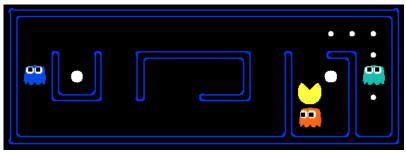
Trabalho 3: Aprendizagem por Reforço

Este trabalho é parte do <u>Pacman Project</u> desenvolvido na UC Berkeley disciplina CS188 – Artificial Intelligence. Tradução realizada pela prof. Bianca Zadrozny, UFF. Adaptação realizada pelo prof. Eduardo Bezerra, CEFET/RJ).



Pac-Man procura a recompensa. Ele deve correr ou deve comer? Na dúvida, deve aprender.

Introdução

Neste trabalho, você irá implementar os algoritmos iteração de valor e q-learning. Os agentes serão testados primeiro no Gridworld (exemplo das aulas), depois num simulador de robô (Crawler) e no Pac-Man.

O código deste projeto contém os seguintes arquivos, que estão disponíveis em um arquivo zip:

Arquivos que serão editados

valueIterationAgents.py	Um agente que executa o algoritmo de iteração de valor para um PDM conhecido.
qlearningAgents.py	Agentes que executam o algoritmo Q- learning para o Gridworld, Crawler e Pac-Man
analysis.py	Um arquivo para colocar as suas

respostas às perguntas abaixo em
relação a parâmetros do algoritmo.

Arquivos que devem ser lidos mas não editados

mdp.py	Define métodos para PDMs gerais.
learningAgents.py	Define as classes base ValueEstimationAgent e QLearningAgent, que os seus agentes devem estender.
util.py	Funções auxiliares que podem ser utilizadas no trabalho, incluindo util.Counter, que é especialmente útil para o q-learning.
gridworld.py	A implementação do Gridworld
featureExtractors.py	Classes para extrair atributos de pares (estado,ação). Usadas para o agente de q-learning aproximado (em qlearningAgents.py).

Arquivos que podem ser ignorados

environment.py	Classe abstrata para ambientes gerais de aprendizagem por reforço. Usada por gridworld.py.
graphicsGridworldDisplay.py	Visualização gráfica do Gridworld.
graphicsUtils.py	Funções auxiliares para visualização gráfica.

textGridworldDisplay.py	Plug-in para a interface de texto do Gridworld.
crawler.py	O código do agente crawler. Será executado, mas não modificado.
graphicsCrawlerDisplay.py	GUI para o robô Crawler.

O que deve ser entregue:

Os arquivos valueIterationAgents.py, qlearningAgents.py, e analysis.py serão modificados no trabalho. Você deve submeter apenas esses arquivos. Por favor, não modifique nenhum outro arquivo. Cada aluno deve entregar esses arquivos e deve entregar também um relatório mostrando o resultado de cada execução. O trabalho é individual.

PDMs

Para começar, execute o Gridworld no modo de controle manual, que usa as teclas de seta:

Você deve ver o exemplo que vimos em sala de aula. O ponto azul é o agente. Note que quando você pressiona a seta pra cima, o agente só se move pra cima 80% das vezes, de acordo com a característica do ambiente.

Vários aspectos da simulação podem ser controlados. Uma lista completa de opções pode ser obtida com:

python gridworld.py -h

O agente default se move aleatoriamente

python gridworld.py -g MazeGrid

Você deve ver o agente aleatório passear pelo grid até encontrar uma saída.

Nota: O PDM do gridworld foi implementado de tal forma que você primeiro deve entrar em um estado pré-terminal (i.e., as caixas duplas mostradas no grid) e depois executar a ação especial 'exit' para que o episódio realmente termine (o agente entra no estado TERMINAL_STATE, que não é mostrado na interface). Se você executar um episódio manualmente, o seu retorno pode ser menor do que o esperado devido à taxa de desconto (-d para mudar; 0.9 por default).

Olhe para a saída na linha de comando python que fica por trás da visualização gráfica (ou use -t para suprimir a visualização gráfica). Você verá o que aconteceu em cada transição do agente (para desligar essa saída, use -q).

Como no Pac-Man, posições são representadas por coordenadas cartesianas (x,y) e os arrays são indexados por [x][y], com 'north' sendo a direção de aumento do y, etc. Por default, na maioria das transições (não-terminais) o agente vai receber recompensa 0, mas isso pode ser mudado com a opção (-x).

Passo 1 (2 pontos) Escreva um agente de iteração de valor em ValueIterationAgent, que está parcialmente especificado no arquivo valueIterationAgents.py. O seu agente de iteração de valor é um planejador offline, não um agente de aprendizado por reforço, então a opção relevante nesse caso é o número de iterações do algoritmo de iteração de valor (opção -i) na fase de planejamento. O agente ValueIterationAgent recebe um PDM e executa o algoritmo de iteração de valor pelo número especificado de iterações no próprio construtor.

O algoritmo de iteração de valor calcula estimativas dos valores de utilidade ótimos considerando k passos, V_k . Além de implementar a iteração de valor, implemente os seguintes métodos para o agente V_k .

- getValue(state) retorna o valor (de utilidade) de um estado.
- getPolicy(state) retorna a melhor ação de acordo com os valores calculados.
- getQValue(state, action) retorna o q-valor do par (state, action).

Essas quantidades são mostradas na GUI: valores/q-valores são os números dentro dos quadrados e políticas são representadas por setas em cada estado.

Importante: Use a versão "batch" da iteração de valor onde cada vetor V_k é calculado a partir de um vetor fixo da iteração anterior V_{k-1} (como na aula), e não a versão "online" onde os valores são atualizados continuamente. Essa diferença é discutida em <u>Sutton & Barto</u> no sexto parágrafo do capítulo 4.1.

Nota: A política obtida dos valores de utilidade da iteração k (que levam em consideração as próximas k recompensas) deve refletir as próximas k+1 recompensas (isto é, você deve retornar Π_{k+1}). Da mesma forma, os q-valores também devem refletir as próximas k+1 recompensas (isto é, você deve retornar Q_{k+1}). Isso acontece naturalmente quando utilizamos as fórmulas adequadas.

Você pode supor que 100 iterações são suficientes para convergência nas perguntas abaixo.

O comando seguinte carrega o seu agente ValueIterationAgent, que irá calcular uma política e executá-la 10 vezes. Aperte qualquer tecla pra ver os valores, q-valores e a simulação. Você deve ver que o valor do estado inicial (V(start)) e a média empírica das recompensas devem ser bem próximos.

```
python gridworld.py -a value -i 100 -k 10
```

Dica: No grid default BookGrid, rodar a iteração de valor por 5 iterações deve dar a seguinte saída:

```
python gridworld.py -a value -i 5
```

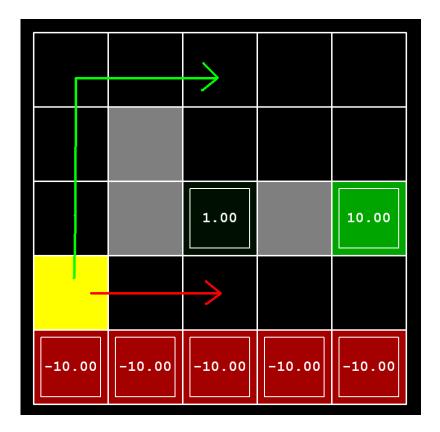

Dica: Use a classe util.Counter em util.py, que é um dicionário com valor default 0. Métodos como o totalCount podem ajudar a simplificar o seu código. Porém, tome cuidado com o argMax: o argmax que você quer pode não ter chave no contador!

Passo 2 (0.5 ponto) No BridgeGrid com o desconto default de 0.9 e o ruído default de 0.2, a política ótima não atravessa a ponte. Modifique somente UM dos parâmetros: ou o desconto ou o ruído de tal forma que a política ótima faça com que o agente tente atravessar a ponte. Coloque sua resposta em question2() do analysis.py. (Ruído é a probabilidade que o agente vá parar no estado "errado" quando ele executa uma ação). Os parâmetros default correspondem a:

python gridworld.py -a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2

Passo 3 (1.5 ponto) Considere o DiscountGrid, mostrado abaixo. Este grid tem dois estados terminais com recompensa positiva (mostrados em verde), uma saída próxima com recompensa +1 e uma saída mais distante com recompensa +10. A linha mais baixa do grid consiste de estados terminais com recompensa negativa (mostrados em vermelho); cada estado nessa região de "precipício" tem recompensa -10. O estado inicial é o quadrado

amarelo. Podemos distinguir entre dois tipos de caminho: (1) caminhos que "arriscam o precipício" e passam perto da linha mais baixa do grid; estes caminhos são mais curtos mas tem risco maior de uma recompensa negativa, e são representados pela seta vermelha na figura abaixo. (2) caminhos que "evitam o precipício" e passam ao longo da parte de cima do grid; estes caminhos são mais longos, mas tem menos risco de levar a grandes recompensas negativas, e são representados por uma seta verde na figura abaixo.



Dê uma atribuição de valores de parâmetros para desconto, ruído e recompensa de viver que produzam os seguintes tipos de política ótima ou diga que a política é impossível, retornando a string 'NOT POSSIBLE'. O default corresponde a:

python gridworld.py -a value -i 100 -g DiscountGrid --discount
0.9 --noise 0.2 --livingReward 0.0

- a. Preferir a saída mais próxima (+1), arriscando cair no precipício (-10)
- b. Preferir a saída mais próxima (+1), evitando o precipício (-10)

- c. Preferir a saída mais distante (+10), arriscando cair no precipício (-10)
- d. Preferir a saída mais distante (+10), evitando o precipício (-10)
- e. Evitar ambas as saídas (também evitando o precipício)

As respostas dos itens 3(a) a 3(e) acima devem ser colocadas em analysis.py nas definições question3a() a question3e().

Nota: Você pode verificar suas políticas na GUI. Por exemplo, no item 3(a), a seta em (0,1) deve apontar para a direita, a seta em (1,1) também deve apontar para a direita, e a seta em (2,1) deve apontar para cima.

Q-learning

O seu agente de iteração de valor não aprende a partir da própria experiência. Em vez disso, ele usa o seu modelo PDM para calcular uma política completa antes de interagir com o ambiente. Quando ele interage com o ambiente, ele simplesmente segue uma política pré-calculada (isto é, ele se torna um agente reativo). Essa diferença pode parecer sutil em um ambiente simulado como o Gridword, mas é importante no mundo real onde nem sempre se conhece o PDM verdadeiro.

Passo 4 (2 pontos) Você agora irá criar um agente q-learning, que aprende a partir de interações com o ambiente por meio do método update (state, action, nextState, reward). Um stub do q-learner foi especificado na classe QLearningAgent em qlearningAgents.py, e você pode selecioná-lo com a opção '-a q'. Nesse passo, você deve implementar os métodos update, getValue, getQValue, e getPolicy.

Nota: Para getValue e getPolicy, você deve resolver empates aleatoriamente para um comportamento melhor. A função random.choice() será útil para isso. Em cada estado, ações que o agente ainda não executou devem ter um Q-

valor de zero, e se todas as ações que o agente já tiver executado tiverem um Q-valor negativo, a ação não executada pode ser ótima.

Importante: Você só deve acessar os Q-valores utilizando o método getQValue nas funções getValue egetPolicy. Isso será útil no passo 9.

Agora você pode ver o agente aprendendo sob controle manual, usando o teclado:

```
python gridworld.py -a q -k 5 -m
```

Lembre que o parâmetro –k controla o número de episódios de aprendizagem.

Passo 5 (1 ponto) Complete o seu agente de q-learning implementando a seleção de ações epsilon-gulosa em getaction, significando que ele escolhe ações aleatórias com probabilidade epsilon, e segue os melhores q-valores com probabilidade 1-epsilon.

```
python gridworld.py -a q -k 100
```

Os q-valores finais devem ser parecidos com os do agente de iteração de valor, especialmente em caminhos por onde o agente passa muitas vezes. Porém, a soma das recompensas será menor do que os q-valores por causa das ações aleatórias e da fase inicial de aprendizagem.

Você pode escolher um elemento aleatoriamente de uma lista chamando a função random.choice. Você pode simular uma variável binária aleatória com probabilidade p de sucesso usando util.flipCoin(p), que retorna True com probabilidade p e False com probabilidade p-p.

Passo 6 (0.5 ponto) Primeiro, treine um agente de q-learning completamente aleatório com a taxa de aprendizagem default no BridgeGrid (sem ruído) por 50 episódios e observe se ele encontra a política ótima.

```
python gridworld.py -a q -k 50 -n 0 -g BridgeGrid -e 1
```

Agora tente o mesmo experimento com o epsilon igual a 0. Existe algum epsilon e taxa de aprendizagem para os quais é altamente provável (chance maior que 99%) que a política ótima será aprendida depois de 50 iterações? Coloque na definição question6() OU os valores de (epsilon, learning rate) para os quais isso acontece OU a string 'NOT POSSIBLE'. O epsilon é controlado pelo parâmetro -e e a taxa de aprendizagem pelo parâmetro -1.

Passo 7 (0.5 ponto) Sem modificar nada, você deve ser capaz de executar o robô Crawler que também aprende com q-learning:

python crawler.py

Se não funcionar, você deve ter feito algo específico para o GridWorld e deve consertar o código para que ele seja genérico pra qualquer PDM.

Q-learning Aproximado e Abstração de Estados

Passo 8 (0.5 ponto) Hora de jogar Pac-Man! O Pac-Man vai jogar jogos em duas fases. Na primeira fase, de treinamento, o Pac-Man vai começar a aprender os valores dos estados e ações. Mesmo para grids pequenos, o Pac-Man demora muito tempo para aprender os q-valores, por isso a fase de treinamento não é mostrada na GUI ou na linha de comando. Quando o treinamento termina, fase de *teste*. Na fase teste, comeca а de parâmetros self.epsilon e self.alpha do Pac-Man serão fixos em 0.0, efetivamente parando o aprendizado (e a exploração), para que o Pac-Man possa aproveitar a política aprendida. Essa fase é mostrada na GUI por default. Sem mudar nada no seu código você deve ser capaz de rodar um agente de q-learning para o Pac-Man em tabuleiros pequenos da seguinte forma:

Note que PacmanQAgent já está definido em termos do QLearningAgent. O PacmanQAgent só é diferente porque ele tem parâmetros mais eficientes para o Pac-Man (epsilon=0.05, alpha=0.2, gamma=0.8). Com esses parâmetros, o seu agente deve ganhar 80% dos últimos 10 episódios.

Dica: Se o seu QLearningAgent funciona para o gridworld.py e para o crawler.py mas não consegue aprender uma boa política para o Pac-Man no smallGrid, pode ser que o seu código dos métodos getAction e/ou getPolicy não consideram em alguns casos ações não executadas de maneira correta.

Nota: Se quiser mudar os parâmetros de aprendizagem, use a opção -a, por exemplo -a epsilon=0.1,alpha=0.3,gamma=0.7. Estes valores aparecerão como self.epsilon, self.discount eself.alpha dentro do agente.

Nota: Embora um total de 2010 jogos sejam jogados, os primeiros 2000 jogos não serão mostrados por causa da opção -x 2000, que designa os 2000 primeiros jogos para treinamento. Logo, você só verá o PacMan jogar os últimos 10 desses jogos, na fase de teste. O número de jogos de treinamento também pode ser passado para o agente com a opção numTraining.

Nota: Se você quiser ver 10 jogos de treinamento, use o comando a seguir:

python pacman.py -p PacmanQAgent -n 10 -l smallGrid -a numTraining=10

Durante o treinamento, você verá uma saída a cada 100 jogos com estatísticas sobre como o Pac-Man está se saindo. O epsilon é positivo no treinamento, então o Pac-Man vai jogar mal mesmo depois de ter aprendido uma boa política: isso porque ele vai ocasionalmente fazer um movimento aleatório em direção a um fantasma. Deve demorar mais ou menos 1.000 jogos até que as recompensas do Pac-Man para um segmento de 100 episódios fiquem positivas, mostrando que ele começou a

ganhar mais do que perder. Até o final do treinamento as recompensas devem continuar positivas e razoavelmente altas (entre 100 e 350).

Você deve entender que: o estado do PDM state é a configuração exata do tabuleiro, com a função de transição descrevendo todas as possíveis mudanças daquele estado, considerando simultaneamente tanto o Pac-Man quanto os fantasmas.

Quando o Pac-Man termina a fase de treinamento, ele deve passar a ganhar na fase de teste pelo menos 90% do tempo, já que ele estará utilizando a política aprendida.

Porém, treinar o mesmo agente no mediumGrid pode não funcionar bem. Na nossa implementação, as recompensas médias do Pac-Man na fase de treinamento ficam sempre negativas. E na fase de teste, ele perde todos os jogos. Isso acontece em tabuleiros maiores porque cada configuração do tabuleiro é um estado separado com qvalores próprios. Ele não tem como fazer a generalização de que encostar em um fantasma é ruim em qualquer posição.

Passo 9 (1.5 ponto) Implemente um agente de q-learning aproximado que aprenda pesos para características do estado, onde os estados compartilham características. Escreva sua implementação na classe ApproximateQAgent em glearningAgents.py, que é uma subclasse de PacmanQAgent.

Nota: O q-learning aproximado supõe a existência de uma função de características f(s,a) que recebe pares estadoação, e retorna um vetor $f_1(s,a)$.. $f_i(s,a)$.. $f_n(s,a)$ de características. Funções de características são dadas em featureExtractors.py. Vetores de características são objetos util.Counter que contém pares não nulos de característica-valor; todas as características omitidas tem valor zero.

A função Q aproximada tem a seguinte forma:

$$Q(s,a) = \sum_i^n f_i(s,a) w_i$$

onde cada w_i está associado com uma característica f_i(s,a). No seu código, você deve implementar o vetor de pesos como um dicionário mapeando características (que as funções extratoras de características retornarão) a pesos. O update dos pesos é feito de forma similar ao update dos q-valores:

$$w_i \leftarrow w_i + \alpha[correction]f_i(s, a)$$

 $correction = (R(s, a) + \gamma V(s')) - Q(s, a)$

Note que o termo de correção é o mesmo que o do Q-learning normal.

Por default, o ApproximateQAgent usa o IdentityExtractor, que atribui uma característica para cada par(estado,ação). Com esse extrator de característica, seu agente de q-learning aproximado deve funcionar de forma idêntica ao PacmanQAgent. Você pode testar isso com o seguinte comando:

python pacman.py -p ApproximateQAgent -x 2000 -n 2010 -1 smallGrid

Importante: ApproximateQAgent é uma subclasse de QLearningAgent, logo ela herda vários métodos como getAction. Os métodos em QLearningAgent devem chamar getQValue ao invés de acessar os q-valores diretamente, pra que os novos valores aproximados sejam utilizados.

Quando o seu agente funcionar corretamente com o IdentityExtractor, rode o seu Q-learning aproximado com outros extratores e veja o Pac-Man ganhar:

python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x
50 -n 60 -l mediumGrid

Até tabuleiros maiores podem ser aprendidos com o ApproximateQAgent (pode demorar alguns minutos para treinar):

Se não houver erros, o seu agente de q-learning aproximado deve ganhar quase o tempo todo com essas características simples, mesmo com só 50 jogos de treinamento.