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Why the study of time series &
spatial-time series is import?

Big	Data,	IoT,		Deep	Learning,	HPC,	and	DISC

Many	phenomena	are	modeled	in	space-time

Anticipate	decision-making	regarding	forthcoming	events
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Knowledge Discovery in Time Series

§ Big Data
§ Data deluge (volume and velocity)
§ Different data models (variability)
§ Science: astronomy, seismic
§ Business/Persons: IoT, flights
§ Government: smart cities, urban mobility

§ Challenges for knowledge discovery
§ Data management

§ Data preprocessing
§ Workflows

§ Data analysis
§ Prediction / classification
§ Pattern identification
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Time series definitions

1 Supplemental Material

Initial Text

Time Series: Let t = <v1, v2, · · · , vn> be a time series, i.e., a sequence

of items, where |t| = n is the number of items in t. A time index j is an integer

value between 1 and n that is related to item vj .
A time interval (or simply interval) i = (is, ie) is defined by a start time

is and an end time ie. The length of an interval i is given by: |i| = ie � is + 1.

Given a interval i, a sequence s = <w1, w2, · · · , wk> is a subsequence of

another sequence t = <v1, v2, · · · , vn>: s = subseq(t, i) i↵ is � 1 ^ ie  n,
|i| = k and 8j 2 [1..k], wj = vis+j�1.

A sliding window is a function sw(t, n) that produces a matrix W of size

(|t|� n+ 1) by n that contains all sub sequences of size n for the time series t.

Each line in W is a subsequence of t of size n.
Given W = sw(t, n), 8wk 2 W,wk = subseq(t, (ik, ik+n�1))

1
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Spatial-time series

1 Supplemental Material

Initial Text

Time Series: Let t = <v1, v2, · · · , vn> be a time series, i.e., a sequence

of items, where |t| = n is the number of items in t. A time index j is an integer

value between 1 and n that is related to item vj .
A time interval (or simply interval) i = (is, ie) is defined by a start time

is and an end time ie. The length of an interval i is given by: |i| = ie � is + 1.

Given a interval i, a sequence s = <w1, w2, · · · , wk> is a subsequence of

another sequence t = <v1, v2, · · · , vn>: s = subseq(t, i) i↵ is � 1 ^ ie  n,
|i| = k and 8j 2 [1..k], wj = vis+j�1.

A sliding window is a function sw(t, n) that produces a matrix W of size

(|t|� n+ 1) by n that contains all sub sequences of size n for the time series t.

Each line in W is a subsequence of t of size n.
Given W = sw(t, n), 8wk 2 W,wk = subseq(t, (ik, ik+n�1))

Let P = {p1, p2, ..., pm} be a set of positions, a spatial-time series d is a

couple (p, t) where p 2 P is a position and t is the associated time series.

A spatial-time series dataset D is a set of spatial-time series {dj}.
Given a d = (p, t), if p varies according to time, d is a trajectory object,

otherwise, d is a permanent object.

1

Trajectory	objects	(sensors) Permanent	objects	(sensors)
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Knowledge discovery in Time Series 
(domain)

§ Big	Data
§ Data deluge (volume and velocity)
§ Different data models (variability)
§ Science:	astronomy,	Seismic
§ Business/Persons:	IoT,	Flights
§ Government:	Smart cities, Urban	mobility

§ Challenges	for	Knowledge	Discovery	
§ Data	management

§ Data	Preprocessing
§ Workflows

§ Data	analysis
§ Prediction	/	Classification
§ Pattern Identification
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(Scientific)
Seismic Analysis Example

Source:	https://krisenergy.com/company/about-oil-and-gas/exploration/
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Seismic Traces Analysis

space

tim
e

Each receiver produces a spatial-time series
related to a specific position of the surface
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(Business/Industrial)
Analysis of Flight Delays

Analysis	of	delays	in	airports	according	to	time
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(Government)
Urban Mobility

Buses	as	trajectory	sensors:	Analysis	of	Trajectory	Data
Buses	stops	as	permanent	object	sensors

(Spatial-time	aggregation	of	buses	data	according	to	buses	stops)
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Knowledge Discovery in Time Series
(data management)

§ Big	Data
§ Data deluge (volume and velocity)
§ Different data models (variability)
§ Science:	astronomy,	Seismic
§ Business/Persons:	IoT,	Flights
§ Government:	Smart cities, Urban	mobility

§ Challenges	for	Knowledge	Discovery	
§ Data	management

§ Data	Preprocessing
§ Workflows

§ Data	analysis
§ Prediction	/	Classification
§ Pattern Identification
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Times Series Properties

§ Many of these real worlds phenomena are:
§ Non-Stationarity and Heteroscedastic
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• Data	preprocessing	techniques:	Normalization,	Binning,	Indexing,	Sliding	windows
• Machine	Learning:	Training,	Quality	of	results
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Non-Stationarity affects

§ Data	preprocessing	
techniques
§ Normalization
§ Binning
§ Indexing
§ Sliding	windows

§ Machine	Learning	
§ Training
§ Quality	of	results
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Non-Stationarity in Data Preprocessing: 
Statistical techniques

§ Common	approaches	
§ Trend	removal
§ Differentiation
§ ARIMA	models
§ Log	transformation
§ Fourier	and	Wavelet	

transforms
§ Main	Problems

§ Many	of	these	techniques	
were	mainly	explored	in	
linear	models	for	time	series	
prediction

§ Choosing	these	techniques	is	
not	easy



15

Review on non-stationary time-series
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Main works that addresses non-stationary time-series
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Non-Stationarity in Data Preprocessing: 
Techniques for Machine Learning

§ Machine learning
§ Common Approaches

§ Incremental learning
§ Pseudo-stationary
assumption

§ Problems
§ Plasticity–stability dilemma
§ When combining the

choice of preprocessing
techniques with machine
learning techniques, the
problem becomes even
more computational and
data intensive
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Normalization problem using sliding window

Monthly	average	exchange	rate	of	U.S.	Dollar	to	Brazilian	Real	
normalized	by	sliding	window	technique	from	aug/2000	to	dec/2000	and	from	apr/2001	to	aug/2001

1.50

1.70

1.90

2.10

2.30

2.50

2.70

08
/2

00
0

09
/2

00
0

10
/2

00
0

11
/2

00
0

12
/2

00
0

01
/2

00
1

02
/2

00
1

03
/2

00
1

04
/2

00
1

05
/2

00
1

06
/2

00
1

07
/2

00
1

08
/2

00
1

sequence for slide window #1

sequence for slide window #2

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

08
/2

00
0

09
/2

00
0

10
/2

00
0

11
/2

00
0

12
/2

00
0

01
/2

00
1

02
/2

00
1

03
/2

00
1

04
/2

00
1

05
/2

00
1

06
/2

00
1

07
/2

00
1

08
/2

00
1

normalized slide
window #1

normalized slide 
window #2



19

Data Indexing

§ Time series contains continuous (non discrete) values
§ Is not possible to find patterns performing an exact
match between items of such sequences

§ SAX indexing was applied to convert continuous values
to a discrete symbolic representation

Binning	would	be	change	a	range	to	a	representative	value
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SAX Transformation

Portion of original seismic dataset SAX converted data

Alphabet [a-z]
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1.	Data	
Selection	and	
Integration

Data	
sources

2.	Preprocessing	
methods

3.	Machine	
Learning	
Methods

4.	Evaluation
knowledge

Samples

Prepared	
Samples

Results

Time Series Data Mining Process
(Workflows)

1. HPC	and	DISC
2. Wf.	Algebra
3. Hyper-parameter	

optimization
4. Provenance
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Knowledge Discovery in Big Data
(domain)

§ Big	Data
§ Data deluge (volume and velocity)
§ Different data models (variability)
§ Science:	astronomy,	Seismic
§ Business/Persons:	IoT,	Flights
§ Government:	Smart cities, Urban	mobility

§ Challenges	for	Knowledge	Discovery	
§ Data	management

§ Data	Preprocessing
§ Workflows

§ Data	analysis
§ Prediction	/	Classification
§ Pattern Identification
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Time series prediction using linear models

Prediction	of	slice	of	CATS	benchmark	dataset
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Prediction of sea surface temperature in 
South Atlantic Ocean

Spatial-time	prediction
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Time series prediction using machine learning

How	to	build	good	ML	models	for	non-stationary	time	series?
Are	conventional	linear	transformations	adequate	for	ML?
How	to	address	Lucas	Theorem?
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Motif in time series

1 Supplemental Material

Initial Text

Time Series: Let t = <v1, v2, · · · , vn> be a time series, i.e., a sequence

of items, where |t| = n is the number of items in t. A time index j is an integer

value between 1 and n that is related to item vj .
A time interval (or simply interval) i = (is, ie) is defined by a start time

is and an end time ie. The length of an interval i is given by: |i| = ie � is + 1.

Given a interval i, a sequence s = <w1, w2, · · · , wk> is a subsequence of

another sequence t = <v1, v2, · · · , vn>: s = subseq(t, i) i↵ is � 1 ^ ie  n,
|i| = k and 8j 2 [1..k], wj = vis+j�1.

A sliding window is a function sw(t, n) that produces a matrix W of size

(|t|� n+ 1) by n that contains all sub sequences of size n for the time series t.

Each line in W is a subsequence of t of size n.
Given W = sw(t, n), 8wk 2 W,wk = subseq(t, (ik, ik+n�1))

Let P = {p1, p2, ..., pm} be a set of positions, a spatial-time series d is a

couple (p, t) where p 2 P is a position and t is the associated time series.

A spatial-time series dataset D is a set of spatial-time series {dj}.
Given a d = (p, t), if p varies according to time, d is a trajectory object,

otherwise, d is a permanent object.

A sequence s = <w1, w2, · · · , wk> is included in time series t = <v1, v2, · · · , vn>
if there exist integers i1 < i2 < · · · < ik such that w1 = vi1 , w2 = vi2 , · · · , wk =

vik .
Given a time series t and sequence q, q is a motif for t with support � i↵ q

is included in t at least � times. Formally, given time series t and q, such that

W = sw(t, |q|) () 9R ✓ W |8wi 2 R,wi = q ^ |R| � �.

1

What	is	a	motif	in	spatial-time	series?
How	to	find	motifs	in	spatial-time	series?
How	to	do	it	in	non-stationarity?
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What is next?
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Research project in Management 
and Analysis of Spatial-Time Series 

§ Non-stationary resilient techniques in data preprocessing
§ Novel algorithms for prediction/classification and pattern

identification
§ Motif identification
§ Tight spatial-time sequence mining

§ Explore spatial-time series applications
§ Frequent pattern mining, Classification/Prediction

§ Explore data management and parallel processing for mining
non-stationary time/spatial-time series
§ Algebraic-based workflows for spatial-time series data mining using

Spark
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Adaptive normalization

§ Transformation
§ transforming the non-stationary time series into a stationary
sliding window

§ Outlier removal
§ Normalization
§ Data Mining:

§ Prediction/Classification
§ Pattern Identification
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Adaptive Normalization
Phase 1: Transformation

i S[i]	 /	
S(5)[i]

S[i+1]	 /	
S(5)[i]

S[i+2]	 /
S(5)[i]

S[i+3]	 /	
S(5)[i]

S[i+4] /	
S(5)[i]

S[i+5]	 /	
S(5)[i]

1 1.008 1.000 0.992 0.993 1.008 1.015
2 0.995 0.987 0.988 1.003 1.010 1.009
3 0.984 0.985 1.000 1.007 1.006 1.014
4 0.980 0.996 1.002 1.001 1.010 1.005
5 0.994 1.000 0.999 1.008 1.003 1.002
6 1.000 0.999 1.007 1.003 1.001 1.009
7 0.995 1.004 0.999 0.998 1.006 1.001
8 1.004 0.999 0.998 1.006 1.000 1.012

Original	time	series	S	
and	its	MA

Transformed	slide	window	R

i US$/R$
S EMA	:		S(5)

1 1.734 1.721
2 1.720 1.729
3 1.707 1.734
4 1.708 1.742
5 1.735 1.745
6 1.746 1.747
7 1.744 1.752
8 1.759 1.752
9 1.751 1.760
10 1.749 -
11 1.763 -
12 1.753 -
13 1.774 -

4.2. Statistical collection for sliding window normalization  

After obtaining A/Ã, and identifying it as a stationary time series, the next step is 
to obtain the statistics for all sliding window using a sample set [25] to calculate a 
unique global mean, variance, minimum and maximum. In adaptive normalization a 
value ai is transformed into ai /ãi. Nevertheless, ãi characterizes the MA for that par-
ticularly slide window that ends at ai. This can be observed in Figure 5. The division 
by a fixed number in each slide window is important to preserve the original format of 
the time series. Also, since this fixed number is obtained considering past data, it 
brings inertia [5] for the time series, which is a characteristic presented in many phe-
nomena [5]. 

 
Figure 5. Adaptive normalization in a sliding window of size 5 

It is possible to calculate a unique statistics that consider all points in each sliding 
window. With this information, it is possible to remove outliers, as presented in the 
next sub-section. 

4.3. Outlier Removal  

Outlier removal of sample data is a key step of the data mining preprocessing 
phase. Outlier removal [26,10,13,11,4] is also important for time series analysis. 
There are several established works on this area, such as using linear models to identi-
fy it [26]; however, two distinct situations should be detailed on this issue. The first 
situation happens when outliers do not affect the boundaries of the distribution of the 
time series, but they make spurious perturbations in the time series. These outliers do 
not affect the quality of the data normalization. The second situation occurs when 
outliers affects the time series distribution of values. Analyzing the time series distri-
bution, these outliers occur in extreme boundaries of the time series, leading to an 
incoherent minimum value or maximum value, which may also affect the global sta-
tistics of the time series. These types of outliers also affect the data normalization 
quality, concentrating values on a specific range.  
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Adaptive Normalization
Phase 2: Outlier removal

§ Method based on Boxplots:
§ values at least 1.5 x IQR below

the first quartile or above the
third quartile are considered
outliers

§ In Adaptive Normalization, any
DSW that contains at least one
outlier is discarded

§ Q1 = 0.996, Q3 = 1.006,
IQR = 0.10

§ Q1 – 1.5 x IQR = 0.981Q3 + 1.5
x IQR = 1.021

§ Discards DSW number 4

i S[i]	 /	
S(5)[i]

S[i+1]	 /	
S(5)[i]

S[i+2]	 /
S(5)[i]

S[i+3]	 /	
S(5)[i]

S[i+4] /	
S(5)[i]

S[i+5]	 /	
S(5)[i]

1 1.008 1.000 0.992 0.993 1.008 1.015
2 0.995 0.987 0.988 1.003 1.010 1.009
3 0.984 0.985 1.000 1.007 1.006 1.014
4 0.980 0.996 1.002 1.001 1.010 1.005
5 0.994 1.000 0.999 1.008 1.003 1.002
6 1.000 0.999 1.007 1.003 1.001 1.009
7 0.995 1.004 0.999 0.998 1.006 1.001
8 1.004 0.999 0.998 1.006 1.000 1.012

To avoid this inconvenience, Box-plot outlier removal can be applied and it is just 
necessary to prune both data lower than the first quartile minus 1.5 interquartile range, 
and also data upper than the third quartile plus 1.5 interquartile range [Q1-1.5IQR, 
Q3+1.5IQR]. If the distribution is similar to a normal distribution, this would mean 
values varying from [μ - 2.698σ, μ + 2.698σ], and would represent a maintenance of 
99.3% of sample data. 

For example, Figure 6 presents the histogram of A/Ã for U.S. Dollar to Brazilian Real 
Exchange Rate obtained from a sample set between jan/1999 until jun/2007. For A/Ã, 
valid values were from 0.908 to 1.079, resulting in outlier pruning with respect to this 
time series as presented in Figure 6. This means that if any sliding window has a num-
ber bellow 0.908 or higher than 1.079, that particularly sliding window is not consi-
dered during the data mining algorithm being trained. 

 

 
Figure 6. Outlier removal for U.S. Dollar to Brazilian Real Exchange Rate  

4.4. Normalization Phase  

  The second phase of adaptive normalization is the application of a traditional min-
max normalization method [10,11] for both stationary time series that were generated 
when applying adaptive normalization. In adaptive normalization, the idea is to ex-
plore all sliding windows that exist in the sample range in order to obtain a global 
statistics (global average, global standard deviation, global minimum and global 
maximum). This global statistics obtained from the sample data is used throughout 
the whole time series analysis.  

It is now possible to return to the example of Figure 3, and compare the tradition-
al sliding window normalization of Figure 4 with the normalization using adaptive 
normalization presented in Figure 7. Figure 7 presents variable A/Ã of U.S. Dollar to 
Brazilian Real Exchange Rate from 08/2000 to 12/2000 and from 04/2001 and 
07/2001 using adaptive normalization, inertia p = 6 and sliding window = 5. The 
problems observed using traditional sliding window methods do not occur when 
using adaptive normalization approach. In the sequence for sliding window number 1 
in Figure 3 there is an upward tendency, with lower volatility than in sequence for 
sliding window number 2 in Figure 3. This still occurs when observing the first nor-
malized window in Figure 7 and in the second normalized window in Figure 7. 
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Adaptive Normalization
Phase 3: Normalization

§ In	the	example:
§ Min-max	normalization	

method	to	normalize	the	
values	of	sequence	in	the	
range	[−1,	1]

§ Min:	0.981	
Max(Min(R),	(Q1	−	1.5	× IQR))	

§ Max:	1.015
Min(Max(R),	(Q3	+	1.5	× IQR))	

i Normalized Sliding Window
1 0,585 0,102 -0,347 -0,313 0,620 1,000
2 -0,187 -0,634 -0,599 0,329 0,707 0,638
3 -0,801 -0,766 0,159 0,536 0,468 0,982
- - - - - - -
5 -0,221 0,154 0,086 0,597 0,324 0,256
6 0,112 0,044 0,554 0,282 0,214 0,690
7 -0,142 0,366 0,095 0,027 0,502 0,163
8 0,355 0,084 0,016 0,491 0,152 0,864

Normalized	sliding	window	in	the	range	[-1,1]
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Time series prediction using machine learning
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Data transformations challenges for machine learning

§ Explore different inertia functions
§ Isaac Newton

§ Explore new differentiation approaches
§ Solve division by zero problem

§ Explore different machine learning algorithms
§ Explore different mining tasks
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Research Project In Management and 
Analysis of Spatial-Time Series 

§ Non-stationary resilient techniques in data
preprocessing

§ Novel algorithms for prediction/classification and
pattern identification
§ Motif identification
§ Tight spatial-time sequence mining

§ Explore spatial-time series applications
§ Frequent pattern mining, Classification/Prediction

§ Explore data management and parallel processing for
mining non-stationary Big Data
§ Algebraic-based spatial-time series data mining workflow using
Spark
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Discover motifs in spatial-time series

Ø Running motif discovery algorithm in single time series:
o In some cases, no motif is found.
o Similar shapes in the neighbors are not identified.

Traditional motif discovery
algorithm applied in spatial-
time series dataset. (i) red
trapeziums and green
triangles are identified
motifs; (ii) blue trapeziums
are not identified and not
linked with red ones; (iii)
blue triangles are not
identified and not linked
with green ones; (iv) purple
shapes are not identified
motifs
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Spatial-Time Motif

1 Supplemental Material

Initial Text

Time Series: Let t = <v1, v2, · · · , vn> be a time series, i.e., a sequence

of items, where |t| = n is the number of items in t. A time index j is an integer

value between 1 and n that is related to item vj .

A time interval (or simply interval) i = (is, ie) is defined by a start time

is and an end time ie. The length of an interval i is given by: |i| = ie � is + 1.

Given a interval i, a sequence s = <w1, w2, · · · , wk> is a subsequence of

another sequence t = <v1, v2, · · · , vn>: s = subseq(t, i) i↵ is � 1 ^ ie  n,

|i| = k and 8j 2 [1..k], wj = vis+j�1.

A sliding window is a function sw(t, n) that produces a matrix W of size

(|t|� n+ 1) by n that contains all sub sequences of size n for the time series t.

Each line in W is a subsequence of t of size n.

Given W = sw(t, n), 8wk 2 W,wk = subseq(t, (ik, ik+n�1))

Let P = {p1, p2, ..., pm} be a set of positions, a spatial-time series d is a

couple (p, t) where p 2 P is a position and t is the associated time series.

A spatial-time series dataset D is a set of spatial-time series {dj}.
Given a d = (p, t), if p varies according to time, d is a trajectory object,

otherwise, d is a permanent object.

A sequence s = <w1, w2, · · · , wk> is included in time series t = <v1, v2, · · · , vn>
if there exist integers i1 < i2 < · · · < ik such that w1 = vi1 , w2 = vi2 , · · · , wk =

vik .

Given a time series t and sequence q, q is a motif for t with support � i↵ q

is included in t at least � times. Formally, given time series t and q, such that

W = sw(t, |q|) () 9R ✓ W |8wi 2 R,wi = q ^ |R| � �.

A spatial range (or simply range) r = (ps, pe) is defined by a start position

ps and an end position pe.

A block b is a couple (r, i) where r is a range (r 2 PR) and i is an interval

(i 2 PI).

Let � and  be two thresholds, such that � � . A sequence q is a spatial-

time motif in a block b ⇢ S i↵ q is included at list � times linear(b) ^
support(q, b.r) > .

1

Combined	time	series
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Combined Series Approach

Combined	Series

Candidates	motifs	found	
in	combined	series
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Identified Motifs in Original Spatial-Time Series
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Spatial-Time Motif Ranking

Motif Word s k Spatial-Time Motif

Motif	1 bccdeedcee 7 5 Yes

Motif	2 cbceeceadc 4 4 No

s: total motif occurrences in block
k: number of series that occurs the identified motif
Restriction Parameters:

s ≥ 5
k ≥ 3

§ Rank identified spatial-time motifs
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Algorithm

3. Combined Series Approach

This section is going to be rewritten according to the afore-
mentioned formalism.

The proposed approach to find tight motifs in spatial-time series
consists in extend the method to find univariate motifs in time series
based on random projection algorithm[5]. The first step is split the area
with spatial-time series into blocks, setting the borders and size of the
blocks based on input threshold sslice that is the number of neighbors
series in the block and tslice that is the size of time window and after
that apply to the entire data. Inside each block we combine all time
series s1.t, s2.t, ..., s

n

.t combining them into a single time series t.
In such time series t, we apply Symbolic Aggregate ApproXimation

(SAX) indexing method to transform a numeric series into indexes de-
fined by letters considering that the data are normally distributed. This
process has as input threshold the size of alphabet alpha and the size of
the string word.

From that indexed series, we apply the random projection algorithm
to identify time series motifs. The algorithm produces a list of time
series motifs and their occurrences in t that are candidates for spatial-
time motif. For each motif we verify if they occur in the same time
window in the original time series s1.t, s2.t, ..., s

n

.t. If positive, this mo-
tif is considered spatial-time motif and is included in a list of potential
tight-motifs. This process is applied to all blocks.

After that, all spatial-time motifs are aggregated to identify tight-
motifs. The result set is returned in an ordered list so that they can be
processed according to its tightness.

1: function STMotif(b, sw,w, a, bs, bt)
2: b

i

 partition(b, bs, bt)
3: for each b

i

2 b do

4: t combine(b
i

)
5: CS T M  identi f y(t)
6: S T M  S T M [ constraintS T (CS T M)
7: end for

8: rankS T M = aggregate(S T M)
9: return rankS T M

10: end function
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Research Project In Management and 
Analysis of Spatial-Time Series 

§ Non-stationary resilient techniques in data
preprocessing

§ Novel algorithms for prediction/classification and
pattern identification
§ Motif identification
§ Tight spatial-time sequence mining

§ Explore spatial-time series applications
§ Frequent pattern mining, Classification/Prediction

§ Explore data management and parallel processing for
mining non-stationary Big Data
§ Algebraic-based spatial-time series data mining workflow using
Spark
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Approach 2: Sequence Mining

§ Sequence pattern mining is used
successfully to obtain insight
from large volume of
transactional databases.

§ Scope of this work is the use of
such technique to discover
sequential patterns on seismic
spatial-time series:
§ indexing technique used

to discretize the input
§ adapted algorithm implemented to

retrieve discovered patterns
positions

§ results are presented
over original seismic trace images
to better evaluate the quality of
results

1) Discretization

2) Sequential pattern
mining

3) Visualization

A	priori	principle

Time	Square
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Pattern Identification in Space-Time Series

(sr3) (sr4)
(sr1) (sr2)

     D
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v2 k l m n p q u s t v
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v4 h o o g e i e i c b
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Spatial-time sequence miner

of solid-ranged sequences, (iii) identification of solid-
blocked sequences. The algorithm starts from candi-
dates ranged sequences of size 1 (detailed in Section 3.2).
They are built from all distinct items presented in D

considering its entire range.
It starts a repeat-until loop that computes all solid-

ranged sequences SR
k

with a frequency greater than or
equal to � (detailed in Section 3.3). Then, candidate
ranged sequences of size k + 1 are computed from solid
ranges SR

k

. Once we get empty candidates ranged
sequences of size k + 1, the loop stops.

Finally, all solid-blocked sequences SB
k

with item-
frequency greater than or equal to � are computed
(detailed in Section 3.4) from identified solid-ranged
sequences.

Algorithm 1 Spatio-Temporal Sequence Miner

1: function STSM(D, �, �)
2: C

1

 generateCandidates(D,nil)
3: k  0
4: repeat

5: k  k + 1
6: SR

k

 solidRangedSequences(D,C

k

, �)
7: C

k+1

 generateCandidates(D,SR

k

)
8: until C

k+1

6= ;
9: for (i 2 {1 · · · k}) do

10: SB

i

 solidBlockedSequences(D,SR

i

, �)
11: end for

12: return {SB
1

, · · · , SB
k

}
13: end function

3.2 Generation of candidates Frequent pattern
mining algorithms aim at providing e�cient algorithms
on larger datasets. The generation of candidates should
accomplish the mission: start with solid-ranged se-
quences of size 1 (SR

1

) and explore the support of larger
solid-ranged sequences with a limited number of scans
over the dataset. To this end, we compute range fre-
quencies for candidate solid-ranged sequences of size k

from computed solid-ranged sequences of size k � 1 in
only one scan. At the end of each scan, solid-ranged
sequences of size k are identified.

STSM introduces a spatial aware counting step for
generated candidates. Let us consider xr(s

x

, r

x

, fr

x

)
to be a ranged sequence that is not a solid-ranged
sequence. Any ranged sequence superset yr =
(s

y

, r

y

, fr

y

), such that s

x

✓ s

y

^ r

x

✓ r

y

cannot
be a solid-ranged sequence (i.e., since fr

x

< � then
fr

y

< �). Thus, the generate candidates follows an
apriori-like principle with an additional filter on the
possible intersection of the candidates (i.e., if two solid-
ranged sequences of size k have a common subsequence,

but their ranges do not intersect, they are not consid-
ered for generating a new candidate).

3.3 Selection of solid-ranged sequences In this
section, we define a range kernel, which is the basis
of solid-ranged sequences described in Algorithm 2. A
range kernel for a sequence s is a range where its
frequency is greater or equal to �. Let K(s, r, �) be
the set of range kernels for the sequence s over a range
r with respect to the minimum threshold �. K(s, r, �)
is defined as follows: Let k ✓ r be a subrange such
that s is included in Tr(k), i.e., sup(s, k) > 0. Let k

s

be the first position in which s is present in r. If k
s

does not exist, then K = ;. If k
s

exists, then let P be
the set of positions such that 8p 2 P, p 2 r ^ p > k

s

^
frequency(s, [k

s

..p]) < � (in other words, P is the set of
positions in r such that extending the range k up to any
of those positions leads to a frequency less than � for s).
If P is empty, then k

e

is defined as the last position in
which s is present in r, and K(x, r, �) = {k}. Otherwise
(i.e. P 6= ;), let q 2 P such that 8p 2 P, p > q (q is the
first position such that frequency of s is lost on [k

s

..q]).
Then, k

e

is defined as the last occurrence of s in [k
s

..q]
and K(s, r, �) = {k} [K(s, r � [k

s

..k

e

], �).
The mechanics of computing range kernels is encap-

sulated by function rangeK of Algorithm 2. Intuitively,
range kernels of a sequence are the longest ranges such
that: (i) The first and last records support the sequence;
(ii) The frequency of the sequence is always greater than
or equal to � when it is counted from the beginning until
the end of the range.

Algorithm 2 solid-ranged Sequences

1: function solidRangedSequences(D, C
k

, �)
2: SR

k

 ;
3: for (c 2 C

k

) do
4: c.sker  rangeK(D, c, �)
5: c.sker  mergeK(c.s, c.sker, mRS, freq, �)
6: for (r 2 c.sker) do
7: SR

k

 SR

k

+ (c.s, r, frequency(c.s, r))
8: end for

9: end for

10: return SR

k

11: end function

After extracting range kernels for all candidate
sequences C

k

, whenever possible, Algorithm 2 merges
them. Algorithm mergeK finds solid-ranged sequences
of s over r with respect to threshold �. Given two range
kernels t and u, Algorithm mergeK tries to merge them
into v using functionmRS(t, u) as long as freq(s, v) � �

is satisfied, which simply combines their ranges: t, u. In
this case, v is included in the sker list, and both t and
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Seismic Analysis

§ 2D Slice of seismic dataset (inline 100)
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Seismic Analysis – Results

§ Motifs Analysis
§ Discovering spatial-time
motifs in seismic
datasets

§ Sequence Mining of
Spatial-Time Series
§ Identification of solid
spatial-time sequences

Murillo	Dutra
master	degree

Riccardo	Campisano
master	degree



48

Research Project In Management and 
Analysis of Spatial-Time Series 

§ Non-stationary resilient techniques in data
preprocessing

§ Novel algorithms for prediction/classification and
pattern identification
§ Motif identification
§ Tight spatial-time sequence mining

§ Explore spatial-time series applications
§ Frequent pattern mining, Classification/Prediction

§ Explore data management and parallel processing for
mining non-stationary Big Data
§ Algebraic-based spatial-time series data mining workflow using
Spark
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Seismic Analysis – Research Opportunities

§ 3D Analysis (x, y, and time)
§ Solid Cube Patterns

§ Techniques for faults detection
§ Intuition that absence of solid patterns drives faults detection

§ Techniques for shape detections
§ Combinations of motifs/solid patterns

§ Comparison between motifs identification and sequence
mining
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Flight Delays

Brazilian	Flights	Dataset
Airports	Meteorological	Dataset
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Flight Delays – Results

§ Data warehouse
§ Brazilian National Flights
§ Meteorological condition

§ Identification of
frequent patterns that
leads to delays

Section 4.1) to produce an indexed dataset (ids) to be used as input for association rules generation through the function
rulesGeneration (described in Section 4.2).

Algorithm 1. Data Mining Process for Flight Delay Association Rules Generation.

1: function FLIGHTDELAYASSOCIATIONRULES DW dw
2: ids dataIndexingðdwÞ
3: return rulesGenerationðidsÞ
4: end function

1: function DATAINDEXING DW dw
2: idsch  conceptHierarchyðpchðdwÞÞ
3: idsb  binningðpbðdwÞÞ
4: idsta  temporalAggregationðptaðdwÞÞ
5: ids idsch ffl idsch ffl idsta
6: return ids
7: end function

Fig. 3. Correlation matrix considering the Pearson coefficient between all the attributes of the Brazilian flight dataset.

288 A. Sternberg et al. / Transportation Research Part E 95 (2016) 282–298

5.3. Is there any difference among Brazilian main airlines in terms of flight delays?

When analyzing the interesting rules with two attributes on their antecedent, the main delay causes for each Brazilian
airline may be found. As seen in Table 6, airlines have different behaviors and thus each ensemble of airline and cause
increases differently the chances of a new delay. Considering this set of rules of size 3, Azul is the only airline that does
not appear associated with a delay cause. Nevertheless, the ensemble Azul and departure at Guarulhos airport (São Paulo)
have 41.5% more chances of producing a new delay, suggesting that this airline may face some difficulties when operating at
this airport. It may be a problem at boarding procedures or with ground handling that should be deeply investigated in order
to improve its performance at Guarulhos (São Paulo).

The conditions presented on Table 6 may have even more chances of producing new delays when associated with other
attributes. For example, for Gol, adding prior levels of delays at the departure airports produces 208% more chances of a new
delay. Similarly, Azul operations at Guarulhos (São Paulo) are also influenced by prior high levels of delay and its flights have
103.5% more chances of being delayed under these conditions.

Brazilian main airlines present important differences when considering flight delays. Two of them seem to be
more affected by adverse meteorological conditions and one by peak demands. On the other hand, there is an airline
that seems to have good performances, without specific causes for its delays.

Fig. 7. Lift analysis of the rules containing the airport and the time of departure on the antecedent and a delay on the consequent – the airports are ordered
from south to north.

Fig. 8. Lift analysis of the rules containing only the year of departure on the antecedent and a delay on the consequent.

294 A. Sternberg et al. / Transportation Research Part E 95 (2016) 282–298

Alice	Sternberg	
master	degree
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Flight Delays – Research Opportunities

§ Airport delays propagation
§ On going

§ Flight delays propagation
§ On going

§ Prediction of flight delays
§ On going*

§ Replication of techniques using American datasets
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Time-Series Prediction

§ Long term prediction of sea surface temperature
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Time-Series Prediction – Results

§ Framework for analysis of prediction performance
compared to linear models

auto.arima include AR, MA, ARMA and ARIMA, besides
random-walk and white noise with drift, i.e., ARIMA(0,1,0)
and ARIMA(0,0,0), respectively.

After training LM models, we used them to predict the
next observations of the modeled time series as required by
each competition. We have measured the prediction errors over
the selected testing sets for each experiment using the error
metrics defined by their respective competitions3.

C. Analysis of the Linear Models Overall Performance

During our experiments, we have trained linear models (PR
and models in the ARIMA family) over 235 different time
series. We studied the performance of such linear models as
benchmark methods and also conducted a relative comparison
between PR and ARIMA models. The diversity of the time
series used makes our analysis less biased and helped us to
come up with overall conclusions about our proposed BM
performance. We can observe from Table III that the overall
performance of the ARIMA models was considerably superior
to PR models. However, PR was better suited for the EUNITE
dataset.

The systematic tuning of ARIMA parameters allowed us to
estimate the time series using a variety of linear models from
ARIMA family. Table I presents the ARIMA models produced
in our experiments, where most selected models were in fact
ARMA and ARIMA.

TABLE I: List of ARIMA models produced by the experiment

Model AR MA ARMA ARIMA Random
Walk

White
Noise Total

Qt. 18 17 142 26 1 35 239
% 8 7 59 11 0 15 100

Besides prediction errors, our experiments provided plots
depicting ARIMA models predictions and their confidence
intervals along with the actual data presented on the testing
sets. These graphics helped us understand our results. An
example is presented in Figure 2, where we can easily notice
the progressive stretch of the confidence interval and loss of
representativeness of the ARMA model predictions. This is
common in multistage prediction, in which errors committed
in the past are propagated into future predictions [37].

The computed NMSE errors yielded from the ARIMA
models for the time series of the Santa Fe Competition can be
observed in Table III. We can see that the ARIMA predictions
were reasonable, given that the used time series were highly
nonlinear. Particularly, we can see that the ARIMA prediction
performance was comparatively better for time series D, which
is 100 times greater than time series A, thus possessing more
data to help training the ARIMA models.

The results for the EUNITE competition are also shown in
Table III. The problem posed by the EUNITE Competition
was specially challenging as the errors of the average daily

3For further description and R code applied to each adopted competition,
please refer to our web page [10].

Fig. 2: ARMA predictions (solid line) for the time series A of
the Santa Fe Competition. The actual time series values are
represented by the dashed line.

temperatures predictions are propagated to the predictions of
the daily maximum electrical loads, which was our main
concern. Nonetheless, according to Table III, PR results were
also reasonable and outperformed the majority of results of
the competitors.

TABLE II: ARIMA models’ MSE prediction errors for each
gap of unknown values of the CATS time series

Gap 1 Gap 2 Gap 3 Gap 4 Gap 5

MSE errors 575.787 531.547 1,978.816 583.143 2,196.485

The prediction errors for ARIMA models computed for the
CATS Competition dataset are presented in Table II, where
MSE errors for each one of its five gaps of unknown values can
be observed. We applied interpolation techniques (forward and
backward ARIMA forecast) to predict the first four gaps. The
prediction errors of these gaps are much inferior when com-
pared to the one of the fifth gap, for whose prediction we could
not have applied the same interpolation techniques. Hence,
we can conclude that the improvement in the performance of
the ARIMA models when using interpolation procedures was
coherent with previous knowledge of multi-stage prediction
approaches [37].

Among the 235 time series used to train ARIMA and PR
models, 222 were obtained from the NN3 and NN5 datasets.
The box plot graphics of the SMAPE prediction errors for the
time series in the NN3 and NN5 datasets, depicted in Figure
3.a and Figure 3.b, respectively, indicate a general consistency
in the performance of the trained ARIMA models (fittest LM)
over these competitions. Furthermore, the analysis of these
graphics indicates that the mean SMAPE prediction errors
computed for these two competitions, observed in their respec-
tive rankings in Table III, are actually quite representative. This
fact reassures the validity and reliability of the comparison of
our BM’s prediction errors to the ones from methods applied
by these two competitions’ participants in their rankings.

There are two main characteristics one seeks on a satisfac-
tory BM. Firstly, it should be capable of providing a minimum
acceptable level of prediction performance and therefore en-

2343

TABLE III: Rankings of the top 25 results of the chosen competition datasets including results from TSPred R-package

Santa Fe EUNITE CATS NN3 NN5

Dataset A Dataset D Dataset A Dataset ARank
index NMSE index NMSE1 Participant MAPE

[%] Participant E1 E2 Participant Mean
SMAPE Participant Mean

SMAPE

1 W 0.02 ZH 0.08 Chih-Jen Lin 1.982 Sarkka* 408 346 Illies* 15.18% Andrawis 20.40%
2 Sa 0.08 TSPred(ARIMA) 0.54 Esp 2.149 Cai* 441 402 Adeodato* 16.17% Vogel 20.50%
3 M 0.38 U 1.30 Brockmann 2.498 Kurogi* 502 418 Flores* 16.31% D’yakonov 20.60%
4 L 0.45 TSPred(PR) 1.61 TSPred(PR) 2.779 Hu* 530 370 Chen* 16.55% Rauch 21.70%

5 U 0.62 Z 4.80 Zivcak 2.873 Palacios-
Gonzalez 577 395 D’yakonov 16.57% Luna 21.80%

6 A 0.71 C 6.40 Kowalczyk 2.985 Maldonado* 644 542 Kamel* 16.92% Wichard 22.10%
7 McL 0.77 W 7.10 Lewandowski 3.223 Simon* 653 351 Abou-Nasr 17.54% Gao 22.30%

8 TSPred(ARIMA) 0.90 S 17.00 Kowalczyk 3.264 Verdes* 660 442 Theodosiou* 17.55% Puma-
Villanueva 23.70%

9 TSPred(PR) 0.99 Ortega 3.380 Chan* 676 677 TSPred(ARIMA) 17.79% Dang 25.30%
10 N 1.00 King 3.388 Wichard* 725 222 de Vos 18.24% Pasero 25.30%
11 P 1.30 Lotfi 3.389 Beliaev* 928 762 Yan 18.58% Adeodato 25.30%
12 Can 1.40 Guijarro 3.421 Kong 954 994 C49 18.72% undisclosed 26.80%
13 K 1.50 Weizenegger 3.694 Wang 1037 402 Perfilieva* 18.81% undisclosed 27.30%
14 Sw 1.50 TSPred(ARIMA) 3.820 Cellier* 1050 278 Kurogi* 19.00% TSPred(ARIMA) 27.80%
15 Y 1.50 Boger 3.958 Crone* 1156 995 Beadle 19.14% Tung 28.10%
16 Car 1.90 Bontempi 3.997 TSPred(ARIMA) 1173 917 Lewicke 19.17% undisclosed 33.10%
17 Pelikan 4.348 Acernese* 1247 1229 Sorjamaa* 19.60% undisclosed 36.30%
18 Brockmann 4.373 Yen-Ping* 1425 894 Isa 20.00% undisclosed 41.30%
19 Pelikan 4.437 TSPred(PR) 7387 6778 C28 20.54% TSPred(PR) 41.50%

20 Rivieccio 4.502 Duclos-
Gosselin 20.85% undisclosed 45.40%

21 Brockmann 4.580 Papadaki* 22.70% undisclosed 53.50%
22 Ivakhnenko 4.653 Hazarika 23.72%
23 Brockmann 4.712 C17 24.09%
24 Brockmann 5.087 Njimi* 24.90%
25 Brockmann 5.425 Pucheta* 25.13%

* et al.
1 NMSE error for the 15 first predicted observations

(a) Prediction errors of the NN3 Competition dataset

(b) Prediction errors of the NN5 Competition dataset

Fig. 3: Box Plot of ARIMA’s SMAPE prediction errors for all
time series in the NN3/NN5 Competition dataset (Dataset A)

able the evaluation of the practical viability and expediency
of a prediction method. Additionally, a reliable benchmark
should be able to offer a way to expose the merit of a time
series prediction method that presents higher performance.

According to our experimental results, the fittest LM pro-
vided by the package TSPred fulfill the role of an adequate
BM. Table III presents prediction errors rankings for the top
25 methods in all competitions. It is possible to observe
that TSPred’s fittest LM maintained an average rank. MLM
presenting performance below the fittest LM clearly demand
further refinement. Furthermore, prediction errors of the tuned
fittest LM models ratified the importance of results from the
top ranked methods, which were significantly superior.

VI. CONCLUSION

Although the importance of using a benchmark process to
help in the evaluation of time series prediction methods is
well known, it is often neglected. To address this problem, this
paper presents a benchmarking framework to ease the process
of evaluating the performance of MLM against a fittest LM
during time series prediction modeling. The framework was
developed within the R-package named TSPred to automate
the nontrivial task of tuning and selecting a fittest LM, among
PR and models in the ARIMA family, which is then used
as benchmark for MLM. Thus, we minimize the risk of
improper tuning of LM, and consequently, biased performance
assessment of MLM to which it is compared.

We have performed a set of experiments using datasets se-
lected from past time series prediction competitions, allowing
the study of the fittest LM provided by TSPred (used as BM)

2344
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Time-Series Prediction – Results

§ Effect of temporal aggregation for long-term prediction
of sea surface temperatureR. Salles et al. / Ecological Informatics 36 (2016) 94–105 103

Fig. 7. Graphic of the victories of each prediction approach regarding their perfor-
mances in generating up to twelve weekly aggregated forecasts.

for prediction, even if it is not in the same time unit as the targeted
forecasts.

6. Conclusions

Predicting SST of the Atlantic Ocean is important for govern-
mental agencies and society to get ready for future occurrences of
extreme events, such as droughts. Improving the prediction of SST in
different horizons becomes a key issue. This paper evaluated the use
of temporal aggregation and its consequences in different prediction
horizons for SST. In addition to the daily SST data coming from the
PIRATA project, we have modeled and evaluated weekly and monthly
derived time series to assess the impact of temporal aggregation in
predicting step-ahead SST observations. This paper also explored dif-
ferent training dataset sizes. This becomes important when data is
collected by sensors (IoT sensors) where missing data may interfere
the training datasets size.

Our study consisted on measuring the difference between pre-
dicting at high frequency (daily time series) and then computing

Table 6
Results of statistical comparison (p-values) between PrePred and PostPredW, regarding
their performances in generating weekly aggregated forecasts.

Prediction
horizon [weeks]

Size of training set [years]

1 2 3 4 5 6

1 0,85 0,00 0,01 0,08 0,42 0,20

2 0,16 0,00 0,00 0,00 0,05 0,00

3 0,02 0,00 0,00 0,00 0,01 0,00

4 0,00 0,00 0,00 0,00 0,00 0,00

5 0,00 0,00 0,00 0,00 0,00 0,00

6 0,00 0,00 0,00 0,00 0,00 0,00

7 0,00 0,00 0,00 0,00 0,00 0,00

8 0,00 0,00 0,00 0,00 0,00 0,00

9 0,00 0,00 0,00 0,00 0,00 0,00

10 0,00 0,00 0,00 0,00 0,00 0,00

11 0,00 0,00 0,00 0,00 0,00 0,00

12 0,00 0,00 0,00 0,00 0,00 0,00

PostPredW is statistically superior to PrePred.

Fig. 8. Graphic of the victories of each prediction approach regarding their perfor-
mances in generating up to twelve monthly aggregated forecasts.

the aggregated data (weekly and monthly predictions derived from
daily predictions) versus predicting directly from aggregated data
(weekly and monthly time series derived from daily predictions).
Additionally, for the sake of fair comparison, we used ARIMA model
as prediction method for both PrePred and PostPred in order to focus
on measuring the influence of the temporal aggregation. Addition-
ally, we adopted Random Walk as a baseline prediction model as a
way to measure the quality of both PrePred and PostPred. We evaluate
the influence of temporal aggregation over the one-year-ahead pre-
diction of SST observations. The choice of such prediction horizon
was constrained by the quality of the available SST time series, which
prevented us from using longer intervals as training data. Never-
theless, the methodology presented by the article can be explored
to provide future SST aggregates with longer prediction horizons,
covering many-years-ahead of SST observations to support decision
making in the context of extreme weather events anticipation. Our
results point out that such methodology adaptation may become a
feasible option when a suitable amount of uninterrupted SST training
data is available.

Although in our review of the literature, we have observed that
PrePred is the most adopted approach during SST predictions, our
experimental analysis pointed out that it was generally outper-
formed by Random Walk in both weekly and monthly forecasts. Such
behavior did not occur when using PostPred. When the training set
size was greater than two years, PostPred outperformed Random
Walk. Additionally, we have made statistical tests under different
forecast horizons between PrePred and PostPred and in the majority
of the cases, PostPred was statistically significantly better than
PrePred. PrePred was only competitive when both prediction horizon
and training set size were small.

This paper highlights the influence of the prediction horizons
and the size of training datasets over the possible benefits of the
application of the temporal aggregation for SST prediction, especially
when there is significant disparity in the statistical characteristics
of the available time series, scenario which precludes the direct
usage of most prior knowledge on the influence of temporal aggre-
gation to time series prediction. Our work is complementary to
the many other reviewed researches in SST prediction, since it
highlights the value of performing a further study of the need
for temporal aggregation when conducting SST predictions. Not
only can our results be used as criteria for devising SST prediction
experiments, but also our methodology may serve as ground for
future studies of the practical value of different temporal aggre-
gation strategies in SST prediction under different SST datasets
size.

Rebecca	Salles
Scientific	initiation
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Time-Series Prediction – Research Opportunities

§ Expansion of framework prediction for machine learning
methods
§ On going

§ Study of different preprocessing methods for supporting
non-stationarity
§ On going

§ Creation of novel methods for non-stationarity for
machine learning methods



57

Urban Mobility

Approximately	more	than	4	million	of	observations	per	day
Bus	as	trajectory	sensors

Spatial-Temporal	Aggregation:	Regions	as	virtual	sensors
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Urban Mobility – Results

§ Data collection (done by UFF)
§ Data Cleaning, Spatial-Time Aggregation
§ Preliminary Analysis of Anomalies

Este processo foi implementado como um workflow. Dado o cenário de larga
escala de dados e a necessidade de processamento de alto desempenho, o workflow de-
senvolvido em Apache Spark. O encadeamento do workflow foi implementado em Scala.
As atividades foram escritas em Python e R [Ferreira et al., 2017] e invocadas a partir da
especificação em Scala.

4. Avaliação Experimental
A Metodologia descrita na seção 3 foi aplicada sobre o perı́odo de dois meses: julho e
agosto de 2014. O mês de julho teve em média 2.961.726 observações diárias, enquanto
que a média de observações diárias de agosto é de 3.403.180. Inicialmente, para cada
mês, foram calculados os intervalos tı́picos. A metodologia de identificação de anoma-
lias aplicada sobre o mês de julho resultou na identificação de 42.050 anomalias. Esse
volume representa aproximadamente 1,03% das observações. Em agosto, foram identi-
ficadas 38.843 anomalias, volume que representa aproximadamente 1,07% da base com-
parada. Também aplicamos os intervalos tı́picos computados em julho para servir de
base de comparação relativa com as observações do mês de agosto. Desta forma, foram
identificadas 64.041 anomalias, correspondente a 1,76% do volume da base comparada.

A Figura 1 ilustra a quantidade de anomalias por área de planejamento da cidade
nos perı́odos estudados. Embora as análises sobre meses de julho e agosto individual-
mente indiquem a maior concentração de anomalias na área de planejamento da Zona
Norte do Rio de Janeiro, a comparação relativa entre agosto e julho mostrou que o maior
número de anomalias ocorreu na área de planejamento da Zona Oeste, seguida pela Zona
Norte. Na Zona Norte, o maior número de anomalias aponta para um aumento da velo-
cidade média, enquanto que na Zona Oeste, a maioria das anomalias identificadas indi-
cam o aumento de engarrafamentos. As anomalias que indicam redução da velocidade na
Zona Oeste, concentram-se principalmente nos bairros de Guaratiba, Santa Cruz e Campo
Grande, que, juntos, representam aproximadamente 71,93% das anomalias de lentidão na
Zona Oeste e 23,8% das anomalias de lentidão de todo o Rio de Janeiro.

julho agosto agosto v julho
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Figura 1. Anomalias identificadas por

´

area de planejamento

As anomalias abertas por dia da semana podem ser vistas na Figura 2. Um resul-
tado esperado é que ocorram aumentos significativos de velocidades aos domingos. No
mês de julho, em especial, anomalias que indicam o aumento da velocidade média são
maiores nas terças. Esse comportamento especı́fico do mês de julho ocorreu por causa
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Figura 3. Anomalias identificadas por faixa de hor
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ario (ago v julho)

da Copa do Mundo, que teve alguns de seus jogos no Rio de Janeiro. Nesse mês, os dias
08/07/2014 e 04/07/2014 foram os que apresentaram mais anomalias de maior velocidade.
O dia 08/07/2014 (terça feira) foi o dia do jogo entre Brasil e Alemanha nas semifinais
da Copa do Mundo. O dia 04/07/2014 (sexta feira) foi feriado devido à Copa do Mundo.
Foi identificado ainda um volume de anomalias que indicam diminuição de velocidade
no domingo superior ao volume da análise sobre o mês de agosto e a comparação entre
o mês de agosto e julho. Esse comportamento anômalo foi observado em função de pro-
testos que ocorreram na cidade no dia 06 de julho, da 14a parada gay que ocorreu no dia
20 de julho e da demolição do último segmento do Elevado da Perimetral, interdição da
Avenida Rodrigues Alves e alteração no percurso de diversas linhas de ônibus no dia 27
de julho.

As anomalias abertas por faixa de horário, comparando-se agosto versus julho,
podem ser vistas na Figura 3. A partir desta comparação, foram identificadas anomalias
que indicam o aumento da velocidade média em horários considerados de pico como o in-
tervalo entre cinco horas da tarde e oito horas da noite. No perı́odo entre seis e oito horas
da manhã, apesar do número de anomalias que indicam velocidades maiores ser superior
ao número de anomalias que indicam diminuição da velocidade média, pode-se observar
o aumento gradual do número de anomalias que indicam velocidades mais lentas. Esse
aumento gradual de anomalias culmina na maior proporção de anomalias de diminuição
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da Copa do Mundo, que teve alguns de seus jogos no Rio de Janeiro. Nesse mês, os dias
08/07/2014 e 04/07/2014 foram os que apresentaram mais anomalias de maior velocidade.
O dia 08/07/2014 (terça feira) foi o dia do jogo entre Brasil e Alemanha nas semifinais
da Copa do Mundo. O dia 04/07/2014 (sexta feira) foi feriado devido à Copa do Mundo.
Foi identificado ainda um volume de anomalias que indicam diminuição de velocidade
no domingo superior ao volume da análise sobre o mês de agosto e a comparação entre
o mês de agosto e julho. Esse comportamento anômalo foi observado em função de pro-
testos que ocorreram na cidade no dia 06 de julho, da 14a parada gay que ocorreu no dia
20 de julho e da demolição do último segmento do Elevado da Perimetral, interdição da
Avenida Rodrigues Alves e alteração no percurso de diversas linhas de ônibus no dia 27
de julho.

As anomalias abertas por faixa de horário, comparando-se agosto versus julho,
podem ser vistas na Figura 3. A partir desta comparação, foram identificadas anomalias
que indicam o aumento da velocidade média em horários considerados de pico como o in-
tervalo entre cinco horas da tarde e oito horas da noite. No perı́odo entre seis e oito horas
da manhã, apesar do número de anomalias que indicam velocidades maiores ser superior
ao número de anomalias que indicam diminuição da velocidade média, pode-se observar
o aumento gradual do número de anomalias que indicam velocidades mais lentas. Esse
aumento gradual de anomalias culmina na maior proporção de anomalias de diminuição

Ana	Beatriz	Cruz
Master	degree
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Urban Mobility – Research Opportunities

§ Persistence and Querying
§ Trajectory or Aggregated analysis
§ Identification of Patterns, Anomalies, and Paradigm
Change
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Research Project In Management and 
Analysis of Spatial-Time Series 

§ Non-stationary	resilient	techniques	in	data	
preprocessing

§ Novel	algorithms	for	prediction/classification	and	
pattern	identification
§ Motif	identification
§ Tight	spatial-time	sequence	mining

§ Explore	spatial-time	series	applications
§ Frequent	pattern	mining,	Classification/Prediction

§ Explore	data	management	and	parallel	processing	for	
mining	non-stationary	Big	Data
§ Algebraic-based	spatial-time	series	data	mining	workflow	using	
Spark
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Parallel and Distributed Execution 
Using Spark

ETL de exemplo, o workflow faz uso apenas de três operadores: (i) SplitMap, (ii) Map,
(iii) Query. No SplitMap, representado por T  SplitMap(Y,R, a), tem-se que a ati-
vidade Y produz um conjunto de tuplas na relação de saı́da T para cada tupla consumida
na relação de entrada R. O conjunto de atributos a identifica as composições das tuplas
produzidas na operação de split. Na linha 6 do exemplo, para o intervalo estabelecido na
relação trajectory, são criadas 61 tuplas para coleta dos dados de mobilidade dos ônibus
correspondente a cada dia do perı́odo de 1 de junho de 2014 a 31 de julho de 2014.

As operações envolvendo Map, seguem a notação T  Map(Y,R), onde a ati-
vidade Y produz uma única tupla na relação de saı́da T para cada tupla consumida na
relação de entrada R. Isto ocorre nas linhas de 7 a 10 e na linha 12 do workflow. Na linha
7, para cada dia, faz-se o download efetivo dos dados de trajetória dos ônibus. Trata-se
de um arquivo zip contendo um arquivo JSON por minuto. Em cada JSON, tem-se a
localização de todos os ônibus em transito no Rio de Janeiro. Na linha 8, cada arquivo zip
é processado e produz-se um arquivo RData com as observações minuto a minuto de to-
dos os ônibus para aquele dia. Esta atividade remove os registros duplicados. Na linha 9,
faz-se uma remoção de outliers por distribuição (velocidade instantânea, posicionamento
e distância percorrida). A linha 10 produz as estações virtuais, considerando-se um raio
para agrupamentos dos pontos de ônibus, a partir da malha de pontos de ônibus da cidade
do Rio de Janeiro [Silva et al., 2016].

(a) (b)

generate_download_info.py

download.py

generateRData.R

remove_outliers.R

create_virtual_stations.R

cross-product

st_aggregation.R

trajectory st_aggreg_config

St_dataset

1

2

2

2

4

5

3

Figura 2. Workflow para análise de tráfego durante a COPA de 2014 : a)
Especificação do Workflow usando linguagem Scala; b) grafo mostrando as de-
pendências entre as atividades

A operação de Query, representada por T  Query(Y,R1, ..., Rn), consome um
conjunto de relações para produzir uma única relação de saı́da T . A atividade Y descreve
uma consulta sobre as relações de entrada {R1, ..., Rn}. Na linha 11, por exemplo, faz-se
o produto cartesiano da relação r5 com a relação r4, i.e., faz-se uma combinação entre os
arquivos RData preprocessados e as opções de configurações para agregações espaço-
temporais [Silva et al., 2016].

João Ferreira
Master	degree
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Recent Published Papers Related to the Project
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§ Salles R. et al. 2017 - A Framework for Benchmarking Machine Learning Methods Using Linear Models for

Univariate Time Series Prediction, IJCNN
§ Marinho A. et al. 2017 - Deriving scientific workflows from algebraic experiment lines: A practical
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