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Abstract. Time series prediction has been gaining attention of many researchers
throughout the world for its increasing importance to preparation, planning and
decision-making activities in many areas of study in science, business and gov-
ernment. Many data come from different sources and some of them, such as
sensors, are not resilient to failures. A particular problem that occurs in these
cases is the absence of data in some parts of the time series. Addressing this
lack of data becomes important to enable the development of prediction mod-
els. Although there are many machine learning methods (MLM) that may be
used to fill such data, there is an absence of systematically benchmarking estab-
lished linear baseline methods for performance comparison. In this paper we
explore linear models as baseline for time series imputation (TSI). Our results
show the importance of exploring different linear approaches for TSI to encour-
age researchers to improve their choices for a suitable MLM for solving such
problem.

1. Introduction
Prediction is a key element to decision-making activities. Knowledge of future observa-
tions can often have a massive impact on the success or the failure of a goal. In particular,
the analysis and prediction of time series attracts interest of many researchers due to its
increasing importance and applications in science, business and governments.

A general strategy for making predictions based on past known values of a time
series is to build a model that adequately reflects its behavior. Such model is developed
based on combining data transformations and prediction methods. The latter has its pa-
rameters adjusted according to a training dataset, which is a subset of the observed time
series. Once built, this model serves as a tool for predicting unknown values for that time
series, including future ones.

Many data come from different sources and some of them, such as sensors, are
not resilient to failures. A particular problem that occurs in these cases is the absence
of data in some parts of the time series. Addressing this lack of data becomes important
to enable the development of prediction models. The general problem of computing a
plausible value for a missing observation in a time series to conduct an analysis with the
completed data is named time series imputation (TSI) [Yozgatligil et al., 2012]. TSI can
be addressed by prediction or interpolation techniques.

Although there are many machine learning methods (MLM) that may be used to
fill such data, there is an absence of systematically benchmarking established baseline
methods for performance comparison, particularly for non-stationary time series. There
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is a general concern about interpretability of MLM methods [James et al., 2013]. In this
way, many scientists prefer to adopt MLM only if it clearly outperforms linear models
(LM). In this paper, we evaluate LM as baseline for TSI. We have analyzed Autoregressive
Integrated Moving Average (ARIMA) [Box et al., 2008], linear interpolation and spline
[Zeileis and Grothendieck, 2005]. These three approaches have statistical properties that
allow them to be classified as either rigid or flexible methods [James et al., 2013]. We
have conducted experiments using the CATS dataset [Lendasse et al., 2004]. Our results
indicate the need of exploring LM as baseline approaches for TSI to encourage researchers
to improve their choices for a suitable MLM for solving such problem.

Besides this introduction, the remainder of this paper is organized as follows.
Section 2 discusses fundamentals of TSI. Section 3 explores LM comparing them with
state of the art MLM. Section 4 concludes the paper.

2. Time Series Imputation

A time series can be defined as a set of data of an object of interest collected over time
[Box et al., 2008]. Formally, a time series t is a series of values < t1, ..., tm >, where |t| is
the number m of elements in t, and tm is the most recent value in t. A subsequence r of size
n in a time series t is a series of values < v1, ...,vn >, such that there exist i1 < i2 < .. . < in
integers in which v1 = ti, v2 = ti+1, . . . , vn = ti+n�1, |r| = n. Formally, r = subseq(t, i,n).

A gap is a subsequence rk in t in which all values are NA (Not Available). The
problem of imputation consists in filling the set of gaps inside of a time series t with
appropriate values. When the gap occurs in the last sequence of values inside a time
series, the problem of imputation is exactly the same as predicting future data.

There exist a substantial variety of prediction and imputation models. We can
generally consider a method for estimating a time series model to be either rigid or flexible
[James et al., 2013]. Rigid methods make an initial assumption about the characteristics of
the time series model; therefore the modeling process becomes a problem of estimating
a set of coefficients. Nevertheless, this initially assumed model might not reflect the
available time series observations [James et al., 2013]. Examples of rigid methods include
linear regressions and ARIMA.

In contrast, flexible methods focus on fitting a model such that the available time
series observations are approximated as much as possible taking into account a certain
degree of smoothness. Some examples of flexible methods are the regression spline,
linear interpolation, SVM and neural networks. In the case of prediction and imputation,
although a straightforward conclusion would be that flexible are better suited than rigid
methods, it is not guaranteed due to the possibility of over-fitting the time series data
[James et al., 2013]. Thus, rigid methods should not be neglected when it comes to
prediction/imputation.

Another very important question related to imputation and prediction is the in-
terpretability of the methods. LM are commonly simpler to interpret than MLM. In this
way, managers and researchers tend to feel safer when they understand data models. In
this sense, they might prefer to adopt LM if the advantage of MLM is not statistically sig-
nificant or just slightly better. Considering these characteristics, the following subsections
details general LM and its implementation in R according to their rigidity level.
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2.1. ARIMA
The ARIMA(p, d, q) model [Box et al., 2008] is one of the most important rigid meth-
ods for time series prediction and is derived from a composition of the autoregressive
(AR) and moving average (MA) modeling processes, respectively represented by p and
d, with the addition of a preliminary differentiation process (I) represented by d. Fore-
casting and back-forecasting are commonly used in filling gaps in univariate time series
[Weerasinghe, 2010]. The selection of optimized parameters (p, d, q) for ARIMA model
is not a simple task. To address such issue, commonly function auto.arima from the fore-
cast R-package [Hyndman and Khandakar, 2008] is applied to optimize these parameters.
Function auto.arima also identifies if the input time series is seasonal, which allows the
usage of seasonal ARIMA (SARIMA) model.

2.2. Linear Interpolation
Among univariate methods for TSI, linear interpolation is one of the most popular. De-
spite its restrictions with regard to gap lengths [Junninen et al., 2004], its performance
tend to be stable and of reasonable quality. Linear interpolation fits a straight line between
the endpoints of a gap, so its equation is used to straightforwardly compute missing val-
ues [Junninen et al., 2004]. We have performed linear interpolation using the na.approx
function of the zoo R-package [Zeileis and Grothendieck, 2005], which replaces NAs by
linear interpolation using the function approx from the stats R-package.

2.3. Spline
In the spline interpolation method for TSI, cubic polynomials are fitted to a time series.
The fitted function and its first two derivatives must be continuous at the knots, that is,
where piecewise portions join [Junninen et al., 2004]. A cubic spline with knots at xi,
i = 1, . . . , n is defined as f (x) = ai +bix+cix2 +dix3 [Junninen et al., 2004]. The perfor-
mance of spline imputation is also restricted to gap lengths, in the sense that it may present
similar quality of that of a linear imputation method for short gaps, however, the perfor-
mance of splines considerably decline as the length of gaps increase due to overfitting
the data [James et al., 2013]. We have performed spline interpolation using the na.spline
function of the zoo R-package, which replaces NAs by cubic spline interpolation using
the function spline from the stats R-package.

3. Experiment Evaluation and Discussion
We have conducted an initial evaluation of linear models using the CATS Competition
data set. The CATS Competition presented an artificial time series with 5,000 points,
among which 100 are unknown. The competition proposed that the competitors predicted
the 100 unknown values from the given time series, which are grouped into five non-
consecutive gaps of 20 successive values. The CATS Competition time series is depicted
in Fig. 1, in which the five gaps of unknown values (981-1000, 1981-2000, 2981-3000,
3981-4000 and 4981-5000 observations) may be observed.

The performance evaluation in the CATS Competition is based on the mean
squared error (MSE) computed on the 100 unknown values (E1) and on the 80 first un-
known values (E2). The expressions for E1 and E2 are presented in Equation 1, where ib
and jb correspond to the first and last elements of the bth gap of imputed values, respec-
tively. The second criterion (E2) includes only the scenario in which both sides of the time
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Figure 1. CATS Competition time series with five gaps

series, i.e., before and after the endpoints of the gaps, can be used to perform imputation.
Whereas the first criterion (E1) includes the last gap, which presents a typical scenario of
prediction. In this case not all imputation methods are capable to be used.
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Besides the previously mentioned imputation methods, we have also applied the
simple method of carrying the last known time series observation forward into the gap
via the na.locf function of the zoo R-package [Zeileis and Grothendieck, 2005]. Further-
more, we have included other general-purpose imputation package, namely Amelia. The
method provided by the Amelia R-package implements a bootstrapping-based EM algo-
rithm, where the means and covariance matrices of the missing data are estimated itera-
tively [Junninen et al., 2004]. Amelia supports the processes of imputing cross-sectional
surveys, time series data, and time series cross-sectional data [Jerez et al., 2010].

The goal of adopting LM as baseline is to enhance imputation performance of
MLM during training-testing, prior to its actual usage with unknown data. However, for
sake of comparison purpose only, we adopt all 4900 observations as training set and the
100 unknown competition values as test set. The MSE errors for each of the 5 gaps in the
CATS dataset as well as the computed values for E1 and E2, with respect to each applied
imputation method are presented in Table 1. As expected, since the majority of imputation
methods apply interpolation techniques in order to predict the first four gaps, the MSE of
these gaps are generally inferior to the prediction error for the fifth block, for whose
prediction we could not apply the same interpolation methodology. This is exactly the
case of ARIMA. We have used the arimainterp function of the TSPred R-package [Salles
and Ogasawara, 2015] to perform the imputation of the first four gaps applying forward
and backward forecasting, while in the last gap, we only applied forward forecasting.
Linear Interpolation was the best LM for CATS dataset, however, just like Spline, it could
only be used for the first four gaps. Finally, we highlight the performance of the Amelia
method, which was two orders of magnitude inferior to the one of the linear interpolation.
This result is in agreement with Friese et al. [2013] who observed that Amelia works best
on multidimensional time series.

The comparison between the explored LM and MLM for imputation can be ob-
served in the ranking in Table 2, derived from the complete CATS Competition ranking
[Lendasse et al., 2004]. Although ARIMA maintained its general characteristic perfor-
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Table 1. MSE prediction errors for each gap with E1 and E2 measures

Method Gap 1 Gap 2 Gap 3 Gap 4 Gap 5 E1 E2

Linear Interpolation 142 175 651 495 NA NA 366
ARIMA 576 532 1979 583 2196 1173 917
na.locf 382 2153 3389 1103 1769 1759 1757
Spline 2014 9998 3297 939 NA NA 4062
Amelia 51890 27480 14026 25104 24302 28560 29625

mance as a simple and rigid linear model it has obtained reasonably better results when
compared to other MLM imputations. However, the linear interpolation stands out for
having produced results that would lead it to the fifth position of the ranking of CATS
competition.

Table 2. CATS Ranking according to E2 measure

Participant E2 Participant E2

1. Wichard et al. 222 11. Verdes et al. 442
2. Cellier et al. 278 12. Maldonado et al. 542
3. Särkkä et al. 346 13. Chan et al. 677
4. Simon et al. 351 14. Beliaev et al. 762
5. Linear Interpolation 366 15. Yen-Ping et al. 894
6. Hu et al. 370 16. Arima (auto-arima) 917
7. Palacios-González 395 17. Kong 994
8. Cai et al. 402 18. Crone et al. 995
9. Wang 402 19. Acernese et al. 1229
10. Kurogi et al. 418 20. na.locf 1757

The characteristic one seeks on a satisfactory baseline TSI method is, firstly, the
capacity to serve as parameter to define a minimum acceptable level of performance and
therefore permit the evaluation of viability and expediency of TSI method. Additionally, a
reliable and well-established baseline method should be able to offer a way to demonstrate
and ensure the merit of methods which present high quality of performances. The value
of these methods are then ratified by its better results when compared against those of
baseline methods.

We can observe that our best-trained LM maintained a relevant position present-
ing a better performance than a reasonable number of MLM. Furthermore, the imputation
errors of LM ratified the importance of the results of the best methods of the rankings,
which were superior to LM. These observed properties together with its several previ-
ously discussed advantageous characteristics, such as linearity, interpretability and relia-
bility, therefore, makes LM suitable choice for an exceptionally adequate baseline for TSI
methods.

4. Conclusion
In this paper we have conducted an initial evaluation of LM as baseline for TSI, par-
ticularly when compared to MLM, as they are commonly easier to interpret. We have
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evaluated both rigid (ARIMA) and flexible (linear interpolation and spline) models using
the CATS dataset. Although the performance of any interpolation time series method may
depend greatly on the characteristics of data [Junninen et al., 2004], linear interpolation
stood out as the best evaluated LM in our experiments. Since the best LM outperformed
the majority of MLM that participated in the CATS competition, our results indicate the
need for exploring LM as baseline for imputation during training and testing. Hence, dur-
ing CATS competition, for example, should LM had been used as baseline, many poor
imputations would have been avoided.
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