# multiAgents.py # -------------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html from util import manhattanDistance from game import Directions import random, util import sys from game import Agent class ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. The code below is provided as a guide. You are welcome to change it in any way you see fit, so long as you don't touch our method headers. """ def getAction(self, gameState): """ You do not need to change this method, but you're welcome to. getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {North, South, West, East, Stop} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best "Add more of your code here if you want to" #print 'movement choose: ', legalMoves[chosenIndex] #print '--------------------------------------------' #util.pause() return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState, action): """ Design a better evaluation function here. The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (oldFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. Print out these variables to see what you're getting, then combine them to create a masterful evaluation function. """ #Useful information you can extract from a GameState (pacman.py) successorGameState = currentGameState.generatePacmanSuccessor(action) newPos = successorGameState.getPacmanPosition() oldFood = currentGameState.getFood() newFood = successorGameState.getFood() newFoodList = newFood.asList() ghostPositions = successorGameState.getGhostPositions() newGhostStates = successorGameState.getGhostStates() newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] print 'Successor game state:\n', successorGameState print 'Pacman current position: ', newPos print 'oldFood:\n', oldFood print 'newFood:\n', newFood print 'ghostPositions: ', ghostPositions print 'successorGameState.score: ', successorGameState.getScore() print 'newScaredTimes: ', newScaredTimes minDistanceGhost = float("+inf") for ghostPos in ghostPositions: minDistanceGhost = min(minDistanceGhost, util.manhattanDistance(newPos, ghostPos)) # se a acao levar para perto do ghost, recebe pontuacao minima if minDistanceGhost == 0: return float("-inf") # se a acao conduzir para a vitoria, recebe pontuacao maxima if successorGameState.isWin(): return float("+inf") score = successorGameState.getScore() # incentiva acao que conduz o agente para mais long do fantasma score += 2 * minDistanceGhost minDistanceFood = float("+inf") for foodPos in newFoodList: minDistanceFood = min(minDistanceFood, util.manhattanDistance(foodPos, newPos)) # incentiva acao que conduz o agente para mais perto da comida score -= 2 * minDistanceFood # incentiva acao que leva a uma comida if(successorGameState.getNumFood() < currentGameState.getNumFood()): score += 5 # penaliza as acoes de parada if action == Directions.STOP: score -= 10 return score def scoreEvaluationFunction(currentGameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore() class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'): self.index = 0 # Pacman is always agent index 0 self.evaluationFunction = util.lookup(evalFn, globals()) self.depth = int(depth) class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 2) """ def getAction(self, gameState): """ Returns the minimax action from the current gameState using self.depth and self.evaluationFunction. Here are some method calls that might be useful when implementing minimax. gameState.getLegalActions(agentIndex): Returns a list of legal actions for an agent agentIndex=0 means Pacman, ghosts are >= 1 Directions.STOP: The stop direction, which is always legal gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game """ minimax = self.minimax(gameState, agentIndex=0, depth=self.depth ) #print minimax['value'] return minimax['action'] def minimax(self, gameState, agentIndex=0, depth='2', action=Directions.STOP): agentIndex = agentIndex % gameState.getNumAgents() if agentIndex==0: depth = depth-1 if gameState.isWin() or gameState.isLose() or depth == -1: return {'value':self.evaluationFunction(gameState), 'action':action} else: if agentIndex==0: return self.maxValue(gameState,agentIndex,depth) else: return self.minValue(gameState,agentIndex,depth) def maxValue(self, gameState, agentIndex, depth): util.raiseNotDefined() def minValue(self, gameState, agentIndex, depth): v = {'value': float('inf'), 'action': Directions.STOP} legalMoves = gameState.getLegalActions(agentIndex) for action in legalMoves: if action == Directions.STOP: continue successorGameState = gameState.generateSuccessor(agentIndex, action) successorMinMax = self.minimax(successorGameState, agentIndex+1, depth, action) if v['value'] >= successorMinMax['value']: v['value'] = successorMinMax['value'] v['action'] = action return v class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 3) """ def getAction(self, gameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ minimax = self.minimax(gameState, agentIndex=0, depth=self.depth ) #print minimax['value'] return minimax['action'] def minimax(self, gameState, agentIndex=0, depth='2', action=Directions.STOP, alpha=float('-inf'), beta=float('inf')): util.raiseNotDefined() def maxValue(self, gameState, agentIndex, depth, alpha, beta): util.raiseNotDefined() def minValue(self, gameState, agentIndex, depth, alpha, beta): util.raiseNotDefined() class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def getAction(self, gameState): """ Returns the expectimax action using self.depth and self.evaluationFunction All ghosts should be modeled as choosing uniformly at random from their legal moves. """ expectimax = self.expectimax(gameState, agentIndex=0, depth=self.depth ) #print expectimax['value'] return expectimax['action'] def expectimax(self, gameState, agentIndex=0, depth='2', action=Directions.STOP): util.raiseNotDefined() def maxValue(self, gameState, agentIndex, depth): util.raiseNotDefined() def expValue(self, gameState, agentIndex, depth): v = {'value':0, 'action':Directions.STOP} legalMoves = gameState.getLegalActions(agentIndex) for action in legalMoves: if action == Directions.STOP: continue successorGameState = gameState.generateSuccessor(agentIndex, action) successorExpectiMax = self.expectimax(successorGameState, agentIndex+1, depth, action) p = 1 / float(len(legalMoves)) v['value'] += p * successorExpectiMax['value'] return v def betterEvaluationFunction(currentGameState): """ Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: """ "*** YOUR CODE HERE ***" # priorizar o estado que causa vitoria if currentGameState.isWin(): return float("+inf") # postegar o estado de derrota if currentGameState.isLose(): return float("-inf") # variaveis a serem usadas na calcula da funcao de avaliacao score = scoreEvaluationFunction(currentGameState) newFoodList = currentGameState.getFood().asList() newPos = currentGameState.getPacmanPosition() # variaveis nao usadas AINDA! GhostStates = currentGameState.getGhostStates() scaredTimes = [ghostState.scaredTimer for ghostState in GhostStates] # calcula distancia da comida mais proxima minDistanceFood = float("+inf") for foodPos in newFoodList: minDistanceFood = min(minDistanceFood, util.manhattanDistance(foodPos, newPos)) # incentiva o agente a se aproximar mais de comidas score -= 2 * minDistanceFood # incentiva o agente a comer comidas score -= 4 * len(newFoodList) # incentiva o agente a se mover para proximo das capsulas capsulelocations = currentGameState.getCapsules() score -= 4 * len(capsulelocations) return score # Abbreviation better = betterEvaluationFunction class ContestAgent(MultiAgentSearchAgent): """ Your agent for the mini-contest """ def getAction(self, gameState): """ Returns an action. You can use any method you want and search to any depth you want. Just remember that the mini-contest is timed, so you have to trade off speed and computation. Ghosts don't behave randomly anymore, but they aren't perfect either -- they'll usually just make a beeline straight towards Pacman (or away from him if they're scared!) """ "*** YOUR CODE HERE ***" util.raiseNotDefined()