MINISTÉRIO DA EDUCAÇÃO

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA DIRETORIA DE ENSINO (DIREN)

DEPARTAMENTO DE ENSINO SUPERIOR (DEPES) DEPARTAMENTO DE INFORMÁTICA (DEPIN)

CURSO SUPERIOR DE TECNOLOGIA EM SISTEMAS PARA INTERNET (CST-SI)

DEPARTAMENTO
DEPIN - Departamento Acadêmico de Informática

PLANO DE CURSO DA DISCIPLINA

ALGORITMOS EM GRAFOS

CÓDIGO	
GTSI 1300	

PERÍODO	
Opt	

ANO	
2012	

SEMESTRE	
2	

GTSI 1222	

PRÉ-REQUISITOS

CRÉDITOS
4

AULAS/SEMANA		
TEÓRICA	PRÁTICA	ESTÁGIO
4	0	0

TOTAL DE AULAS NO SEMESTRE
72

GTSI 1222
Estruturas de Dados

EMENTA

Análise de algoritmos. Esquemas de Representação para Grafos. Percursos em Grafos. Aplicações de Percursos em Grafos. Ordenação Topológica. Algoritmos Gulosos. Programação Dinâmica. Árvore Geradora Mínima. Caminhos Mínimos. Fluxo Máximo e Emparelhamento Máximo.

BIBLIOGRAFIA

Bibliografia básica

- 1. Cormen, T. H., Clifford, S., Leiserson, C. E., Rivest, R. L., Stein, C., Introdução a algoritmos. MIT Press.
- 2. Dasgupta S., Papadimitriou C., Vazirani U., Algoritmos. Mc Graw Hill.
- 3. Boaventura Netto, P. O. Grafos: teoria, modelos, algoritmos, São Paulo: E. Blucher.

Bibliografia complementar

- 1. Toscani, L. V. e Veloso, P. A. S., Complexidade de Algoritmos, Editora Sagra Luzzatto UFRGS.
- 2. Gersting, J., Fundamentos Matemáticos para a Ciência da Computação, LTC.
- 3. Szwarcfiter, J. L. e Markenzon, L., Estruturas de dados e seus algoritmos, LTC Editora
- 4. Preiss, B. R., Estruturas de dados e algoritmos, Editora Campus.
- 5. BALAKRISHNAN, V. K. Schaum's outline of theory and problems of graph theory. New York: McGraw-Hill, c1997. viii, 293p., ill. (Schaum's outline series). ISBN 0070054894.

OBJETIVO GERAL

Compreender a importância de se desenvolver algoritmos eficientes. Medir o tempo de execução de um algoritmo, Comparar algoritmos, Implementar algoritmos de grafos e Usar a teoria de grafos em aplicações práticas.

METODOLOGIA

- Aulas expositivas, contando com recursos audiovisuais.
- Aulas em laboratório de informática, com o uso de sistemas de apoio a referencia e edição colaborativa de documentos.
- Resolução de exercícios de fixação e propostos.

CRITÉRIO DE AVALIAÇÃO

A avaliação semestral envolve duas provas escritas (P1 e P2). As datas da provas são agendadas entre o professor e a turma. A média parcial (MP) será calculada pelo cômputo da média aritmética simples entre a nota P1 e P2:

$$MP = (P1 + P2) / 2$$

O aluno que faltar a uma das duas provas terá direito a uma avaliação alternativa, denominada segunda chamada, versando sobre todos os tópicos abordados no curso, e cuja data também é agendada entre docente e discentes. A nota obtida nessa 2ª chamada substituirá a da avaliação P1 ou P2 onde o aluno não esteve presente. Caso ele falte às duas avaliações, terá atribuído o grau ZERO em uma delas.

Opcionalmente o docente pode propor testes ou trabalhos práticos em cada uma das avaliações, com vistas à composição das notas P1 e P2.

Segundo o regimento do CEFET-RJ, caso o aluno obtenha média parcial inferior a 3,0 (três e zero) estará reprovado diretamente. Graus MP maiores ou iguais a 7,0 (sete e zero) aprovam diretamente o aluno. Em situações onde o aluno tenha grau MP entre 3,0 inclusive e 7,0 exclusive, terá direito a uma prova final (PF), que, juntamente com a média parcial gerará uma nova média, denominada média final (MF). Essa média é calculada da seguinte forma:

$$MF = (MP + PF) / 2$$

Para ser aprovado, o aluno deve alcançar uma média final MF maior ou igual a 5,0 (cinco e zero). Caso contrário, estará reprovado, devendo repetir a componente curricular.

PROGRAMA

- 1. Análise de Algoritmos
 - 1.1. Introdução
 - 1.2. Noções de Complexidade de Algoritmos
 - 1.3. Um Limite Assintótico Superior Notação O
 - 1.4. Um Limite Assintótico Inferior Notação Ω
 - 1.5. Notação Θ
 - 1.6. Análise Assintótica de Algoritmos
 - 1.7. Algoritmos Ótimos
- 2. Revisão de Teoria dos Grafos
- 3. Esquemas de Representação para Grafos
 - 3.1 Representação Geométrica
 - a. Representação por conjuntos de adjacência
 - b. Representação por matrizes

- c. Armazenamento de um grafo em memória principal
- 4. Percursos em Grafos
 - 4.1 Busca em Profundidade
 - 4.2. Busca em Profundidade em Digrafos
 - 4.3 Busca em Largura
 - 4.4 Busca em Largura em Digrafos
- 5. Aplicações de Percursos em Grafos
 - 5.1 Determinação de caminhos mais curtos
 - 5.2 Reconhecimento de grafos bipartidos
 - 5.3 Determinação de Componentes Biconexas e Articulações de um Grafo
 - 5.4 Reconhecimento de grafos Cordais
- 6. Ordenação Topológica
- 7. Algoritmos Gulosos
 - 7.1 Árvore Geradora Mínima: algoritmos de Prim e Kruskal
 - 7.2 Caminhos Mínimos para Grafos Ponderados: Algoritmo de Dijkstra
- 8. Programação Dinâmica
 - 8.1. Caminhos Mínimos em DAGs
 - 8.2. Caminhos Mínimos entre todos os Pares: Algoritmo de Floyd-Warshall.
- 9. Fluxo máximo
- 10. Emparelhamento Máximo