toy example

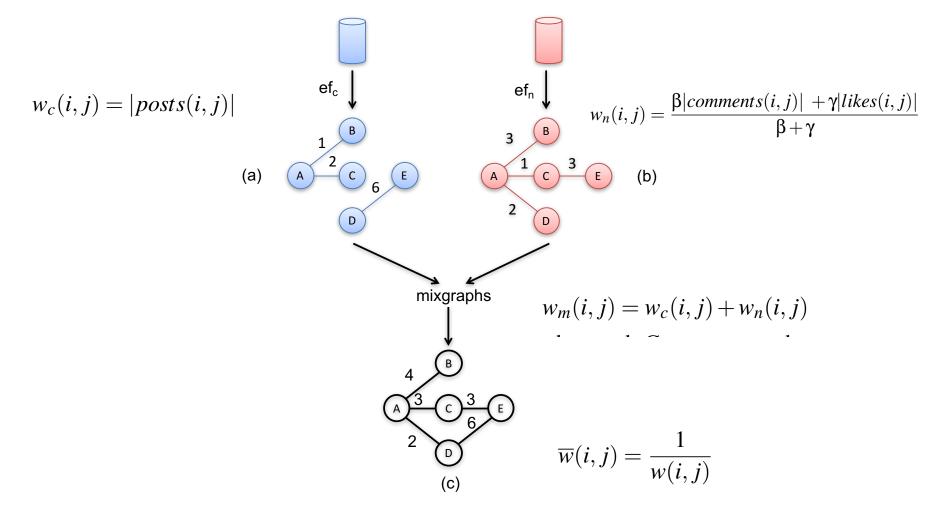


Figure 1: Communication flow: (a) G_c extracted from the CCT dataset; (b) G_n extracted from NCT dataset; (c) G_m produced by mixing G_c with G_n

MGF – Complementarity analysis

Algorithm 3 Analysis of Centrality

- 1: function analyzeClosenessDist(G_c , G_m)
- 2: $vc_c \leftarrow closeness(convertDist(G_c))$
- 3: $vc_m \leftarrow closeness(convertDist(G_m))$
- 4: return $wilcox.test(vc_m, vc_m)$
- 5: end function
- 1: **function** *analyzeClosenessCorr*(G_c , G_m)
- 2: $vc_c \leftarrow closeness(convertDist(G_c))$
- 3: $vc_m \leftarrow closeness(convertDist(G_m))$
- 4: return *spearman.cor.test*(vc_m, vc_m)

5: end function

- 1: **function** *analyzeBetweennessCorr*(G_c , G_m)
- 2: $vb_c \leftarrow betweenness(convertDist(G_c))$
- 3: $vb_m \leftarrow betweenness(convertDist(G_m))$
- 4: return *spearman.cor.test*(vb_c , vb_m)
- 5: end function

- Closeness centrality distribution
 - Intuition is to measure the intensity change of communication when introducing NCT
- Closeness and Betweenness correlation
 - Intuition is to measure if the introduction of NCT changes the way in which people interact concerning CCT
- These sentinels may observe difference signals

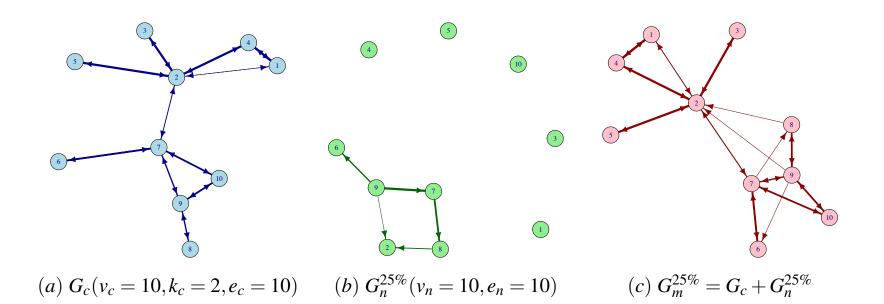
Experimental Evaluation Synthetic data generation

- Gc hierarchical teacher-students communication
 - Organizational structure
 - Teacher-students or Tutors-students
- Gn social network communication among students
 - Does not impose an organization structure

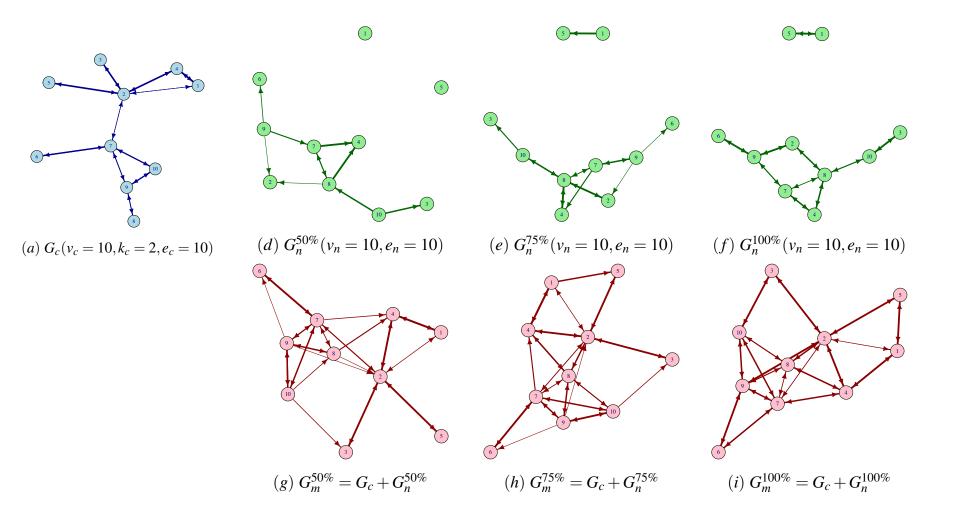
Parameter	Description
$v_c = v_n$	Number of nodes in both graphs, G_c and G_n
k	Number of groups in G_c
e _c	Number of edges (communication flows) in G_c
e_n	Number of edges (communication flows) in G_n

Table 1: Parameters used in the experimental evaluation

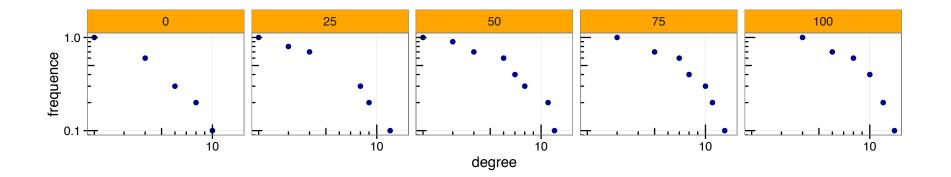
Experimental Evaluation Synthetic data generation

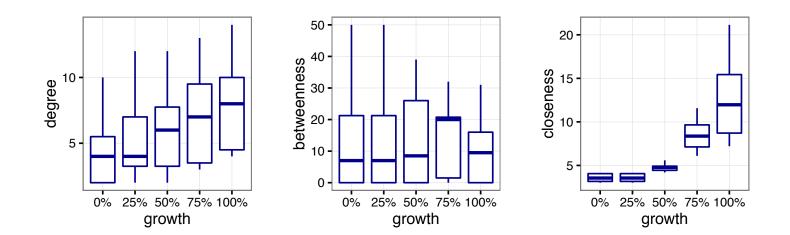

Algorithm 4 Synthetic dataset production		
1:	function SyntheticDatasets (k, v, e, e_n)	
2:	for all $i \leftarrow 1 \ to \ k$ do	
3:	$G_c^i \leftarrow new \ ScaleFreeGraph(v,e)$	
4:	$G_c \leftarrow G_c \cup G_c^i$	
5:	end for	
6:	for $i \leftarrow 1$ to $k_E - 1$ do	
7:	for $j \leftarrow i+1$ to k_E do	
8:	$e_l \leftarrow connect(G_c^i, G_c^j)$	
9:	$E_c \leftarrow E_c \cup e$	
10:	end for	
11:	end for	
12:	$v_c \leftarrow v \cdot k$	
13:	$v_n \leftarrow v_c$	
14:	$G_n \leftarrow new \ ScaleFreeGraph(v_n, e_n)$	
15:	return $(\{G_c, G_n\})$	
16:	end function	

Network growth

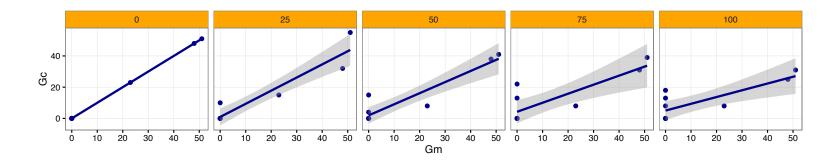

Algorithm 5 Network Growth

1: **function** $NetGrowth(w_c, w_n, r)$ $RS \leftarrow \{\}$ 2: for all $\delta \leftarrow 0$ to 100 step *r* do 3: $w_{n,\delta} \leftarrow Filter(\delta, \frac{\delta}{100} \cdot w_n)$ 4: $w_{m,\delta} \leftarrow fMix(w_c, w_{n,\delta})$ 5: $RS \leftarrow RS \cup fAnalyze(w_c, w_{m,\delta})$ 6: end for 7: plotCharts(RS) 8: 9: end function

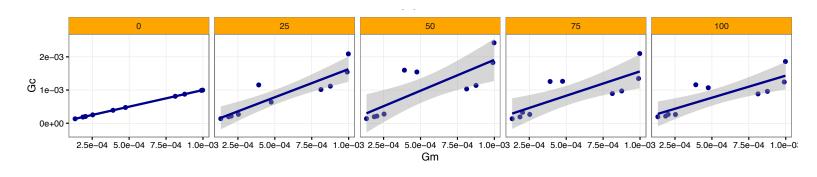

Toy example



Toy example – NCT growth



Analysis of degree, betweenness, closeness



Correlation analysis

Betweenness

Sensitive Analysis

Scenario	Description
SC (G_n scale)	$v_c = 30, k_c = 3, e_c = 60$ $small: e_n = 25$ $medium: e_n = 45$ $large: e_n = 55$
SC (<i>G_c</i> groups)	$v_c = 30, e_c = 60, e_n = 45$ $low: k_c = 2$ $moderated: k_c = 3$ $high: k_c = 5$
MC (<i>G_c</i> groups)	$v_c = 150, e_c = 60$ $low: k_c = 10, e_n = 120$ $moderated: k_c = 15, e_n = 180$ $high: k_c = 25, e_n = 300$

Table 2: LP Scenarios

Sensitive analysis: Small course Varying the number of edges in G_n

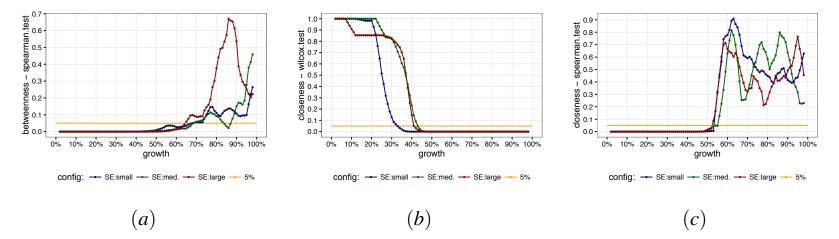


Figure 4: Scenario of Small Course - varying number of edges in G_n : betweenness correlation analysis (a), closeness median analysis (b), closeness correlation analysis (c)

Conclusions

- Proposed MGF to analyze if NCT is complementary to CCT
- Evaluated MGF using synthetic data
- Future work
 - Analyze a real-world scenario
 - Analyze the timely evolution of a CCT
 - Analyze the network increase

CSEDU 2018

10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION

FUNCHAL, MADEIRA - PORTUGAL

15 - 17 MARCH, 2018

Eduardo Ogasawara eogasawara@ieee.org

http://eic.cefet-rj.br/~eogasawara

Acknowledgements

