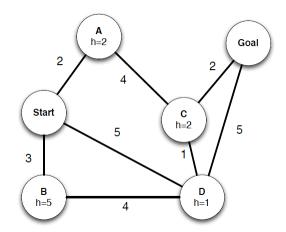
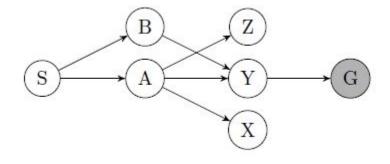
## CEFET/RJ

Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01


**Créditos**: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial  $Intelligence^1$ , da University of Berkeley. Outros são adaptações de exercícios propostos no livro-texto da disciplina,  $AIMA^2$ .

- 1. Suponha que AÇÕES-VÁLIDAS(s) denote o conjunto de ações válidas no estado s, e que RESULTADO(a,s) denote o estado que resulta da execução de uma ação válida a no estado s. Defina SUCESSOR em termos de AÇÕES-VÁLIDAS e RESULTADO, e vice-versa.
- 2. Um espaço de estados finito conduz a uma árvore de busca finita? E no caso de um espaço de estados finito que é uma árvore? Você poderia ser mais preciso em definir que tipos de espaços de estados sempre levam a árvores de busca finitas?
- 3. Forneça o estado inicial, o teste de objetivo, a função sucessor e a função de custo para cada um dos itens a seguir:
  - (a) Você tem de colorir um mapa plano usando apenas quatro cores, de tal modo que não haja duas regiões adjacentes com a mesma cor.
  - (b) Um macaco com um metro de altura está em uma sala em que algumas bananas estão presas no teto, a 2,5 metros de altura. Ele gostaria de alcançar as bananas. A sala contém dois engradados empilháveis, móveis e escaláveis, com um metro de altura cada.
- 4. Considere um espaço de estados onde o estado inicial é o número 1 e a função sucessor para o estado n retorna dois estados, com os números 2n e 2n+1.
  - (a) Desenhe a porção do espaço de estados correspondente aos estados 1 a 15.
  - (b) Suponha que o estado objetivo seja 11. Liste a ordem em que os nós serão visitados no caso da busca em extensão, da busca em profundidade limitada com limite 3 e da busca por aprofundamento iterativo.
- 5. Problema de missionários e canibais: Três missionários e três canibais estão em um lado de um rio, juntamente com um barco que pode conter uma ou duas pessoas. Descubra um meio de fazer todos atravessarem o rio, sem deixar que um grupo de missionários de um lado fique em número menor que o número de canibais.


<sup>1</sup>http://ai.berkeley.edu/home.html

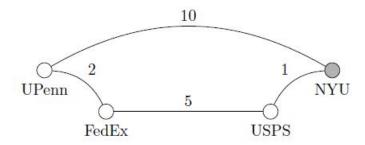
<sup>&</sup>lt;sup>2</sup>http://aima.cs.berkeley.edu/

- (a) Formule o problema precisamente. Trace um diagrama do espaço de estados completo.
- (b) Resolva o problema de forma ótima, utilizando um algoritmo de busca apropriado. É boa ideia verificar a existência de estados repetidos?
- 6. Considere o grafo apresentado na figura abaixo. Considere também que empates (com relação à escolha do vértice selecionado para expandir) são resolvidos usando a ordem lexicográfica aplicada aos rótulos dos vértices. Para cada uma das estratégias de busca a seguir, forneça (1) a ordem dos vértices expandidos e (2) o caminho retornado pela busca em grafo. Lembre-s de que na busca em grafos, um estado é expandido apenas um vez.

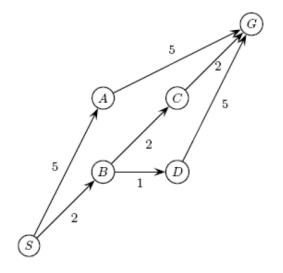


- (a) Busca em Profundidade
- (b) Busca em Largura
- (c) Busca com Custo Uniforme
- (d) Busca  $A^*$  com heurística apresentada na figura
- 7. Forneça as sequências de estados (NÃO a fronteira) consideradas pelos algoritmos DFS e BFS no seguinte grafo dirigido, a partir do estado S, e presumindo ordem alfabética de estados (isto é, quando há uma escolha arbitrária de qual estado expandir, escolha o que ocorre primeiro no alfabeto) e que a busca pára quando o algoritmo atinge a alvo, que é o estado G.




- 8. Por definição, dois algoritmos de busca são *equivalentes* se e somente eles expandem os mesmos nós na mesma ordem e retornam o mesmo caminho. Nos exercícios abaixo, estudamos o que acontece se executamos uma busca de custo uniforme com custos de ação  $d_{ij}$  que são potencialmente diferentes dos custos de ação reais do problema de busca  $c_{ij}$ . Concretamente, estudaremos como isso pode, ou não, resultar na execução do algoritmo *Uniform Cost Search* (com essas novas opções de custos de ação) equivalente a outro algoritmo de busca.
  - (a) Marque todas as opções para os custos  $d_{ij}$  que fazem com que a execução do algoritmo **Uniform Cost Search** com estes custos  $d_{ij}$  seja equivalente à execução do algoritmo **Breadth-First Search**.
    - $\bigcirc d_{ij} = 0$
    - $\bigcirc d_{ij} = \alpha, \, \alpha > 0$  $\bigcirc d_{ij} = \alpha, \, \alpha < 0$
    - $\bigcirc d_{ij} = 1$
    - $\bigcirc d_{ij} = -1$
    - O Nenhuma das alternativas acima
  - (b) Marque todas as opções para os custos  $d_{ij}$  que fazem com que a execução do algoritmo **Uniform Cost Search** com estes custos  $d_{ij}$  seja equivalente à execução do algoritmo **Depth-First Search**.
    - $\bigcirc d_{ij} = 0$
    - $\bigcirc d_{ij} = \alpha, \, \alpha > 0$
    - $\bigcirc d_{ij} = \alpha, \, \alpha < 0$
    - $\bigcirc d_{ij} = 1$
    - $\bigcirc d_{ij} = -1$
    - O Nenhuma das alternativas acima
  - (c) Marque todas as opções para os custos  $d_{ij}$  que fazem com que a execução do algoritmo **Uniform Cost Search** com estes custos  $d_{ij}$  seja equivalente à execução do algoritmo **Uniform Cost Search** com os custos originais  $c_{ij}$ .
    - $\bigcirc d_{ij} = c_{ij}^2$
    - $\bigcirc d_{ij} = 1/c_{ij}$
    - $\bigcirc d_{ij} = \alpha c_{ij}, \qquad \alpha > 0$
    - $\bigcirc d_{ij} = c_{ij} + \alpha, \qquad \alpha > 0$
    - $\bigcirc d_{ij} = \alpha c_{ij} + \beta, \quad \alpha > 0, \, \beta > 0$
    - O Nenhuma das alternativas acima
  - (d) Seja h(n) o valor da função heurística no nó n. Marque todas as opções para custos  $d_{ij}$  que tornam o algoritmo **Uniform Cost Search** com esses custos  $d_{ij}$  equivalente à execução do algoritmo **Greedy Search** com os custos originais  $c_{ij}$  e função heurística h.

$$\bigcirc d_{ij} = h(i) - h(j)$$


(e) Seja h(n) o valor da função heurística no nó n. Marque todas as opções para custos  $d_{ij}$  que tornam o algoritmo **Uniform Cost Search** com esses custos  $d_{ij}$  equivalente à execução do algoritmo **A\* Search** com os custos originais  $c_{ij}$  e função heurística h.

9. Considere as seguintes heurísticas,  $h_1$ ,  $h_2$  e  $h_3$ , que representam estimativas do custo do nó especificado até o nó objetivo, NYU.

|       | UPenn | FedEx | USPS | NYU |
|-------|-------|-------|------|-----|
| $h_1$ | 10    | 1     | 1    | 0   |
| $h_2$ | 5     | 1     | 1    | 0   |
| $h_3$ | 5     | 4     | 1    | 0   |



- (a) Para cada uma das heurísticas, indique se ela é admissível e/ou consistente.
- (b) Quantas vezes  $A^*$  irá expandir o nó FedEx se  $h_2$  é usada como heurística, supondo que  $A^*$  NÃO mantenha registro dos estados visitados?
- 10. (Busca  $A^*$ ) Considere o espaço de busca abaixo, onde S é o estado inicial e G é o único estado que satisfaz o teste de objetivo. Os rótulos nas arestas indicam o custo de percorrê-las. A tabela ao lado apresenta três heurísticas:  $h_0$ ,  $h_1$  e  $h_2$ .
  - (a) Quais são os nós expandidos pela busca A\* usando cada uma das heurísticas  $(h_0, h_1 \in h_2)$ ?



| Node | $h_0$ | $h_1$ | $h_2$ |
|------|-------|-------|-------|
| S    | 0     | 5     | 6     |
| A    | 0     | 3     | 5     |
| B    | 0     | 4     | 2     |
| C    | 0     | 2     | 5     |
| D    | 0     | 5     | 3     |
| G    | 0     | 0     | 0     |

- (b) Qual é a solução (caminho) encontrada por cada uma delas?
- (c) Quais das heurísticas são admissíveis? Justifique sua resposta.